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Abstract

Money laundering is a major global problem, enabling crim-
inal organisations to hide their ill-gotten gains and to finance
further operations. Prevention of money laundering is seen
as a high priority by many governments, however detec-
tion of money laundering without prior knowledge of pred-
icate crimes remains a significant challenge. Previous detec-
tion systems have tended to focus on individuals, consider-
ing transaction histories and applying anomaly detection to
identify suspicious behaviour. However, money laundering
involves groups of collaborating individuals and evidence of
money laundering may only be apparent when the collective
behaviour of these groups is considered. In this paper we de-
scribe a detection system that is capable of analysing group
behaviour, using a combination of network analysis and su-
pervised learning. This system is designed for real-world ap-
plication and operates on networks consisting of millions of
interacting parties. Evaluation of the system using real-world
data indicates that suspicious activity is successfully detected.
Importantly, the system exhibits a low rate of false positives,
and is therefore suitable for use in a live intelligence environ-
ment.

1 Introduction

This paper describes an automated system for detecting
money laundering groups in a financial transaction network.
This system employs a combination of network analysis and
supervised learning to identify suspicious behaviour indica-
tive of money laundering activity. The system is designed
for use in a live intelligence environment at the Australian
Transaction Reports and Analysis Centre (AUSTRAC).

Money laundering is a major global problem, with nu-
merous detrimental impacts on society. Most importantly,
money laundering enables organised criminal groups to
flourish, leading to increased incidents of predicate crime
(i.e. crimes that generate the funds to be laundered). More-
over, significant levels of money laundering can severely un-
dermine economies and financial systems (Levi and Reuter
2006; AUSTRAC 2011a).
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The process of money laundering involves three main
stages termed placement, layering, and integration (AUS-
TRAC 2011a). The placement stage represents the introduc-
tion of funds obtained through criminal activities into the
financial system. Typically, this involves deposits that are
spread over time and geographical locations. Once the funds
have been placed into the financial system, layering is under-
taken in order to hide the original source of the funds. This
stage include numerous transactions, and often involves off-
shore accounts and complex investment vehicles. In the final
stage, integration, funds (or equivalent value) are transferred
to the owners, often in the form of investments or tangible
goods (e.g. jewellery, high-end cars, etc.).

It is clear from the three stages of money laundering that
a typical operation will involve multiple transactions, con-
ducted through a variety of different channels, by a group
of parties (individuals, businesses, etc.) acting in collusion
(Irwin 2011; He 2010; AUSTRAC 2011b). However, ex-
isting systems tend to focus on individual parties, consid-
ering individual transaction histories and applying anomaly
detection to identify suspicious behaviour (e.g. (Zhu 2006;
Le-Khac, Markos, and Kechadi 2010; Zengan 2009; Raza
and Haider 2011; Kingdon 2004)). In this paper, we describe
a system that advances the current state-of-the-art in this
area, considering the collective behaviour of small groups
represented as communities in a transaction network.

1.1 Summary of Contribution

The system described in this paper represents an end-to-end
solution for automated detection of money laundering ac-
tivity. The system is designed to run as an ongoing moni-
toring tool in a live environment and is expected to analyse
millions of transactions. This includes the construction of
a network model representing relationships derived from fi-
nancial records held by AUSTRAC, extraction of meaning-
ful communities from this network, generation of features
capturing the key characteristics of these communities, and
finally, classification using a supervised learning approach.
The major novelty of this system stems from two main con-
siderations.
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• Network analysis combining financial transactions
and supplementary relationships. The network anal-
ysed by our system contains multiple relationships, repre-
sented using typed edges. In addition to the actual remit-
tance of funds, parties may be linked by shared accounts,
shared use of agents, overlapping geolocations, etc. In de-
termining the strength of a connection between two par-
ties, different types of relationships are weighted to reflect
perceived importance. This allows business knowledge to
be incorporated into the network model.

• Treatment of near-k-step neighbourhoods as observa-
tions for supervised classifiers. Comparable systems de-
scribed in the literature have focused on individual par-
ties, typically analysing each partys transaction history
in isolation. Our system considers groups of transacting
parties as the basic unit of analysis, extending the notion
of ‘know your customer’ to a network setting. As we de-
scribe in Section 3.2, groups of tightly interacting parties
may be extracted from a network in different ways. We
have elected to use a bottom up approach for this task,
extracting relevant parties from a small region centred on
each new transaction. This approach is particularly suited
to the operational needs of a near-real-time intelligence
environment.

2 Related Work

One of the earliest systems for detection of money laun-
dering is that described by Senator (Senator et al. 1995),
which applied rule-based evaluation to identify suspicious
parties. The rules used by this system were derived from ex-
pert knowledge and encoded in an evaluation module that
was run each time the target database was updated. Par-
ties matching these rules would then be further investigated
by analysts using an interactive query interface and a vari-
ety of visualisation tools provided by the system. More re-
cently, Wang et al. describe an alternative rules-based sys-
tem, where rules are encoded using a decision tree (Wang
and Yang 2007).

While rule-based systems may be highly accurate, they
are dependent on expert knowledge, and cannot be used to
uncover new typologies (i.e. modes of operation). Later sys-
tems address this issue by applying more flexible approach
based on a combination of supervised and unsupervised
learning. Many of these systems follow a basic premise, first
set out by Kingdon (Kingdon 2004), which centres on the
notion of know your customer and the use of anomaly de-
tection for identifying money laundering behaviour.

In these systems, two main contexts are considered for de-
riving models of normal, non-suspicious behaviour. The first
context is provided by the transaction history for a given
party, while the second context is provided by sets of par-
ties exhibiting similar behaviour. In the original system de-
scribed by Kingdon, grouping of parties into related sets
was based on a small number of superficial features such
as the use of similar banking products, or sets of businesses
providing the same service. Later systems have greatly im-
proved on this scheme, applying distance-based clustering
across a far broader range of features (e.g. (Zhu 2006;

Le-Khac, Markos, and Kechadi 2010; Zengan 2009; Raza
and Haider 2011)).

In contrast to an anomaly detection approach, a num-
ber of systems apply supervised learning to identify suspi-
cious behaviour (Lv, Ji, and Zhang 2008; Heidarinia and
Harounabadi 2014). In general, these systems are expected
to provide a higher degree of precision than those based on
anomaly detection, since anomalous behaviour does not nec-
essarily translate to money laundering activity. However, un-
like those systems based on anomaly detection, these sys-
tems can only identify suspicious behaviour that is similar
to that observed in previous investigations.

To date, the majority of systems reported in the litera-
ture have focused on individual parties, considering amounts
transacted, frequency of transactions, etc. However, more re-
cent studies have begun to adopt a network-based approach,
considering features derived from the structure of a transac-
tion network.

For example, the system described in (Dreżewski,
Sepielak, and Filipkowski 2015) uses role assignment to
augment a more traditional approach based on anomaly de-
tection (described in (Dreżewski, Sepielak, and Filipkowski
2012)). Using bank statements, a social network is con-
structed with parties linked by transactions. For each party
in the network a number of invariants (betweenness central-
ity, page rank, etc.) are calculated. A role is then assigned
to the party depending on the values of these invariants. Ex-
amples of roles include insulators, who act as a buffer be-
tween a core group of parties and the larger network, and
communicators who act as a conduit for movement of funds
between two otherwise unconnected parties. Assigned roles
are then taken into account when considering the normality
of a given parties transactions, with parties having the same
role expected to show similarities in their transaction histo-
ries.

Taking the structural considerations even further, the sys-
tems described in (Bershtein and Tselykh 2013; Michalak
and Korczak 2011) aim to identify subgraphs within a net-
work that closely match known typologies . In these sys-
tems, the use of fuzzy matching means that subgraphs may
deviate in some way from the given typology, providing
greater flexibility than a simple motif search.

3 System Description

Our system performs four main tasks. (1) Modelling of rela-
tionships derived from AUSTRAC data as a typed, attributed
network. (2) Extraction of communities from the transaction
network. (3) Calculation of features from extracted commu-
nities, capturing information related to transaction dynam-
ics, party demographics and community structure. (4) Su-
pervised machine learning, treating extracted communities
as observations. Figure 1 shows a high level overview of the
system.

The system is designed to run on an ongoing basis,
analysing new activity as it occurs. Initially, we extract a
random set of communities from the transaction network,
and combine these with a set of known suspicious communi-
ties. This forms the training set for our supervised learning.
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Figure 1: System overview.

Having obtained a trained classifier, the system is then em-
ployed for analysis of new activity. For each new transaction
reported, the initiating party is treated as a seed and the com-
munity containing this party is extracted from the network.
Selected features are then calculated, and the community is
classified as suspicious or non-suspicious using the previ-
ously trained classifier. Those communities that are deemed
to be suspicious are then passed to intelligence analysts for
further investigation.

3.1 Transaction Network

Our system considers two types of transactions; large cash
deposits and international funds transfers. Information on
each transaction includes the amount, currency etc. and
also additional details for the sending or receiving parties.
Transactions modelled as a network, with nodes represent-
ing transacting parties and edges representing relationships
between these parties. Both parties and transaction edges
have a number of associated attributes, including the name
and address of parties involved, total amount transacted, etc.
Relationships are divided into two different types; transac-
tions, representing direct transfer of funds, and supplemen-
tary connections, representing mutual association of parties
with supplementary evidence (e.g. parties who access the
same account are connected). An example network is shown
in Figure 2.

In addition to transactions, parties may be connected
through relationships derived from supplementary data
available in some reports. These relationships are repre-
sented as a weighted edge between each pair of parties as-
sociated through supplementary evidence. For example, if
multiple parties access the same account, each party will be
connected to every other party accessing the account (form-
ing a clique). For these relationships, each edge represents
a summary of all evidence connecting the parties involved.
Thus each pair of associated parties is connected by a single
supplementary edge. Weights on these edges are calculated
as follows.

For a given pair of parties (p, q), the strength of their con-
nection through evidence e is given as

wp,q,e =
n(p, e)

de
· n(q, e)

de − n(p, e)

where n(p, e) gives the number of transactions where party
p is associated with evidence e and de gives the total number
of transactions involving e. A weight wp,q,e can thus be
interpreted as the probability of first selecting a random
party p that is associated with e based on the number of

Figure 2: Example network consisting of four parties linked
by transactions and supplementary evidence. Network A
shows the individual transactions (solid edges) and supple-
mentary relationships (dashed edges) connecting the four
parties. Network B shows the same four parties with mul-
tiple transactions and multiple supplementary relationships
summarised as a single edge of each type. Party colours in-
dicate different countries.

transactions linking p to e, and then choosing a second
party q in the same way from the remaining set of parties
associated with e. The total strength of the connection
between p and q is then taken as the maximum weight over
all evidence connecting them.

For the purposes of this paper, we constructed a sample
network consisting of relationships extracted from reports
submitted AUSTRAC in 2012. Table 1 provides a set of
summary statistics for this network. One important char-
acteristic is the high number of discrete connected com-
ponents. This reflects the fact that the transactions consid-
ered only include international funds transfers and large cash
deposits. Domestic transactions that do not involve large
amounts of cash are not represented in the network. Con-
sequently, the network does not exhibit the same degree of
connectedness that is typically observed in social networks
(see for example (Ugander et al. 2011)).

Within the sample network, a number of individuals are
tagged as being suspicious. These individuals have previ-
ously been suspected of involvement in money laundering
operations. For the purposes of this paper, communities con-
taining these tagged individuals are labelled as positive ob-
servations, as described in Section 3.4.

3.2 Community Extraction

Evidence of money laundering involves multiple transac-
tions between different parties. For this reason, we are inter-
ested in identifying small sets of interacting parties whose
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Table 1: Summary statistics for sample transaction network.
vertex type parties
edge types transactions, associations
parties 20, 854, 744
total edges 39, 283, 144
supplementary edges 7, 674, 102
transaction edges 31, 609, 042
connected components 4, 654, 162
parties in largest component 11, 650, 339

collective behaviour is suspicious. Since our system em-
ploys supervised learning, small groups of interacting par-
ties must be extracted from the larger network and treated
as observations. There are two main-options for this, com-
munity detection (top-down) or an ego-centric approach
(bottom-up) based on k-step neighbourhoods. For our par-
ticular purposes, existing community detection algorithms
(see (Fortunato 2010) for a comprehensive review) suffer
from a number of issues, leaving the ego-centric approach
as the favoured option.

One limitation of existing community detection algo-
rithms is their inability to handle heterogeneous networks.
The vast majority of these algorithms are designed with a
single edge type and single vertex type in mind. Moreover,
it is difficult to inject business knowledge into existing ap-
proaches, as any attributes of the edges and vertices are typ-
ically ignored (however see (Yang, McAuley, and Leskovec
2013)). While both of these issues can be addressed to some
extent through weighting of edges, it can be difficult to com-
bine information held in numerous attributes and numerous
edge types into a single meaningful weight.

Another drawback of existing methods is that they often
result in excessively large communities (Leskovec, Lang,
and Dasgupta 2008; Lancichinetti et al. 2010). In gen-
eral, meaningful communities are thought to contain less
than 150 individuals (Leskovec, Lang, and Dasgupta 2008;
Allen 2004), and published typologies indicate that in-
vestigation of money laundering operations often focuses
on a relatively small number of key parties (AUSTRAC
2011b). Using traditional community detection algorithms,
smaller communities tend to be found only at the extrem-
ities of a network (Leskovec, Lang, and Dasgupta 2008;
Lancichinetti et al. 2010). Typically, these communities con-
sist of entities that have only recently been added to the net-
work. However, within the core of the network, where the
vast majority of interactions take place, many of the detected
communities are exceedingly large. For this reason, we take
an ego-centric approach, building communities as a bottom-
up process.

Given the limitations of community detection, we define
communities in our system as near-k-step neighbourhoods.
A k-step neighbourhood is obtained by selecting a subject
party p0 (also referred to as the seed) and all parties having
a distance of k or less from this seed (i.e. there is a path from
the subject p0 to the candidate party p containing k or less
edges). The subgraph induced by these parties is the k-step
neighbourhood. In social network analysis, this is also re-

ferred to as an ego-net, and is a commonly used technique
for defining a unit of analysis (Leman Akoglu and Falout-
sos 2015). In our system we employ a slight variation on
the typical approach, taking a near-k-step neighbourhood,
applying two additional constraints beyond that imposed by
k. These additional constraints further limit the parties and
relationships included in the neighbourhood.

The first constraint is controlled by a parameter, Nmax,
which gives the maximum number of transaction neighbours
for a party (i.e. the maximum number of parties that have
conducted at least one transaction with the subject). Parties
having a number of neighbours that exceeds this threshold
are treated as gates. Unless linked to other parties within the
k-step neighbourhood, the transaction neighbours of these
parties are not included in the community. This allows us
to handle situations, for example, where many parties have
transacted with a large corporation but are otherwise un-
related. The second parameter, wmin, gives the minimum
weight for supplementary edges to be included in the com-
munity. Note that each of these parameters may be speci-
fied as a vector of dimension k, so that constraints may vary
with distance from the subject party. Figure 3 provides an
overview of the community detection process.

For the purposes of this paper, we consider k = 3,
Nmax = 40, and wmin = 0.01. These values are representa-
tive of the actual values used in the live environment, which
are selected in consultation with domain experts. In particu-
lar our reasoning for taking k = 3 stems from the fact that
vast majority of transactions in the network are international
transfers. By considering 3 steps, we obtain a seed party
in the source country, associated parties in the destination
country, additional parties in the source country transacting
with these same associates, and finally, related parties in the
destination country. In other words, setting k = 3 allows us
to obtain parties in both the source and destination countries
that are not directly associated, but are linked through a third
party.

As shown in Figure 3, extraction of communities is
achieved by first splitting the network into discrete con-
nected components. Those components that are below a
threshold size (diameter ≤ k) are treated as communi-
ties, with no need to extract the near-k-step neighbourhoods.
For those components having size greater than the specified
threshold, near-k-step neighbourhoods are extracted for any
subject parties within the component (selection of subject
parties is described in Section 3.4). In our system, this pro-
cess is implemented using a parallel architecture, allowing
millions of communities to be extracted in short period of
time.

Treatment of communities as near-k-step neighbourhoods
can introduce a significant degree of overlap between com-
munities. From an intelligence standpoint, this is a useful
characteristic of our approach, as it means the classifier is
exposed to numerous views of the same underlying signal,
placed within a different context. When assessing a new
community, training in this way will mean that the classi-
fier is able to correctly identify suspicious activity even if it
is only seeing a small portion of the relevant transactions.
One drawback however, is that multiple overlapping com-
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Figure 3: Overview of community extraction process.

Table 2: Feature categories.
Category Description
Demographic Aggregate features describing par-

ties in the network (e.g. mean age)
Network Invariants describing the network

structure (e.g. transitivity)
Transaction Aggregations over transactions in-

cluded in the community (e.g. total
cash amount)

Dynamic Features derived from time-series
analysis

munities may be classified as suspicious. A post-processing
step is therefore employed that evaluates the degree of over-
lap between communities deemed to be suspicious. If the
overlap is above a certain threshold, then the union of the
communities is taken, and it is this result that is passed on
for further analysis.

3.3 Features

Our system considers a broad range of features derived
from the extracted communities. Design of this feature set
was guided by expert knowledge (AUSTRAC, unpublished
data), and a broad survey of literature related to detection
of criminal behaviour and to general network analysis. This
feature set is designed to represent different aspects of the
transaction network, with features divided into four main
categories, as shown in Table 2.

Calculation of dynamic features includes the use of burst
analysis, which provides an indication of transaction regu-
larity and is used to identify abnormal behaviour. A wavelet-
based algorithm was used for this, which has previously
been shown to outperform alternative algorithms in detect-
ing both local and global bursts (Wang, in press).

3.4 Supervised Learning

Our system is designed to allow a high-degree of flexibil-
ity in the use of different machine learning models. Given
the adversarial nature of the problem domain, and the result-
ing potential for concept drift, it is important that classifiers
are regularly re-evaluated. As notions of suspicious and non-
suspicious change over time, new classifiers may need to be
trained. In general, this training will include model selec-
tion and parameter optimisation. However, for the purposes

of this paper, we limit consideration to a support vector ma-
chine (SVM) and a random forest, as implemented in the
R libraries e1071 and randomForest, respectively. For the
SVM we considered a linear and polynomial kernel, using
default values for the respective parameters. For the random
forest we set the number of trees to one hundred and used
default values for all other parameters.

Since the total number of communities that could be
extracted from the transaction network is extremely large,
training and evaluation was undertaken using a sample of
the full set. This sampling, and the assignment of labels,
was undertaken as follows. For the labelled true positives
we took all parties marked as suspicious in the available
database. For each of these parties, we then identified their
neighbours in the transaction network and combined these
to form a set of positive subjects. For the labelled true neg-
atives, we took a random sample of 700, 000 subjects from
those parties not used as subjects for true positives. Near-k-
neighbourhoods were then extracted for each of the positive
and negative subjects. Resulting communities were then as-
signed the same label as their subject. Note that in certain
situations, this process can result in duplicate communities,
thus a post-processing step was employed to remove these
duplicates.

To obtain a robust estimate of classifier performance, we
employed a method similar to k-fold cross validation. In
each of the k evaluations we took the full set of positive la-
belled communities, and combined this with the same num-
ber of communities randomly sampled from the full set of
negative communities. For each of the k iterations, the re-
sulting set was randomly partitioned into training and eval-
uation sets, with 70% of the observations used for train-
ing and 30% used for evaluation. In each iteration the F-
score was calculated using three values for the weighting
factor, β1 = 0.1, β2 = 0.5, β3 = 1. These values were se-
lected as we are interested in the ability of the classifier to
achieve a high-precision. An ROC curve was also calculated
in each iteration and a parameter τ was determined from
this curve giving the threshold value for classifier scores that
maximised the F-score for a given value of β. Precision and
recall were then calculated for this value of τ . Mean perfor-
mance in F-score, precision, recall and area under the ROC
curve was then calculated across the k iterations.
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Table 3: Mean performance of random forest classifiers over ten samples. Each random forest consisted of 100 trees. Parameters
β and τ refer to the weighting used in the calculation of F-scores and threshold used for classification, respectively.

model AUC β τ F-score recall precision
random forest 0.92 0.1 0.93 0.96 0.31 0.98

0.5 0.68 0.86 0.73 0.90
1.0 0.47 0.85 0.88 0.82

SVM 0.86 0.1 0.89 0.90 0.22 0.93
0.5 0.63 0.80 0.70 0.83
1.0 0.32 0.80 0.87 0.74

Figure 4: ROC curve for random forest and SVM classifiers.

4 Evaluation

4.1 Results of Supervised Learning

Table 3 gives the mean performance for a set of classifiers
evaluated using the sampling process described in Section
3.4, taking k = 10. Example ROC curves are shown for a
classifier of each model type (Figure 4) along with predicted
scores for a random forest classifier (Figure 5). These results
indicate that the classifiers constructed for our system are
able to achieve a level of performance that is suitable for use
in a live environment.

While the average recall of the classifiers is quite low,
both models exhibit an extremely high precision. This means
that a high classification threshold (τ ) can be selected, so
that the classifier can operate with low rates of false posi-
tives. This is an important characteristic for real-world ap-
plication of our system, as any communities classified as
suspicious will be further investigated by human analysts.
Since this is a time-consuming task, only minimal levels of
false-negatives can be tolerated.

5 Future Work

The system described in this paper provides a basic frame-
work for identifying money laundering activity. While re-
sults presented in this paper indicate that the system can

Figure 5: Predicted scores for a random forest classifier.

accurately identify suspicious networks, it is intended that
future work will extend and further improve the systems ac-
curacy.

One limitation of our system is that network structure
is represented solely through graph invariants. Moreover,
the particular invariants used can only describe the global
structure of each community. It may be that more lo-
calised descriptors, such as the role assignment proposed
in (Dreżewski, Sepielak, and Filipkowski 2015), provide a
more informative view. In addition, our system considers
the dynamics of each community only through analysis of
transaction time-series. Future work will consider the evolu-
tion of the community structure over time, and will attempt
to capture relationships between the structure and particular
edge and and vertex attributes. Future work will also con-
sider unsupervised approaches for detection of new typolo-
gies. In particular, the use of network-based anomaly detec-
tion will be considered (see (Savage et al. 2014; Akoglu,
Tong, and Koutra 2015) for recent reviews).

6 Conclusions

We have described an automated system for detecting
money laundering operations in transaction networks. This
system advances the current state-of-the-art by analysing
both explicit transaction relationships and implicit relation-
ships derived from from supplementary information. Evalu-
ation of the system shows that a suitable level of accuracy
is achieved at high levels of precision. This is an important
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characteristic for our system, as use in a live environment
necessitates a low rate of false positives.
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