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Abstract

The Strong Stackelberg Equilibrium (SSE) has drawn exten-
sive attention recently in several security domains, which op-
timizes the defender’s random allocation of limited security
resources. However, the SSE concept neglects the advantage
of defender’s strategic revelation of her private information,
and overestimates the observation ability of the adversaries.
In this paper, we overcome these restrictions and analyze the
tradeoff between strategic secrecy and commitment in secu-
rity games. We propose a Disguised-resource Security Game
(DSG) where the defender strategically disguises some of her
resources. We compare strategic information revelation with
public commitment and formally show that they have differ-
ent advantages depending the payoff structure. To compute
the Perfect Bayesian Equilibrium (PBE), several novel ap-
proaches are provided, including basic MILP formulations
with mixed defender strategy and compact representation, a
novel algorithm based on support set enumeration, and an
approximation algorithm for ε-PBE. Extensive experimental
evaluation shows that both strategic secrecy and Stackelberg
commitment are critical measures in security domain, and our
approaches can solve PBE for realistic-sized problems with
good enough and robust solution quality.

Introduction
Consider the problem a police department or homeland se-
curity agency faces when deciding how to use limited re-
sources to protect critical infrastructure, patrol transporta-
tion systems, or secure a large event such as the Super
Bowl. The security force must assess the threat posed
by different attack scenarios, and allocate the available se-
curity resources to maximize the level of protection pro-
vided. Stackelberg security games have gained traction as a
way to intelligently allocate security resources while keep-
ing the schedule unpredictable. They have been used for
protecting public infrastructures (Kiekintveld et al. 2009;
Shieh et al. 2012) and wildlife (Fang et al. 2016).

However, there is a dilemma that has not been resolved
when we compare the recommendations of Stackelberg se-
curity games with the actual practice of security agencies.
A key assumption in the Stackelberg model is that the se-
curity force will credibly commit to following a partic-
ular randomized strategy, which is publicly observed by
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the attacker who chooses a best response to the observed
strategy. This is often motivated by the ability of an at-
tacker to use surveillance to learn about the defender strat-
egy before deciding on an attack strategy, though it may
not be realistic for the attacker to learn the strategy ex-
actly through such observations (An et al. 2013; Gul 2011;
Pita et al. 2010). However, there is a stronger claim: the-
oretically, the defender will always do at least as well by
committing to a mixed strategy publicly as they will do by
playing a “secret” strategy. Therefore, according to the the-
oretical models the defender should not resist surveillance
efforts, but instead should actively announce the strategy to
make the commitment as credible as possible.

This is at odds with both intuition as well as the actual
practice of security agencies who frequently use a combina-
tion of a highly visible security presence (e.g., conspicuous
uniformed officers and marked vehicles) alongside “plain-
clothes” security forces who are disguised to fit in with civil-
ians and be difficult to observe. How can we resolve this
dilemma, when the current theory suggests that such secrecy
is suboptimal? What role is there for hiding security re-
sources, and how does this compare with the advantages of
public commitment?

We propose that one resolution to this dilemma lies in
considering a factor that is absent from current work on
security games: committing to a strategy may also reveal
the defender’s private information about the number of re-
sources available. This frames a tradeoff for the defender:
is it more beneficial to keep secret the private information,
or to commit to a strategy? We study this question from both
theoretical and empirical perspectives. We propose a novel
model called a Disguised-resource Security Game (DSG)
where there are multiple Bayesian types of defenders with
different numbers of resources, and the defender can strate-
gically choose whether to disguise resources or not, model-
ing the real-world decision of whether to make the security
forces uniformed or in plainclothes.

We make several key contributions. First, we propose
a Disguised-resource Security Game (DSG) model to an-
alyze the strategic secrecy where the defender strategi-
cally deceives the attacker by disguising some of her re-
sources. The number of the revealed resources is mod-
eled as a signal which can only be sent by the defender
with enough resources. Second, we compare the value of
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strategically disguising resources with the value of pub-
lic commitment, and formally show that they have differ-
ent advantages depending on the payoff structure. Third,
we introduce algorithms to solve for the solution concept
based on Perfect Bayesian Equilibrium (PBE) (Spence 1973;
Zhuang and Bier 2011) of a DSG. This is computationally
extremely challenging due to the exponential number of pure
strategies, so we introduce a basic Mixed-Integer Linear
Programming (MILP) with an exponential number of vari-
ables and constraints, a MILP of directly applying compact
representation, and a novel approach based on support set
enumeration. Based on analysis of the relationship between
the support set of PBE and payoff structure we can limit
the number of support sets and further improve scalability.
Fourth, we introduce an approximation algorithm based on
support set enumeration to produce an ε-PBE. Finally, we
conduct extensive experimental evaluation to show that our
algorithms can scale to realistic problems and to examine
the fundamental tradeoffs between secrecy and public com-
mitment for realistic problems. We conclude that the bound-
ary of such tradeoffs is close to zero-sum games, and both
strategic secrecy and commitment play a vital role in prac-
tice, given the approximate zero-sum nature of homeland
security (Banks and Anderson 2006; Durkota et al. 2015;
Nguyen, Alpcan, and Basar 2009).

Related Work
Previous work on secrecy and deception in security games
has failed to address the key dilemma of strategic secrecy
and commitment for various reasons. Brown et al. (2005)
study secrecy in the context of ballistic missile deployment,
but assume that the attacker is not aware that the defender
can hide resources, so there is no rational possibility for be-
lief update. Hespanha et al. (2000) study how a defender
can manipulate the information available to an attacker, but
model assumes Nash equilibrium with no private informa-
tion held by the defender. Other researchers explore sig-
naling games to model a “feint” in homeland security (Hen-
dricks and McAfee 2006; Oliveros 2005). In these games the
defender’s resource allocation causes a noisy signal follow-
ing an uncontrolled signaling technology, in contrast with
our model where the defender controls the signals sent. One
key feature of the strategic secrecy in our model is that the
revealed security resources (signal) are valid information for
the attacker since only the defender with enough resources
can send the specific signal, which differs from the cheap
talk game (Farrell and Rabin 1996) where messages are cost-
less and unverifiable, and any sender can send any message,
so that the receiver may ignore them at all.

Recently, there are some literatures studying the infor-
mation disclosure in security games and the optimal signal-
ing scheme to persuade the attacker to take the desired ac-
tion (Rabinovich et al. 2015; Xu et al. 2015) with a strong
assumption that the attacker can fully access the defender’s
correlated random allocation and signaling scheme by ex-
tensive surveillance, which is impractical and not reasonable
in situations where the attacker has only limited observation
and cannot observe the true defender type or the actual re-
source allocation, such as the strategic secrecy scenarios.

The most closely related model was proposed by Zhuang
and Bier (2011), where deception is regarded as a signal to
mislead the attacker’s belief about the defender type, while
the true defense is treated as a hidden action. They analyze
the defender’s preference over truthful disclosure, secrecy
and deception depending on the costs and private informa-
tion of both players. Their model assumes that the defender
deterministically sends the signal, while we allow the ran-
domized signaling strategy, which is possible and more gen-
eral in resource allocation domain. Furthermore, they only
provide general results for high-level special cases without
providing general algorithms for realistic problems.

Disguised-Resource Security Games (DSG)
We now illustrate our Disguised-Resource Security Games
(DSG) model in details. A DSG has the same basic structure
as a Stackelberg security game (Kiekintveld et al. 2009), but
adds a way to model the defender holding private informa-
tion about the number of resources. The game is played by
a defender and an attacker. The defender protects a set of
targets T , and the attacker chooses a target t ∈ T to attack.
There are multiple defender types, and each one has a differ-
ent number of available resources to protect the targets. We
note that this abuses the terminology “type” a bit, since we
will assume that all types have the same utility function, but
effectively have a different strategy spaces. We use θ ∈ Θ to
represent the number of resources available to each defender
type (e.g., police teams, patrol boats). The prior probability
distribution over types p : Θ → [0, 1] is known to both play-
ers.

We model private information for the defender by allow-
ing the defender to publicly reveal only a subset of her avail-
able resources using a signal. W.l.o.g., we assume that the
signal is in the set Θ. The remaining resources are disguised,
as in the case of a plainclothes police officer or unmarked
vehicle. Importantly, in our model the defender cannot send
deceptive signals that claim a greater number of resources
than are actually available, so a defender of type θ can only
send a signal s ≤ θ. There are four payoffs associated with
each target, 〈Rd

t , P
a
t , P

d
t , R

a
t 〉: if a resource is allocated to

attacked target, then defender receives a reward Rd
t and the

attacker receives a penalty P a
t ; otherwise the payoffs are P d

t
and Ra

t respectively. Assume Rd
t > P d

t and Ra
t > P a

t . The
overall interaction between the defender and attacker pro-
ceeds as follows: The defender moves first, samples a signal
s from the mixed signaling strategy and an allocation ac-
cording to the randomized allocation strategy conditioned on
s, and publishes the signal s; The attacker, observes the sig-
nal s, infers the posterior distribution of the defender type,
and decides the target to attack. Corresponding payoffs are
received. The DSG is an extensive-form game as illustrated
by the example in Section . The attacker cannot distinguish
the set of decision nodes where multiple defender types send
the same signal s, which is called an information set for the
attacker, denoted by I(s).

Strategies: Let c = 〈ct〉 and a = 〈at〉 denote the de-
fender’s coverage strategy and attacker’s mixed attacking
strategy where ct and at represent the probability of tar-
get t being covered by a security resource and the proba-
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bility of attacking target t respectively. Let o = 〈os〉 de-
note the mixed signaling strategy such that os represents
the probability of sending signal s. Let Δθ

c = {c ∈
[0, 1]|T | :

∑
t∈T ct = θ} denote the set of coverage strate-

gies available for defender type θ and Δc =
⋃

θ∈Θ Δθ
c be

the set of all coverage strategies. Similarly, we denote by
Δθ

o = {o ∈ [0, 1]|Θ| :
∑

s∈Θ os = 1, os = 0 ∀s > θ} the
set of mixed signaling strategies available for defender type
θ and Δo =

⋃
θ∈Θ Δθ

o the set of all mixed signaling strate-
gies. Let Δa = {a ∈ [0, 1]|T | :

∑
t∈T at = 1} represent

the set of all mixed attacking strategies. Let πd = 〈πc, πo〉
denote the defender’s policy where πc : Θ×Θ → Δc is the
coverage policy such that πc(θ, s) ∈ Δθ

c denotes the cov-
erage strategy adopted by defender type θ conditioned on
sending signal s and πc(t|θ, s) is the corresponding marginal
coverage on target t, and πo : Θ → Δo is the signaling
policy with πo(θ) ∈ Δθ

o representing the mixed signaling
strategy for defender of type θ and πo(s|θ) being the corre-
sponding probability of sending signal s. In particular, we
use πc(θ) = 〈πc(θ, s)〉 to denote the coverage policy for de-
fender of type θ. Let πa : Θ → Δa denote the attacker’s
policy such that πa(s) ∈ Δa is the mixed attacking strat-
egy adopted by the attacker observing signal s, where the
corresponding probability of attacking target t is denoted by
πa(t|s).

Posterior Belief: Let ΔΘ = {〈δθ〉 :
∑

θ∈Θ δθ = 1}
be the set of all possible probability distributions over Θ.
We denote by μ : Θ → ΔΘ the attacker’s posterior be-
lief on the defender type conditioned on the received signal.
In particular, μ(θ|s) denotes the posterior probability of de-
fender’s type being θ after signal s is received. If I(s) is on
the equilibrium path, i.e., s is sent with positive probabil-
ity (
∑

θ:θ≥s pθπo(s|θ) > 0), the belief is determined by the
Bayes’ rule, such that:

μ(θ|s) = pθπo(s|θ)/
∑

θ′:θ′≥s
pθ′πo(s|θ′).

Otherwise, I(s) is off the equilibrium path, and we adopt
the optimistic conjecture (Rubinstein 1985), such that when
the defender acts off the equilibrium strategy, the attacker
believes the defender is the weakest type, against which the
attacker would gain the most. Intuitively the attacker always
prefers to play against a defender type with less resources.
Theorem 1 formally illustrates this by showing a procedure
to get an NE profile 〈c′,a′〉 between defender type θ′ and the
attacker, from the NE profile 〈c, a〉 between defender type
θ > θ′ and the attacker, where c′ ≺ c. Thus, at information
set I(s) which is off equilibrium path, we have: μ(s|s) = 1
and μ(θ|s) = 0 for all θ > s.

Theorem 1. For two defender types θ and θ′ such that
θ > θ′, suppose 〈c,a〉 is a Nash equilibrium between the
attacker and defender type θ, then there always exists an
NE profile 〈c′,a′〉 between the attacker and defender type θ′

such that Pa(c
′, a′) ≥ Pa(c, a)

1.

Throughout the paper, we assume that posterior belief μ

1Due to the length limitation, we briefly sketch the idea of proofs
in the paper and omit the details for ease of reading.

follows Bayes’ rule and the optimistic conjecture for infor-
mation sets on and off equilibrium path respectively.

Utilities: Given the defender coverage strategy c ∈ Δc

and the mixed attacking strategy a ∈ Δa, the expected pay-
offs of both players are defined as follows:

Pd(c, a) =
∑

t∈T
atct(R

d
t − P d

t ) + atP
d
t

Pa(c, a) =
∑

t∈T
atct(P

a
t −Ra

t ) + atR
a
t .

(1)

Given the defender’s policy πd = 〈πc, πo〉 and attacker’s
policy πa, the expected utility of the attacker conditioned on
receiving signal s, and the expected utility of the defender
type θ are defined as follows:

Ud(πc(θ), πo(θ), πa) =
∑

s:s≤θ

πo(s|θ)Pd(πc(θ, s), πa(s))

Ua(πc, πo, πa(s)) =
∑

θ:θ≥s

μ(θ|s)Pa(πc(θ, s), πa(s)).

Equilibrium Concepts: Analogous to the equilibrium
of extensive-form game with first-mover hidden actions de-
fined by Zhuang and Bier (2011), the solution concept
we use for DSG is based on perfect Bayesian equilibrium
(PBE), which is the profile 〈π∗

d, π
∗
a〉 satisfying:

〈π∗
c (θ), π

∗
o(θ)〉 = arg max

πc(θ),πo(θ)
Ud(πc(θ), πo(θ), π

∗
a) ∀θ

π∗
a(s) = argmaxπa(s) Ua(π

∗
c , π

∗
o , πa(s)) ∀s.

Due to the strict requirement in PBE that both players
will not play a suboptimal response strategy, the compu-
tation of PBE is extremely challenging. Therefore, we
also consider the ε-PBE, an approximation of PBE that
allows players to have a small incentive to play strate-
gies other than the one played in the equilibrium. For-
mally, an ε-PBE is a strategy profile 〈π∗

d, π
∗
a〉 satisfying:

i) ∀θ ∈ Θ and ∀〈πc(θ), πo(θ)〉, Ud(π
∗
c (θ), π

∗
o(θ), π

∗
a) ≥

Ud(πc(θ), πo(θ), π
∗
a) − ε, and ii) ∀s ∈ Θ and ∀πa(s),

Ua(π
∗
c , π

∗
o , π

∗
a(s)) ≥ Ua(π

∗
c , π

∗
o , πa(s))− ε.

The Strong Stackelberg equilibrium (SSE) (Leitmann
1978) between the defender and attacker is a pair of strate-
gies 〈c, f(c)〉 satisfying: i) Pd(c, f(c)) ≥ Pd(c

′, f(c′)) for
all defender coverage c′, ii) Pa(c, f(c)) ≥ Pa(c,a) for all
attacking strategies a; and iii) the attacker breaks ties in fa-
vor of defender: Pd(c, f(c)) ≥ Pd(c,a) for all optimal at-
tacking strategies a.

Motivating Example

Suppose a small police station (the defender) has two dis-
tricts to protect, A and B. The police station has either one
or two patrol units, depending on the day. We call these case
the weak and strong types, and assume that they are equally
likely for the example. An attacker will choose one of the
two districts to target, represented by a mixed attacking strat-
egy a = 〈aA, aB〉. The police strategy can be compactly
represented by a coverage vector c = 〈cA, cB〉. Consider
that the strong type (with 2 resources) can disguise one re-
source, or choose to commit to an SSE using both resources.
The game is shown in Figure 1, where Ra

A = −P d
A = 8
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and Ra
B = −P d

B = 6, while Rd
A = −P a

A = 4 and
Rd

B = −P a
B = 2. If the defender chooses to reveal the

type and play an SSE the weak type will play the coverage
〈0.5, 0.5〉 equalizing the expected payoff for the attacker be-
tween the two targets, resulting in an expected utility of -2.
The strong type will play 〈1, 1〉 and the attacker will attack
B, so the strong type receives utility 2.

If the defender is allowed to disguise a resource, we have
a different game. In the PBE of this game, the strong type
will hide one resource with 100% probability. When the
attacker observes only 1 patrol unit, he is playing against
both types with equal probability. In PBE the weak type
plays coverage 〈0.4, 0.6〉, and attacker receives an expected
payoff of -0.4 for attacking A or B, while the attacker plays
a mixed strategy 〈0.4, 0.6〉. Therefore, the weak type still
receives an expected utility of -2, while the strong type gets
2.8, resulting in an overall gain for the defender.

However, disguising resources is not always beneficial.
Suppose the payoffs are changed to P d

A = −4 and Rd
B = 2,

so that the game is no longer zero-sum. The defender’s be-
havior in both PBE and SSE is the same as before. In PBE,
the attacker will play 〈0.5, 0.5〉 when observing 1 defender
resource, and the weak type and strong type receive -1 and
3 respectively. However, in SSE the attacker will always at-
tack target A and the two types receive 0 and 4 respectively,
higher than the expected utilities in PBE.
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Figure 1: Motivating Example. (left: PBE, right: SSE)

PBE versus SSE
We now compare more formally PBE with SSE and show
that they are beneficial in different situations, and are partic-
ularly sensitive to the correlation between defender and at-
tacker payoffs. For zero-sum DSGs where the players’ pay-
offs are perfectly correlated, we prove that any PBE gives
the defender utility at least as high as SSE (Theorem 2). The
intuition for Theorem 2 is that for zero-sum DSGs, the de-
fender cannot benefit from public commitment and SSE re-
duces to NE, while in PBE the attacker cannot distinguish
the defender type, and the mixed attack strategy may not be
a best response to the individual coverage of each type, so
the defender can take the advantage.

Theorem 2. For a zero-sum DSG, given any PBE
〈π∗

d, π
∗
a〉 and SSE profile 〈cθ, aθ〉 formed by defender type θ

and the attacker, we always have: Ud(π
∗
c (θ), π

∗
o(θ), π

∗
a) ≥

Pd(c
θ, aθ), for any type θ.

On the other hand, we analyze a PBE in the special case
where all types have a similar number of resources, and
show that this PBE has defender utility less than or equal

to SSE (Theorem 3). The idea is that when all types have a
similar number of resources, it is possible that there exists a
set of targets {t1, .., tk}, such that for each type θ, there is
an NE between defender of type θ and the attacker where the
defender covers {t1, .., tk} while leaving the remaining tar-
gets uncovered. In this case, we can show the existence of a
PBE where each defender type is playing that NE coverage
regardless of signals, and the attacker is playing the unbi-
ased mixed attack strategy (Definition 1) with support set
{t1, .., tk} in all information sets, which is a best response
against the coverage of each individual type. Therefore,
the defender’s expected utility of any type in such a PBE
is equal to her expected utility in NE, which is less than or
equal to that in SSE. Since Theorem 3 has no requirement
on defender payoff or the correlation between defender and
attacker payoffs, with less correlation the defender benefits
more from commitment and the defender utility in SSE can
be much higher than in the PBE in Theorem 3.

Theorem 3. Suppose Ra
min > P a

max where Ra
min =

mint∈T Ra
t and P a

max = maxt∈T P a
t . Let the targets be

listed by Ra
t with descending order: T = {t1, .., t|T |}.

If there exists k such that:
∑k

l=1

Ra
tl
−Ra

tk

Ra
tl
−Pa

tl

≤ θ ≤
∑k

l=1

Ra
tl
−Ra

tk+1

Ra
tl
−Pa

tl

holds for any type θ, then there exists a

PBE 〈π∗
d, π

∗
a〉 such that Ud(π

∗
c (θ), π

∗
o(θ), π

∗
a) ≤ Pd(c

θ, aθ)
for any type, where 〈cθ, aθ〉 is an SSE between type θ and
the attacker.

Computing PBE Solutions

We now introduce computation methods for computing
PBE. We first try a MILP based on mixed defender strat-
egy representation that is a variant of the sequence-form
MILP for extensive-form games. This approach is not scal-
able due to the exponential number of pure strategies, even
with implementation of constraint-generation approach. To
reduce the strategy space we can directly apply the compact
representation (coverage), and propose another MILP with
a polynomial number of variables and constraints. How-
ever, the defender’s best response criteria turn out to be non-
trivial. Although we can use linear constraints to represent
such criteria based on the complementary slackness condi-
tions (Bertsimas and Tsitsiklis 1997), the auxiliary binary
variables and logistic constraints make the MILP not scal-
able. We omit the formulations and experiments of these
(failed) approaches for the ease of reading.

To produce a scalable solution, we further investigate the
special structure of PBE. We start with PBEs where the at-
tacker policy is unbiased (Definition 1), which makes the
defender’s best response criteria much easier to represent.
We then propose a concise and scalable formulation to com-
pute such PBEs based on support set enumeration. In case
no such PBE exists, the formulation is modified to compute
the ε-PBE instead. The experimental evaluation shows that
in almost all cases, our approach can compute a PBE, and a
high-quality approximate ε-PBE in the remaining cases. We
now give a definition of an unbiased attacker strategy, fol-
lowed by the support set enumeration for PBE and ε-PBE.
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Definition 1. A mixed attacking strategy a with support
set T ′ is called unbiased if at = λT ′/(Rd

t − P d
t ) for all t ∈

T ′ and at = 0 otherwise, where λT ′ = 1/
∑

t∈T ′
1

Rd
t−Pd

t
.

The attacker’s policy πa is unbiased if the mixed attack strat-
egy πa(s) is unbiased for each s ∈ Θ.

There exists one and only one mixed attacking strategy
with support set T ′, which is unbiased, for any T ′ ⊆ T .
Therefore, we denote such strategy with support set T ′ as
aT

′
. The nice property of aT

′
is that any deviation of de-

fender’s marginal coverage between two targets in T ′ cannot
change the defender’s expected utility. To show this, accord-
ing to (1), the defender’s expected payoff against aT

′
is:

Pd(c, a
T ′
) = λT ′

∑
t∈T ′ ct + λT ′

∑
t∈T ′ P

d
t /(R

d
t − P d

t )

which only depends on T ′ and the total marginal coverage
on targets in T ′. Therefore, for defender of type θ, c is
the best response against aT

′
if and only if:

∑
t∈T ′ ct =

min{θ, |T ′|}, and the corresponding defender’s optimal ex-
pected payoff of type θ against aT

′
is denoted as:

P d
θT ′ = λT ′ min{θ, |T ′|}+

∑
t∈T ′ λT ′P d

t (R
d
t − P d

t )

Support Set Enumeration for PBE: Let T denote the
set of all subsets of T . The intuition of support set enumera-
tion is as follows. Suppose there exists a PBE profile where
the attacker strategy is unbiased. To compute such a PBE, a
naı̈ve way is to consider all possible unbiased attacker strate-
gies, which is of size |T ||Θ| as there are |T | possible unbi-
ased attacking strategies at each information set. For each
unbiased attacker’s policy πa, let T ′

s ∈ T be the support set
of πa(s). We can easily verify whether there exists a PBE
where the attacker’s policy is πa with a set of linear con-
straints, since the defender’s best response criteria, can be
easily represented as:
∑

t∈T ′
s

πc(t|θ, s) = min{θ, |T ′
s|} ∀θ, s ∈ Θ : θ ≥ s,

(2)
However, the size of T is exponential (2|T |), which makes it
impossible to generate all possible unbiased attacker strate-
gies. Fortunately, we do not necessarily need to generate
all of them due to a nice property of the PBE 〈πd, πa〉 such
that if the attacker penalty is constant value, we can prove
that there are only limited subsets of T able to serve as the
support set of πa(s) no matter if πa(s) is unbiased or not
(Lemma 1 & Theorem 4). Even for the general payoff struc-
ture, that property holds for most cases as shown in exper-
imental evaluation. Thus, we only consider a small subset
T ′ ⊂ T , and the property of PBE ensures that T ′ is enough
to search for a PBE with unbiased attacker strategy. (We
will discuss how to generate T ′ later.) For this aim, instead
of brute force search, we provide an MILP with no objective
function for arbitrary PBE as follows:

∑
s∈Θ:s≤θ

Sθs = 1 ∀θ (3a)
∑

t∈T
C̃θst = θSθs ∀θ > s (3b)

0 ≤ C̃θst ≤ Sθs ∀θ > s, t (3c)

∑
t∈T

C̃sst = θ(Sss + 1− χs) ∀s (3d)

0 ≤ C̃sst ≤ Sss + 1− χs ∀s, t (3e)
χs ∈ {0, 1}

δχs ≤
∑

θ∈Θ:θ≥s
pθSθs ≤ χs ∀s (3f)

φsT ′ ∈ {0, 1} ∀s, T ′ (3g)
∑

T ′∈T ′ φsT ′ = 1 ∀s (3h)

xst +
∑

θ∈Θ:s≤θ
pθC̃θstP

a
t +

∑
θ∈Θ:s≤θ

pθ(Sθs − C̃θst)R
a
t +

ps(1− χs)R
a
t = υa

s ∀s, t (3i)

0 ≤ xst ≤ (1−
∑

T ′∈T ′:t∈T ′
φsT ′)M ∀s, t (3j)

C̃θst ≤ 1−
∑

T ′:t/∈T ′,|T ′|≥θ

φsT ′ ∀θ, s, t (3k)

C̃θst ≥ Sθs +
∑

T ′:t∈T ′,|T ′|<θ

φsT ′ − 1 ∀θ > s, t (3l)

C̃sst ≥ Sss − χs +
∑

T ′:t∈T ′,|T ′|<s

φsT ′ ∀s, t (3m)

ϕθs ∈ {0, 1}
0 ≤ Sθs ≤ ϕθs

yθs +
∑

T ′∈T ′ P
d
θT ′φsT ′ = υd

θ ∀θ, s (3n)

0 ≤ yθs ≤ (1− ϕθs)M ∀θ, s. (3o)

In formulation (3), S is the decision variable represent-
ing the signaling policy πo such that Sθs = πo(s|θ);
C̃ is the decision variable defined as follows: C̃θst =
πo(s|θ)πc(t|θ, s) if I(s) is on the equilibrium path, other-
wise C̃sst = πc(t|s, s) and C̃θst = 0 for any θ > s; Bi-
nary variable χs = 1 if I(s) is on the equilibrium path,
otherwise χs = 0; δ in (3f) is a small enough constant
as the threshold of probability of sending s, while M is a
large enough constant; xst is the slack variable which takes
zero when target t is in the support set of πa(s); Variable
vdθ denotes Ud(πo(θ), πc(θ), πa); yθs is the slack variable
which takes zero when Pd(πc(θ, s), πa(s)) equals vdθ ; Bi-
nary variable φsT ′ = 1 if T ′ is the support set of πa(s),
otherwise φsT ′ = 0. (3i) and (3j) correspond to the at-
tacker’s best response criteria, taking into account the op-
timistic conjecture, such that at information set I(s), the
expected utility of attacking a target in the support set of
πa(s) is the highest among all targets. (3k)–(3m) ensure
that πc(θ, s) is the best response coverage against πa(s)
as required by (2). In particular, given the support set of
πa(s) being T ′, we have πc(t|θ, s) = 0 for t /∈ T ′ if
θ ≤ |T ′| and πc(t|θ, s) = 1 for t ∈ T ′ otherwise. Fi-
nally, (3n)–(3o) ensure that the defender is playing the best
response signaling strategy such that πo(s|θ) > 0 only if
Pd(πc(θ, s), πa(s)) ≥ Pd(πc(θ, s

′), πa(s
′)) for any s′ ≤ θ.

Support Set Enumeration for ε-PBE: The MILP (3) re-
turns a PBE only if there exists one with unbiased attacker’s
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policy πa whose support sets are in T ′. If no such PBE
exists, we slightly modify MILP (3) to compute the ε-PBE
instead, with the MILP (4), which is the same as MILP (3)
except: i) the expected utility of attacking target t in support
set of πa(s) is no lower than the highest expected utility mi-
nus ε; and ii) πo(s|θ) > 0 only if Pd(πc(θ, s), πa(s)) ≥
Pd(πc(θ, s

′), πa(s
′)) − ε for any s′ ≤ θ. The feasible so-

lution of MILP (4) is ensured to be an ε-PBE. Notice that ε
in MILP (4) is a constant number instead of a variable since
otherwise the formulation becomes non-convex. Therefore,
to get the best approximation of MILP (4), we conduct a
binary search on ε from initial interval [0,M ], where M is
a large constant making MILP (4) feasible, and obtain the
smallest possible ε with which MILP (4) returns a solution.

(3a) − (3i), (3k) − (3n)

0 ≤ xst ≤ (1−
∑

T ′∈T :t∈T ′ φsT ′)M+

ε
∑

θ:θ≥s
pθSθs + εps(1− χs) ∀s, t

0 ≤ yθs ≤ (1− ϕθs)M + ε ∀θ, s.

(4)

Generating Support Sets: We now discuss how to gen-
erate T ′ for the support set enumeration approach. Suppose
the attacker penalty is a constant value P and there exists no
pair of targets with the same reward for the attacker. We can
list the targets by Ra

t in descending order: T = {t1, .., t|T |}.
Our next Lemma shows that the support set T ′ of any mixed
attacking strategy in PBE must contain the first |T ′| targets
in T . The intuition is that the defender will always cover the
targets in T ′ with the highest priority for best response, and
if a target t /∈ T ′ has higher reward than t′ ∈ T ′, the attacker
will gain more by attacking t.

Lemma 1. In PBE, the support set of the mixed attack
strategy πa(s) at any I(s) has the form: T ′ = {t1, .., t|T ′|}.

Although Lemma 1 already restricts the number of sup-
port sets to |T |, we can further eliminate some of them with
Theorem 4. The intuition of Theorem 4 is that a defender
with more resources can cover more targets while keep-
ing them all the best response targets for the attacker, and
{1, .., k} and {1, ..,K} correspond to such sets of targets
that can be covered by θmin and θmax respectively. There-
fore, the size of support set of πa(s) against defender of
unknown type is within interval [k,K]. Notice that when
θmin ≈ θmax, we have: |T ′| = |K − k + 1|  |T |.

Theorem 4. Let k and K be the smallest and the largest
values respectively of i such that there exists a type θ satis-

fying
∑i

t=1

Ra
t −Ra

ti

Ra
t −P ≤ θ ≤

∑i
t=1

Ra
t −Ra

ti+1

Ra
t −P . In PBE, the

support set T ′ of mixed attacking strategy πa(s) at any I(s)
satisfies: T ′ = {1, .., |T ′|} and k ≤ |T ′| ≤ K.

As for DSG instances with general payoffs, we can still
compute k and K, by replacing the constant penalty P in
the inequality of Theorem 4 with individual value P a

t , as
well as the set of candidate support sets T ′ which, although
it is not guaranteed to include all possible support sets of
mixed attack strategy in PBE, is enough for the support set
enumeration approach to obtain good solutions.

Experimental Evaluation

We performed experiments to test the scalability and qual-
ity of our algorithms, and to gather empirical data on how
PBE compares generally to SSE. We use CPLEX (version
12.6) for all optimizations on a 64-bit PC with 16 GB RAM
and a quad-core 3.4 GHz processor. All values are averaged
over 1000 instances expect for the scalability analysis where
runtime is averaged over 100 instances. The game instances
are generated as follows unless otherwise specified: each
type θ is randomly generated from {�0.1|T |�, �0.1|T |� +
1, .., �0.4|T |�}. The probability distribution over Θ is ran-
domly generated. The attacker’s payoffs Ra

t and P a
t are

randomly drawn from the intervals [1, 10] and [−10,−1] re-
spectively. The defender’s payoffs are generated as follows:
Rd

t = ω(−P a
t )+(1−ω)R̃d and P d

t = ω(−Ra
t )+(1−ω)P̃ d,

where R̃d and P̃ d are randomly drawn from same intervals
as Ra

t and P a
t respectively. The parameter ω controls corre-

lation between the defender and attacker payoffs, such that
when ω = 1, the game is zero-sum, and there is no correla-
tion when ω = 0. The 95% confidence intervals are drawn
in all figures which show that the standard error is relatively
small compared with mean values. Thus, all the results are
statistically significant.

Scalability: We test the runtime of our support set enu-
meration approach on DSG game instances with varying
numbers of types |Θ| ∈ {2, 4, 6, 8} and ω ∈ {0, 1}. The
results are shown in Figs 2(a)–2(b). Our approach can scale
to realistic-sized instances with 200 targets for |Θ| ∈ {2, 4},
160 targets for |Θ| = 6 and 100 targets for |Θ| = 8 within
minutes, for all categories of games.

Solution Quality: We test the solution quality of sup-
port set enumeration on randomly generated games with
|T | ∈ {40, 60, 80, 100} and |Θ| ∈ {4, 6}. Pr(PBE) denotes
the proportion of instances where a PBE is computed. εmax

is the maximum value of ε among all ε-PBEs that are re-
turned by the algorithm. |T ′| represents the average number
of generated support sets per instance. The results for ω = 0
and 1 are given in Tables 2(c) and 2(d) respectively, from
which we can see that a PBE is computed for over 99% of
all tested instances, and 100% for some trials of zero-sum
instances. Even when the PBE is not returned, εmax is very
small compared with the payoff magnitude 10, showing that
our approach can compute solutions with very good quality.
We also note that |T ′| is much smaller than the number of
targets, which provides empirical support for Theorem 4 to
dramatically reduce the candidate support sets.

PBE vs. SSE & NE: We now compare the defender util-
ity of PBE with SSE and NE. We test on random game in-
stances with 20 targets, 8 types listed by number of resources
in ascending order Θ = {θ1 = 1, .., θ8 = 8}, and varying
value of ω ∈ {0.8, 0.85, 0.9, 0.95, 1.0}. In reality, different
types may be of different importance for the defender. For
example, a conservative defender may care more about the
utility in the worst case, where the number of resources is
minimal. For this aim, we list the differences between de-
fender utilities of each individual type in PBE and SSE in
Figure 2(e). We also depict the expected defender utilities
of PBE, SSE and NE in Figure 2(f) with varying value of
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(b) Runtime (ω = 1)

|T | |Θ| Pr(PBE) εmax |T ′|
40 4 0.996 0.019531 12.453
60 4 0.99 0.015625 17.878
80 4 0.992 0.023438 22.286
100 4 0.999 9.77E-04 25.588
40 6 0.986 0.024414 14.697
60 6 0.992 0.030273 19.613
80 6 0.994 0.004883 27.538
100 6 0.98 0.055664 31.989

(c) Solution quality (ω = 0)

|T | |Θ| Pr(PBE) εmax |T ′|
40 4 1 NA 11.298
60 4 1 NA 16.122
80 4 1 NA 20.178
100 4 0.998 0.102539 25.672
40 6 1 NA 14.263
60 6 0.998 0.009765 20.456
80 6 1 NA 25.097
100 6 0.996 0.006835 31.898

(d) Solution quality (ω = 1)
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Figure 2: Experimental Evaluation.

ω. We observe that: i) with increasing ω, the defender ben-
efits more in PBE compared to SSE, supporting our formal
analysis. For the worst case of type θ1, even with ω = 0.8,
the PBE solution outperforms SSE, showing that the bene-
fit of strategic secrecy is not limited to zero-sum games; ii)
From the perspective of expected defender utility, the bound-
ary of tradeoffs between strategic secrecy and commitment
is within [0.9, 0.95], which is close to zero-sum games; iii)
PBE significantly outperforms NE regardless of the value of
ω, supporting the motivation of strategic information reve-
lation; and iv) the benefit of PBE shows a quadratic rela-
tionship with the defender types, such that types θ1 and θ8
benefit the most from PBE, while types θ4 and θ5 benefit the
least from strategic secrecy. Here we provide an intuitive
explanation while leaving the formal analysis to the future
work: the defender of an unknown type can be treated as an
“average” type θ̄ such that the attacker is playing the best re-
sponse against θ̄; Therefore, the type θ with larger gap from
θ̄ benefits more from secrecy.

Robustness: In practice, the uncertainty of payoff struc-
tures always exists and the attacker is not perfectly ratio-
nal. Therefore, we analyse the robustness of PBE solution
against two major uncertainties on random zero-sum game
instances with 30 targets and 6 types. First, the defender
and the attacker may assume that they have the same val-
uations of targets while not, which causes the uncertainty
of payoffs. Let R̃∗

t and P̃ ∗
t (∗ represents a or d) denote

the payoffs estimated by the attacker which still satisfy the
zero-sum property. In our experiments, we denote by δ the
degree of uncertainty such that R̃∗

t ∼ R∗
t · [1 − δ, 1 + δ],

P̃ a
t = −R̃d

t and P̃ d
t = −R̃a

t . Let π̃a be the attacker’s pol-
icy according to his own estimation of payoffs, and πd be
the defender’s policy in her computed PBE 〈πd, πa〉. We
compare Ud(πd, π̃a) with Ud(π

∗
d, π̃a) where Ud(πd, π̃a) de-

notes the expected defender utility and π∗
d is the actual best

response against π̃a with respect to defender’s estimation of
payoffs. The result is depicted in Figure 2(g), from which
we can observe that: i) with increasing degree of uncer-
tainty, the regret of not playing π∗

d is increasing, and ii) the

expected utility Ud(πd, π̃a) almost remains the same regard-
less of δ; The reason is that in most instances πa and π̃a

have the same support sets so that π̃a is also a best response
strategy against πd. Second, we take into consideration the
attacker’s bounded rationality, such that with a small prob-
ability δ (irrational degree), the attacker randomly chooses
one target to attack. The metric for robustness analysis is the
same as the first case of payoff uncertainty, and the result is
depicted in Figure 2(h), which shows that: i) the regret of not
playing the best response strategy is increasing with larger
irrational degree δ, and ii) the expected utility Ud(πd, π̃a)
increases with increasing value of δ (the improvement is too
subtle to show in the figure directly) since the attacker may
choose the targets which are not the best response ones with
higher probability. The experimental evaluation shows that
the PBE solution is robust enough even with a high degree
of uncertainty (20%), which makes it a practical alternative
for the defender and also shows that our analysis and expla-
nation of strategic secrecy based on PBE is reasonable.

Discussion: Zero-sum games capture the nature of secu-
rity issues where the attacker’s success indicates the failure
of the defender, and the zero-sum approximation is widely
adopted in existing works of game theoretic analysis in var-
ious security domains (Chen 2007; Durkota et al. 2015;
Nguyen, Alpcan, and Basar 2009). On the other hand, it
is also emphasized that the zero-sum model is at best an
approximation (Banks and Anderson 2006). One interpre-
tation is that although both players are likely to agree on
the importance of targets, there are some costs of conduct-
ing an attack or defending a target which are ignored by the
opponent. The ratio between the magnitudes of such cost
and the reward of a successful attack decides how close to
the zero-sum the game is. Such ratio may vary among dif-
ferent security domains. For example, in physical security,
the reward of a successful terrorist attack (9/11 for exam-
ple) is usually several magnitudes larger than the cost, and
the game is more close to zero-sum; While in green security
such as illegal fishing and poaching, the ratio is larger and
the game is less close to zero-sum. Our results show that the
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boundary of PBE outperforming SSE is close to zero-sum
(w ≈ 0.93) which, to an extent, explain the coexistence of
strategic secrecy and commitment in practice.

Conclusion

We study a longstanding dilemma in security games: given
the theoretical advantages of commitment, why is it that
real-world security forces often use secrecy? By introduc-
ing the possibility that the defender has valuable private in-
formation, we show that there is a fundamental tradeoff be-
tween secrecy and commitment. We provide a generaliza-
tion of security games to capture this, a novel scalable al-
gorithm for computing PBE solutions for these games, and
empirical results that demonstrate the effectiveness of our
algorithms as well as providing a deeper understanding of
the competing advantages of secrecy and commitment. Our
theoretical and empirical results show that the boundary of
such tradeoffs between secrecy and commitment is close to
zero-sum, which is the case for most security domains. We
conclude that both secrecy and commitment have a vital role
to play in optimal security policy.
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