
Crowdsourcing the Pronunciation of Out-of-Vocabulary Words

Sajad Shirali-Shahreza,‡ Pieter Luitjens, Natalie Morcos,
Wen Xiao, Zhenghong Qian, Gerald Penn∗

Departments of Computer Science and ‡Mechanical and Industrial Engineering
University of Toronto

Abstract

We propose a method for crowdsourcing the pronunciation of
out-of-vocabulary words, which in our experiments has gen-
erated a lexicon of competitive quality to the CMU pronun-
ciation dictionary. In contrast to an earlier approach, we use
crowdsource workers to generate new pronunciations, which
are phonetically transcribed by an acoustic model, rather than
merely to select among candidate alternatives from a letter-to-
sound algorithm.

Introduction
Out-of-vocabulary (OOV) words still account for a signif-
icant number of the mistakes by both speech recognizers
and text-to-speech synthesizers. These are not words that
are merely very rare, but words that were unknown to the
lexicon used by the automatic speech recognizer (ASR) or
text-to-speech synthesizer (TTS). In the case of ASR, even
if the pronunciation is accurately modelled, there can be a
question as to how to spell it correctly. In the case of TTS
systems, the pronunciation of the word may be unknown, as
the component euphemistically known as “letter-to-sound”
or “grapheme-to-phoneme” rules may in fact not be able to
infer the pronunciation from the spelling of the word, partic-
ularly if its provenance is unknown, or the writing system is
more logographically constructed.

What is less well appreciated is that, as OOV meth-
ods for ASR have matured into an area with highly spe-
cialized algorithms for OOV word prediction based on
semantic vector representations (Horndasch et al. 2016),
OOV part-of-speech tag prediction (Tafforeau et al. 2015),
high-confidence (sub)phone-based OOV identification from
speech (Karakos and Schwartz 2014; Lee, Tanaka, and Itoh
2016), recurrent OOV detection in speech corpora (Asami et
al. 2016; Qin and Rudnicky 2013), topic-based OOV proper-
name selection (Sheikh, Illina, and Fohr 2015), the area has
moved very far away from OOV as it applies to TTS, where
OOV detection and recurrence are a simple matter of string
matching and meanings and POS tags, while not indepen-
dent of pronunciation, fall well short of predicting it. The
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method we present here is a modern approach to OOV for
the TTS domain.

A natural approach to guessing pronunciation without the
acoustic analogue of the large amounts of fluent text that
induce semantic representations in the ASR domain is to
ask someone online how an unknown word should be pro-
nounced. Crowdsourcing has in fact been explored as an
option for this problem before by Rutherford et al. (2014),
but their approach used crowdsourcing on a very small scale
(10 repetitions from 10 crowdsource workers per keyphrase)
to select among several hypotheses generated by a standard
letter-to-sound algorithm using forced alignment. This is an
extremely conservative use of crowdsourcing, particularly
as their crowdsource workers really do speak the words in
their experiments, rather than selecting the correct pronun-
ciation in a multiple choice question format. Our approach
uses nothing more than a larger number of speakers (101)
and an acoustic model in order to find the pronunciation
almost ab nihilo, by constructing phone lattices and sub-
mitting candidate pronunciation paths to a simple weighted
voting algorithm that combines results across crowdsource
workers. Our only assumption is that the basic phonetic in-
ventory is known to the acoustic model (e.g., the pronuncia-
tion of Rodriguez selected using an English acoustic model
would never trill the r’s). Furthermore, whereas Rutherford
et al. (2014) experimented with popular proper names and
neologisms sampled from entertainment-related queries to
the Google Voice Search engine, we have experimented with
a variety of words chosen according to a number of dis-
tributional properties. As a result, we are in a position to
evaluate the use of our technique not only as a proxy for
OOV entries augmenting an existing pronunciation dictio-
nary, but also as a replacement for the entire dictionary —
and with promising results. By using a larger number of
crowdsource workers than the earlier attempt, and collecting
votes among workers so that frequent, deprecated pronunci-
ations can “gang up” to be selected, we can generate pronun-
ciations that often differ from our reference, the CMU pro-
nunciation dictionary, and yet are preferred by human judges
on an almost equal basis.

An important altnernative is to search for pronunciations
in written resources that are curated by the crowd such as
Wiktionary (Schlippe, Ochs, and Schultz 2010).

The next section presents how the method works with
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some details on the acoustic model (which can be skipped,
for the uninitiated). “Experiment” describes the data that
were collected to test the method. “Results and Interpreta-
tion” then evaluates the method in four ways: an intrinsic
string comparison with the CMU pronunciation dictionary,
an examination of rank distribution in our n-best hypothesis
lists, a preference test that uses human judges, and a com-
parison against a popular baseline.

Method
Contrary to Rutherford et al. (2014), our method does not
require any other component of a speech recognizer than the
acoustic model, but for convenience our acoustic model is
built using the Kaldi toolkit (Povey et al. 2011) by treating
each possible phone as a 1-phone word, with a trivial lexicon
that maps every phone to itself, and a flat 0-gram language
model.

We use Kaldi’s Subspace Gaussian Mixture acoustic
Model (SGMM), trained on 313 hours of Switchboard-I data
(Godfrey and Holliman 1993), recorded in 8 kHz, 8-bit μ-
law-encoded samples. The phone transition model was the
default model for English that comes with Kaldi. This is an
FST with an inventory of 43 phones that compactly repre-
sents 1509 biphones and 21 837 triphones. So there is in fact
a bias towards English phonotactics in this model, in spite of
the use of a uniform language model.

Digitization proceeds by computing cepstral-mean-and-
variance normalised mel-frequency cepstral coefficients,
split into 15 bins at 10ms intervals. We then apply linear
discriminant analysis, followed by a maximum-likelihood
linear transform (Gales 1998). For speaker adaptation, we
use fMLLR (feature-scape Maximum Likelihood Linear Re-
gression) (Gales 1999).

To decode candidate pronunciations, we generate phone
lattices using the Exact Lattice method (Povey et al. 2012),
then use Kaldi’s n-best Viterbi decoder on the resulting
phone lattices, with n = 500 and a search beam of 20%, the
beam having been experimentally tuned on a development
set with no overlap onto our test lexicon. Paths that collapse
to the same phone representation are combined to boost the
score of that representation.

Having obtained the 500 (or fewer) best pronunciations
for each speaker for a given word, we rank them according
to the score assigned by Kaldi, and calculate the score for
each candidate pronunciation as:

s(j) =
∑

i

(n− rji + 1)

where n = 500 in our case, and rji is the rank of the jth
pronunciation in the n-best list of the ith speaker, or n+1 if
it is not in the top n. For example, the top-ranked pronunci-
ation in the 500-best list for any speaker will contribute 500,
while the 500th best, when it exists, will contribute 1. We
then select the pronunciation that has the highest total score
s(j) as the pronunciation of the unknown word.

Experiment
We evaluated our method by collecting an evaluation set of
100 words that are present in the CMU pronunciation dic-

tionary, generating a pronunciation for them using the above
method, and then comparing the generated pronunciation
with those in the CMU dictionary.

Crowdsourced recordings
For each word, we sampled recordings from crowdsource
workers on Amazon Mechanical Turk using an HTML 5
script that captured 2-channel, 16-bit linear-PCM audio
samples at rates that varied between 44.1–48 kHz, depend-
ing on the browser. These were transcoded to 2-channel, 8-
bit, 8 kHz μ-law samples, to match the training data of the
acoustic model.

Unlike Rutherford et al. (2014), we sample one recording
from about 100 speakers for each unknown word rather than
10 recordings from 10 speakers for each word. Rutherford
et al. (2014) also trained on 7 of the 10 utterances, using
the other 3 for evaluation, whereas our recordings were only
used for testing. We also made no attempt to vett our workers
for voice quality, speaking rate or other factors pertaining
to speakers, apart from having them self-identify as native
speakers of North American English, a point that Rutherford
et al. (2014) is underspecific on.

We did, on the other hand, filter our sample of 101
crowdsource workers according to the acoustic quality of
their recordings, by randomly selecting two words from the
evaluation lexicon and subjecting their recordings by every
speaker to a variety of acoustic tests, plus manual confir-
mation of foreign-speech accentuation. For simplicity, we
interpreted negative results of these tests not as evidence of
bad recordings, but as evidence of bad crowdsource workers,
and thus discarded all of their recordings. This interpretation
is based upon the premise that a worker that cannot record
two words well is probably incapable of recording any words
well.

The acoustic tests, conducted by hand by a single engi-
neer, looked for the presence of:

1. echo or reverb (31)
2. actuator clicks (23)
3. non-linear distortion (related to the microphone or codec)

(23)
4. background noise or microphone disturbance (10)
5. foreign-accented speech (9)
6. silence (no speech recorded) (5)
7. cutoff (2)
8. clipping (1)
9. stammering/repetition (1)

10. other recording errors (1)
The number of crowdsource workers who failed each test is
given in parentheses. Every worker was classified into one of
three groups: good (17) if both samples failed no tests, bor-
derline (26) if one or both samples failed one test, and bad
(58) if one or both samples failed two or more tests. Note the
very high number of bad workers; a reasonably clean record-
ing of two isolated words of speech was beyond the technical
competence of over half of our sample, and the use of their
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recordings in our method caused a significant degradation in
performance. We experimented with using the recordings of
the good workers, as well as with using those of both the
good and borderline workers, on the other hand, and found
that the results were nearly identical. What we report here
are the results of using both good and borderline workers, of
whom there were 43.

Experimental OOV Lexicon
To greatly simplify the evaluation, words with known pro-
nunciations were selected as putative OOV words for the
purposes of this experiment. These words were sampled
from the CMU pronunciation dictionary according to several
criteria that were formulated: (1) to create a balance among
the lexical items so that they could together be construed as
representative of the English lexicon as a whole, and (2) to
characterize the properties of OOV words as a whole. By
creating distributions along these criteria, we may then ex-
plore them for potential weaknesses in the method. One of
our criteria is token frequency, for example, but exploring
the rare side of this distribution is merely one of the approx-
imations that we have at our disposal for investigating the
properties of OOV words.

Our criteria are:
1. Word frequency: Words were selected across 50 evenly

spaced frequency bands, divided geometrically between 0
and 12.811974785439626 in the natural log domain. Two
words were sampled from each frequency band.

2. Word length: Words were sampled so as to adhere to a
power-law distribution in their length, with a log-domain
slope of -0.59666587 and a log-domain y-intercept of
15.96348835. These parameters were determined from a
log-domain least-squares fit to English with an R-value of
0.92323035. The R-value of our obtained sample to this
curve is 0.7852613399.

3. Monophone entropy: Words were sampled so as to resem-
ble the overall discrete entropy of the distribution of the
43 phones of Kaldi’s phone transition model. In English,
we estimated this at 3.33231165807. We obtained a dis-
crete entropy of 3.34432636829 for our sample.

4. Number of ambiguously pronounced words: 11.84% of
the CMU pronunciation dictionary has more than one pro-
nunciation. 12% of our sample does.

All benchmarks for English were derived from the American
National Corpus. The resulting evaluation lexicon is shown
in Figure 1.

Results and Interpretation
There are a number of ways to evaluate the proposed
method.

1-Best distance
The first is simply to accept the CMU pronunciation dic-
tionary as the gold standard, and measure our choices’ de-
viation from that. The macro-averaged Levenshtein distance
between the pronunciation selected by the above method and
those of the CMU dictionary is 0.269078(σ = 0.229368).

Macro-averaging is necessary because there are multiple
pronunciations for some words in the CMU pronuncia-
tion dictionary; the micro-averaging results are very similar,
however.

Likelihood
The second way is again to accept the CMU pronunciation
dictionary as a gold standard, but to examine the rank of
CMU pronunciations within the 500-best lists of our crowd-
source workers. This is a non-parametric cousin of a data
likelihood computation in a probabilistic model. In the case
of 20 of the 100 words, our method selected a pronunci-
ation found for that word in the CMU dictionary. A me-
dian of 4 (9.3023%, σ = 9.562426) of the 43 crowdsource
workers generated the CMU pronunciation somewhere in
their 500-best list, with each worker generating the CMU
pronunciation a median of 20 times among the 100 words
(σ = 7.74968295). In the case of 30 words, not even one
crowdsource worker’s n-best list generated a CMU pronun-
ciation. Among the other 70, the rank of the CMU pronun-
ciation was a macro-average of 38.4698 (min=1, max=210)
across all words, out of a possible range of 1− −500. Note
that not all lattices generated 500 paths, however; the median
number of paths was 280 (σ = 203.387). Figure 2 shows the
distribution of ranks and their medians for each word in the
lexicon.

The winning pronunciation for 80 of the 100 words was
one not found in the CMU dictionary. An average of 15
(34.8837%, σ = 7.798446) of the 43 crowdsource work-
ers generated the winning pronunciation somewhere in their
500-best list, with each worker generating the winning pro-
nunciation an average of 37 times among the 100 words
(σ = 14.40988). In the case of only one word (CATAPULT-
ING) did no speaker generate it in their 500 best.

From these results, we can conclude that a setting of n
that is substantially lower than 200 would not fare well with-
out further improvement on either our selection method or
the quality of crowdsource work obtained. The average rank
of 38 could have been far worse, but CMU pronunciations
are too often entirely absent (30%), and too many workers
(about 90%) are not generating them. Reducing n below the
rank at which the “correct” CMU answer occurs would in-
crease both of these percentages.

Human-subject evaluation
The third way is to consider all pronunciations as candidates,
regardless of source, and ask crowdsource workers to evalu-
ate them. We evaluated our selected pronunciations and the
CMU dictionary’s pronunciations in two ways: by asking
crowdsource workers to transcribe synthesized pronuncia-
tions, and by asking crowdsource workers to choose which
of two alternative pronunciations (ours and one of the CMU
pronunciations) is better.

185 transcribers/voters were recruited, again on Ama-
zon Mechanical Turk. Crowdsource workers who had par-
ticipated in the collection of acoustic data were ineligi-
ble. Of these, 145 completed both the transcription and se-
lection tasks, 39 resigned during transcription, and 1 re-
signed during selection. The prompts presented to the work-

438



RATION SWAYZE LUCIANO SCULPTURES
RIVALS HAYLEY YASSIN LAPSES
GASPING RADIOED HUTCHINS FLOPPY
RENAUD CAUTIONARY MURATA ILIESCU
ASTUTE FLOYD LOOP PERMEATING
RILE INSINUATE UNHEEDED HACK
BUNDLED WINGERS POTVIN REROUTING
ANNUALIZED RECESSIONARY GABBY SHOWCASING
GETS BOERNER EDU BECKMAN
INHOSPITABLE WATCHDOG PENTAGON JULIET
TURQUOISE CONVICTION DIONYSIUS BARRAGE
NOV APPRAISE CREDIBLE KNAUS
MIDDLEMAN NEWTS ENDOMETRIOSIS LIBERALISM
FREAK INVINCIBLE ROMER JOSTLE
SOHO CATAPULTING UNDRESSED VAUGHAN
CROCKETT INTERVENTIONIST INVADES SASSOU
NONGOVERNMENTAL DOCUMENTARIES BREMER CARJACKINGS
SHARPE WASP UNHAPPY SMOOTHING
BAFFLE MATTHEW CHANDELIERS DOUSE
OUTCASTS HUGE NORTHERNERS SHENG
CLAUDE BRAVO ENVIRONMENTALISTS SHORTFALLS
RACY HOURS GIZMOS CLASP
GOOF RESPECTING UNSEATING HENDRY
SUPERVISION CONGRESSES RESENTED FATAH
ANGEL WITHHOLDS INTERROGATORS INCARNATIONS

Figure 1: The experimental OOV lexicon.

ers were synthesized in Festival using the us1 mbrola
voice. Workers could only listen to each prompt once, and
only in the order presented.

The transcriptions of CMU pronunciations had an av-
erage Levenshtein distance of 0.28944(σ = 0.35723)
whereas those of pronunciations generated by the experi-
mental method has an average distance of 0.39175(σ =
0.41806), suggesting that the CMU pronunciations were
only modestly more comprehensible because of the high
standard deviations.

As for the selection task, workers were asked to choose
whether: (1) the first of two prompts was better, (2) the sec-
ond was better, or (3) the two were about the same. CMU
and experimental pronunciations were evenly permuted be-
tween presentations as the first or second choice to control
for presentation bias.1

In addition to reporting who got more votes, we can also
calculate a differential percentage, which measures the mar-
gin by which the vote carried as a percentage of the total
number of votes cast. As there were three outcomes avail-
able to voters, this is calculated as:

D =
E − C

E + C + I
whereE is the number of votes for the experimental pronun-
ciation, C is the number of votes for a CMU pronunciation,

1We did confirm the presence of presentation bias: voters were
1.43 times more likely to choose the second choice than the first,
and did so for 80% of the words. Even among cases where the
winning method (CMU) was the first choice, the second choice
was still 1.15 times more likely to be chosen.

and I is the number of votes that expressed no preference.
Thus D is negative when a CMU pronunciation wins, and
positive when an experimental pronunciation wins.

The CMU pronunciation received more votes on 42 word
comparisons (average D = −45.6463%, σ = 23.18238),
the experimental pronunciation received more votes on
38 word comparisons (average D = 29.05185%, σ =
22.17113), and there were no ties2 The other 20 words are
those for which the two pronunciations were segmentally
identical. It is important to note, however, that the CMU
pronunciation dictionary also contains stress accent annota-
tions, which our method does not generate. We synthesized
CMU pronunciations with the stress indicated, and so there
is a bias towards CMU pronunciations because of their pre-
sumably more natural stress accentuation than whatever Fes-
tival guesses by default.

Over all 80 words with non-identical pronunciations, the
CMU pronunciations received 2693 votes (46.26%), our ex-
perimental pronunciations received 2113 votes (36.3%), and
1015 votes (17.44%) were cast for pronunciation pairs be-
ing indistinguishable. The average D over all words was
−10.1647%, with σ = 43.79747.

What we can infer from these results is that, while the
CMU pronunciations do not win significantly more often, or
by a significant margin on average (D = −10.1647%), they
do tend to win by larger margins (D = −45.6463%) when
they win at all.

2That is, no word received as many preferential votes for one
pronunciation as for the other; there were 1015 votes of no prefer-
ence.
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Figure 2: Median, minimum and maximum ranks of the CMU pronunciations, ordered by median rank. A lower rank number
is better.
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Figure 3: The difference in votes as a function of word
length.

On the whole, this is still a remarkably positive showing
for a method that uses no letter-to-sound productions, and in
which roughly two thirds of the crowdsource workers gen-
erally do not even generate the pronunciation selected. The
reason is our selection procedure, which cumulatively adds
subtracted ranks within 500-best candidate lists, and our set-
ting of n = 500. The crowd does very well for itself in ag-
gregate, even though no individual worker does. While our
pronunciations are often different, they are considered very
good by human judges — better than CMU’s almost half the
time.

There is, on the other hand, no apparent correlation be-
tween Levenshtein distance in the transcription task and user
preference in the selection task, nor between performance in
any of these three evaluations and the distributional criteria
that we had identified for sampling the lexicon. Figure 3, for
example, shows the distribution in the difference of votes
(E − C) as a function of length. This has a Pearson sample
correlation coefficient of 0.0198, with p = 0.4812 using a
permutation significance test over 106 sampled reorderings.
The other factors are similarly uncorrelated.

Baseline

Finally, we compare our approach to what still remains the
most common baseline for OOV pronunciations in the TTS
community, the decision-tree-based approach implemented
in the Festival TTS system (Black, Lenzo, and Pagel 1998),
which learns rules for assigning an allowable phone to each
letter in the orthographic input. Out of the box, this ap-
proach fares very well on our 100-word sample, because it
was trained on the CMU pronunciation dictionary, which
contains our sample. We retrained this system on a sub-
set of the CMU dictionary, excluding our sample words
and all words containing any of our sample words. The re-
trained Festival LTS system performs at 90.4184% accu-
racy, which is far superior to one minus our macro-averaged
Levenshtein distance of 0.269078 = 0.730922. But of the
51 phone instances wrongly predicted by the LTS com-

ponent,3 our experimental method correctly guessed 32 of
them (62.7451%), guessing the same (and incorrectly) as
LTS in only 6 cases (11.7647%). One of the present au-
thors furthermore evaluated the remaining 13 cases and de-
termined that the incorrect pronunciation assigned by our
experimental method was clearly better than the incorrect
pronunciation assigned by the Festival LTS component in 9
of them (17.6471% of all 51 cases).

What is more interesting is that 22 (68.75%) of the 32
cases in which the experimental method corrects Festival’s
LTS component are vowels, and all but one (in which Festi-
val wrongly predicted a continuant) are continuants. This is
perhaps unsurprising, as continuants have more energy and
so can generally be predicted from speech more easily, but
this complementarity will clearly be very useful for design-
ing a hybrid of these two approaches, a task that we have yet
to undertake.

Conclusion
The proposed method for selecting pronunciations of OOV
words has proved to be competitive with the phone se-
quences found in the CMU pronunciation dictionary, across
several different distributional criteria, even though there is
not a great deal of overlap between the two sets of pronun-
ciations.

In addition to the hybrid-LTS method mentioned above,
possible extensions of this method for future research are:

• the use of alternative vote combination functions than
adding subtracted ranks,

• the addition of stress accent prediction, which at present
hampers our ability to fairly evaluate against the CMU
dictionary,

• the automation of most or all of the acoustic tests to render
our method completely automatic,

• the use of higher sampling rates and sizes than the
Switchboard-I acoustic model that was used in this ex-
periment,

• better feedback and priming of crowdsource workers to
lower the substantial attrition rate that we experienced
when evaluating the quality of the recordings they sub-
mitted, and

• integration with recent work on pronunciation verification
and quality classifiers (Rao, Peng, and Beaufays 2015) to
improve performance.
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