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Abstract

Establishing a safety standard for autonomous vehicles op-
erating in open and dynamic environment is a challenge. As
collisions are inevitable in over-constrained situations, we fo-
cus on deciding the liability for a hazard. Our insight is that
hazards caused by malfunctions of autonomous vehicles re-
sult from loss of functional integrity. Design defects may
leave it unnoticed, or the real-world may make integrity-
preserving motion infeasible. Guarantee of functional in-
tegrity in an observable way at run-time is indispensable for
revealing defects by using formal root-cause analysis, and for
supporting safety claims by dismissing unreasonable doubts
about design defects. From a practitical standpoint, we at-
tempt to formalize a verification problem that consists of a
novel criterion for determining liability for hazard, a safety
claim comprised of confirmed observable states, and assump-
tions underlying the safety claim. We propose a run-time
scheme of monitoring events that may lead to violations of
the assumptions and a precursor to root-causes leading to loss
of functional integrity and consequent hazards. We formulate
a means of preemptively detecting unsafe motions liable to
be hazardous as satisfiability problem within the framework
of an adversarial motion planning subject to assumptions on
maneuverability of movers. A numerical study shows that the
run-time scheme using non-linear programming (NLP) en-
coding is viable in a real-world setting.

Introduction
A major step toward establishing a safety standard for fully
autonomous vehicles is getting a consensus on dividing the
liability for hazard among a variety of stakeholders (NHTSA
2013; Anderson 2014; NHTSA 2016); passengers, vehicle
manufacturers, the regulator, and auto insurance firms. They
have diverse levels of technical expertise in the capability
and limitations of autonomous systems, and each one has
limited control over situations resulting in hazards. The
standard should give a rigorous but simple guideline for con-
sistently dividing each party’s liability in a way that one is
never imposed an unfair disadvantage or obligation. Alloca-
tion of liability will be written in legal terms and conditions
for use that the passengers need to agree with, in the func-
tional safety requirements that the manufacturers must com-
ply with, in a certification procedure that the regulator im-
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poses to safeguard the passengers and pedestrians on streets,
and in insurance contracts specifying conditions of awards
for economic loss or injury. We can hardly state what consti-
tutes safe vehicle motion in a few words of formal specifica-
tion, as difficult situations are diverse or unknown at an early
stage. Yet, we can easily state evidently bad consequences in
much fewer words. We should not discuss safety, but rather
define a hazard that each party is legally required to avoid
responsibly. Safety claims should be supported based on the
infrequency of bad consequences. By adding new ones that
we experienced and by avoiding it by design, we can incre-
mentally lower the frequency of acknowledged bad conse-
quences more efficiently than fixing a vehicle on a patch-
work basis. The frequency per million kilometers of drive is
a quantifiable measure of safety (Kalra 2016). Four practical
hurdles implies a technical direction.

The first hurdle is that each stakeholder has compart-
mented access to the data necessary to identify the root-
cause of a hazard and to decide which party is liable. Cur-
rent copyright law supports limiting access to the source
code of the control software. It has successfully protected
such software from unauthorized reproduction or modifica-
tion, and yet has maintained competitive advantage, con-
sumer protection, desired vehicle performance, and com-
pliance with safety standards and regulatory requirements.
However, combined use of the copyright law and the prod-
uct liability law (Villasenor 2014) unintentionally puts an in-
jured party in a weaker position who attempts to establish a
negligence claim regarding hazards when the software is in-
volved. In principle, the burden of proof lies with an accuser.
Thus, the injured party may have to endure an unacceptably
costly legal process for getting sufficient access to the source
code and to hire a third party auditor on its behalf as an ex-
pert witness who can analyze the recorded run-time log and
reveal the actual causation of the software and the hazard. If
a defect of the control software could be actually the root-
cause, then the injured party has limited choices other than
depending on a prospective strict liability claim or specific
consumer protection statutes that some countries adopt to
mitigate the burden of proof by the injured party. Thus, a
criterion for deciding liability for hazards should be based
on only observable states that the injured party can confirm.
Use of signaled intent of action and unobservable internal
program states should be dismissed.
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The second hurdle is the difficulty of deciding when and
why the safety claim became invalid. An accident investiga-
tor tries to find the root-cause from the recorded run-time
log, reproduce the hazardous situation wherein the safety
claim became invalid, and decide liability. Yet, the recorder
can store only measurable part of the world state supplied
from inherently imperfect onboard sensors. Sensor data can
be corrupt or transiently unavailable. It is also difficult to
judge whether unmeasurable part of the world state esti-
mated using an imperfect world model is correct or not. The
record could represent the world state incorrectly and there
is no clue of checking data integrity (Nishi 2016a). If the
hazard could result from the loss of data integrity, backward
reasoning of causation formulated as MaxSAT (Manu 2011;
Griesmayer 2007; Fey 2008) can lead to an ill-posed inverse
problem and the root-cause is not uniquely determined. Oth-
erwise, the manufacturer can identify the root-cause, or dis-
miss an unreasonable claim of design defects based on an
evidence that the software cannot produce a program state
that is consistent with the record and that would impair an
imposed safety claim. The regulator can improve limited ob-
servability of the program states by requiring the manufac-
turer to record essential states that could assist in automated
root-cause analysis. But such analysis may fail, if the sup-
posed root-cause ends up to be instead due to unobservables;
an unrecorded interplay between activation of embedded
mechanisms (ESC and ABS) and the autonomous capability.
Without revealing the causation between the root-cause and
the consequent hazard, the manufacturer can hardly justify
that a software fix could reinstate a safety claim. After all,
a safety claim should also consist of confirmed observable
states and should not depend on the internal program states.
These considerations invalidate a whole class of adaptive
techniques that employ a dedicated internal mechanism for
supporting safety claims (Jacklin 2008).

The third hurdle is that each stakeholder needs to reserve
reasonable control over the situation of imminent hazard.
But the capacity-limited regulator has to rely on measures
for certification at the pre-market stage and for investigation
after a number of incidents have accumulated. The injured
party is an evidence of limited control over the situation.
Passengers of fully automated vehicles can at most only be
responsible for stopping the vehicle. Control software can
lose control in severe situations that invalidate assumptions
and in which hazards are inevitable. Thus, the vehicle needs
to detect a precursor to a hazard at run-time and act preemp-
tively. The detector should be verified at pre-market stage.

The last hurdle is that supporting a valid formal safety
claim requires enclosing a subset of all possible situations
with sound assumptions in which a certification examiner
can look for one satisfying the criterion for hazard. This is
mandatory for dismissing an unreasonable doubt regarding
design defects by verifying that there exists no such situation
in the enclosed subset. The subset may consists of unwar-
ranted assumptions of the real world. Warranted assump-
tions are invariants describing the environment. Unwar-
ranted assumptions that we inevitably depend on are ones
regarding the model of the environment, formal interpreta-
tion of traffic rules including how traffic lights control the

right-of-way, and a belief that movers comply with the traf-
fic rules. Unfortunately, they are sometimes violated. Also,
the urban environment is filled with obstacles. Overlapping
spatial constraints can force transient violations of the as-
sumptions. Yet, the regulator needs to endorse the validity
of such a dedicated set of assumptions for certification. Ini-
tially, the safety claim using such assumptions is incomplete
at best since it inevitably leaves residual situations where the
safety claim becomes invalid due to the violation. It raises a
certification challenge (Rushby 2008). At the very least, the
decision of liability for hazard due to assumption violations
needs to be compatible with our current practice.

Assumption violation is a new kind of design fault often
implicitly acknowledged. If infrequency of assumption vi-
olations is based on a certain stochastic process similar to
that of faults, then a dedicated claim in an accident insur-
ance contract should be provided to award for loss or injury.
Here, the concept of motion prediction (Ziebart 2009) can-
not be used, as the mover’s intent of action is neither observ-
able nor controllable. The validity of the mover’s predicted
action is an unwarranted narrow assumption that can be vi-
olated at the mover’s will and thus cannot be supported on a
sound statistical basis. Instead, we need a better assumption
to cut out an over-approximation of possible situations.

In this paper, we explore a viable way of supporting safety
claims subject to four hurdles described above. We ar-
gue that in reality collision events are inevitable in over-
constrained situations, despite that a majority of studies pre-
sume collision avoidance as the right criterion(Ziebart 2009;
Montemerlo 2008; Urmson 2008; Wongpiromsarn 2009).
First, we propose a novel criterion for deciding liability for
hazard that takes contribution to hazard into account. Sec-
ond, we propose a safety claim that functional integrity and
loss of it must be detected immediately. It should depend
only on confirmed observable information, and an endorsed
set of assumptions. Third, we propose a run-time scheme
that monitors for both violations of assumptions and a risk
of liability for hazard. The latter sort of monitoring is a prob-
lem of deciding if the situation could potentially evolve ad-
versely and the criterion becomes satisfiable. Fourth, we ex-
amine the risk of a hazard by determining the satisfiability
of an adversarial motion planning problem from the mover’s
standpoint subject to an assumption on the bounded maneu-
verability of the mover. If the problem is satisfiable, then it
points to the risk of getting into a hazardous situation if the
mover attempts computed adversarial motion. Otherwise,
any doubt that the vehicle attempted an unsafe motion is dis-
missed. The scheme is compatible with existing negligence
scheme (Villasenor 2014) that instructs a driver to foresee
the risk of a hazard and responsibly prevent it. We propose
dedicated encoding techniques using a non-linear program-
ming (NLP) solver IPOPT. The scheme is viable as we can
solve the problem in a real-world situation in 100 ms.

Background
Functional Integrity
Motion of an autonomous vehicle is specified with four
classes of constraints on a temporal series of the vehicle
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Figure 1: Side effects of loss of functional integrity.

states; a plan of action, static and dynamic safety constraints,
and temporal constraints originating from state dynamics
within a foreseeable time horizon. Functional integrity is
the status of the vehicle such that all of the constraints are
satisfiable (Nishi 2014). Integrity-preserving motion is an
instance that satisfies all of them. Figure 1 shows a variety
of silent hazards resulting from loss of functional integrity.

The plan of action encodes a desirable motion formulated
as constraints on a temporal series of states of the vehicle. If
the plan is unsatisfiable, the vehicle goes out of control. The
static safety constraints typically represent nominal operat-
ing conditions that the manufacturer provides a warranty. If
unsatisfiable, then the vehicle is forced to operate beyond the
warranty and there is a risk of hazard due to an unpredictable
behavior that the manufacturer is not liable for. Constraints
regarding state dynamics encode limits on the motion that
originates from the mechanical constraints of the vehicle.
Attempting any motion that violates this constraint is unre-
alizable by design and never occurs in the real-world. Any
violation immediately implies data corruption and a claim
of functional integrity can no longer be supported. Dynamic
safety constraints typically represent negation of the hazard
criterion. Spatial separation between the vehicle and nearby
movers encodes the notion of collision avoidance. If un-
satisfiable, then a hazard occurs. We also develop a model
of the environment that puts assumptions on possible situa-
tions that includes reasonable motions obeying existing traf-
fic rules. As validity of the assumptions is controlled by the
environment, functional integrity can be impaired in an ad-
verse situation where some of the assumptions are violated.
Even if at least one of the assumptions becomes unsatisfi-
able, the risk of unintended consequence is exposed by de-
sign. A mechanism of detecting a conflicting subset of con-
straints would remove the risk of unintended consequence
that would otherwise go unnoticed.

Criteria of Liability for Hazard
According to a currently accepted practice in situations in-
volving inevitable collisions that the vehicle is not liable for,
liability for hazard depends on which party violated an as-
sumption that the traffic rules instruct one to follow. As a
decision that a hazardous event occurred is a function of a
situation at a time, the criterion of liability should not de-

pend on a temporal series of situations, but depend on the
other mover’s state at the time. This proposition is reason-
able because we need to impose a rule in a way that the
vehicle can find an integrity-preserved motion at any situa-
tion at any time for supporting a formal safety claim. This
means that selection of the rule itself should not permit an
unreasonable claim of a design defect on the basis of an ar-
gument that the mover can attempt a counter-strategy that
keeps the vehicle in a situation where the safety claim is un-
conditionally unsatisfiable. At the time of a collision when
the relative distance between the vehicle’s position rs(t) and
the mover’s position rm(t) is closer than ε, we can determine
if a criterion haz(rs(t), rm(t)) in (1) is satisfied by using a
threshold on the relative velocity δ > 0.

(rs(t)− rm(t))
2 ≤ ε2 ∧ drs(t)

dt

(rm(t)− rs(t))

‖rm(t)− rs(t)‖ ≥ δ (1)

The first term in (1) is the one that is currently used. The
second one represents a contribution of the vehicle’s unsafe
motion to the collision. The vehicle needs to perform a
motion Ms ≡ {rs(t + αTp)|0 ≤ α ≤ 1} within a tem-
poral horizon Tp such that (1) is unsatisfiable at any time
subject to an assumption on the mover’s motion Mm ≡
{rm(t + αTp)|0 ≤ α ≤ 1}. Criterion (1) states that an
unsafe motion that we judge to be at least partially liable
for hazard is that the vehicle did not try evasive move at the
time of contact and let the second term of (1) get larger than
δ. This criterion covers the first situation in Section 2.2. To
cover the second one, we need to extend (1) and combine
it with a spatial constraint on rs(t) and rm(t) regarding the
right of way. Granting the right to a relevant roadway is con-
trolled by a traffic signal. Because the traffic light changes
colors abruptly, the extended part of the criteria could be
transiently violated. To reasonably handle a transient viola-
tion, the spatial constraint should not be a predicate added to
(1) but a guard condition of (1).

Assumptions Regarding Environment
To conclude that criterion (1) is unsatisfiable in a real-world
setting, we need to assume a reasonable and verifiable bound
on the mover’s motion Mm and other states relevant to a sit-
uation. A variety of movers such as cars, bikes and pedestri-
ans have their physical limits on their maneuverability and
thus warranted. A car cannot accelerate beyond a kinetic co-
efficient of friction of 0.7 g on a dry roadway, and a mechani-
cal design of the car constrains steering maneuver. A pedes-
trian cannot move beyond Mach 3. Aside from the limit,
our driving practice depends on more moderate assumptions
on their maneuverability. Cars rarely accelerate beyond 0.2
g for comfortable drive, and this assumption is statistically
supported. The assumptions based on physical limits are
never violated but are pessimistic, while the moderate one
can be violated if the mover could attempt a statistically un-
likely move. Assumptions originating from the traffic rules
are unwarranted and thus moderate. Any decision scheme
using unwarranted assumptions needs to pass a risk-utility
test, and all stakeholders need to reach a consensus when
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justifying the scheme and exempting from a subject of po-
tential design defects. If the unwarranted assumptions are
validated, economic loss or injury arising from an assump-
tion violation should be covered by an insurance contract.
Also, we need to state the risks of the hazard that the man-
ufacturer is not liable for, to warn the passenger and nearby
movers, and to equip vehicles with devices to protect the
passenger responsibly.

Limiting temporal bound with respect to the velocity of
the vehicle is also reasonable. On-board sensors have a lim-
ited line-of-sight and a scope at distance. We cannot justify
setting a trajectory beyond the scope. We want to reserve an
interval for an initial responsive move to avoid the hazard.

Supporting Safety Claims

Linking one root-cause with each responsible stakeholder
serves to separating a boundary of liability. We propose a
safety claim that the vehicle preserves functional integrity
subject to posed assumption set and loss of it is detected
correctly and quickly. As loss of functional integrity is a
silent event, we need to monitor the stated root-causes and
violation of the assumption that impair the claim.

Monitoring Assumptions A run-time monitor (Barringer
2004) detects violations of the static safety constraints and
the posed assumption set. To remove an uncontrollable risk,
a capability of detecting violations should be tested at the
pre-market stage when the warranty is finalized. Limits on
observability due to poor visibility and inaccurate sensors
are static constraints. The consequences of an assumption
violation vary. The assumption on maneuverability is an
over-approximation of possible motions Mm that depend
on the mover’s decision. Thus, violations of this kind of
assumption may not immediately result in loss of functional
integrity, unless the mover could actually attempt an adver-
sarial motion that violates the assumption. Yet, the assump-
tion on spatial separation enforced by traffic rules is a belief
as to the benefit of promoting smooth traffic. Violations of
this kind can result in an imminent risk of hazard. Moreover,
as they are a result of the mover’s unobservable decision, the
situation poses an uncontrollable risk that is not stochastic in
nature. Thus, at least, we need to prove no inevitable hazard
in a subset of situations within the assumption set and clarify
a limit of warranty on the functional integrity. Further, we
should develop a preemptive method to deal with assump-
tion violations. In practice, sensor data are often corrupted
and cause spurious violations of assumptions. As the plat-
form hardware can hardly detect such a violation by itself,
assumption monitoring is needed to safeguard the vehicle
against a malfunction caused by the broken sensor data.

Preemptive Detection of Infeasible Plans Second, we
need to detect when the plan of action is unsatisfiable. While
this is the same idea as testing feasibility of a conventional
motion planning problem, tailored control logic is needed
to withdraw any infeasible motion. It can be part of a mo-
tion planner that computes a series of input vectors from the
posed plan of action (Nishi 2014).

Preemptive Detection of Unsafe Motions Third, a vehi-
cle need to detect preemptively when it attempts a poten-
tially unsafe motion in an over-constrained situation wherein
dynamic safety constraints become unsatisfiable and the
hazard becomes inevitable. This decision capability is for-
mulated as adversarial motion planning problem. We com-
pute a temporal series of the mover’s states and actions sub-
ject to the posed assumption on maneuverability and check
if a mover’s motion that satisfies criterion (1) is feasible. The
capability should be built into a run-time scheme, as hazard
risk must be detected instantly and reserve an interval to fig-
ure out a preemptive action for retaining functional integrity.

Preemptive Response The vehicle must assure an on-
board passenger at any time that it reserves an alternative
liability-free plan of action which avoids any risk of a mover
taking an action that would render criterion (1) uncondition-
ally satisfiable. Also, the vehicle needs to withdraw the plan
of action once an assumption violation is detected but the
vehicle has no way to recover from such a situation wherein
the safety claim becomes invalid.

Formula for Checking Functional Integrity
Solving Satisfiability Problem by NLP Solver
A NLP solver IPOPT (Wachter 2006) computes an optimal
solution of a function f(X) subject to constraints (2).

[

j= 1]m
∧

gLj ≤ gj(x) ≤ gUj ∧
[

i= 1]n
∧

xL
i ≤ xi ≤ xU

i

(2)
It consists of problem variables x ∈ R

n, a twice-
differentiable objective function f(x), twice-differentiable
constraint functions {gj(x) : R

n → R| 1 ≤ j ≤ m}
with a bound gLj , g

U
j ∈ R on each one, and a search domain

{(xL
i , x

U
i

) | 1 ≤ i ≤ n}. For our purpose of correctly check-
ing satisfiability of (2), we set f(x) = 0 and use IPOPT in
a way that global convergence is guaranteed (Nishi 2016b).
As IPOPT can receive a conjunction of predicates, we need
to reformulate disjunctions of predicates into conjunctions
of them in a way that the Boolean structure is preserved.

Constraints Constituting Functional Integrity
State Dynamics To expresses constraints on maneuver-
ability of the vehicle nearby cars, bikes, and pedestrians,
we use a simple non-linear dynamics equation; d

dtx
s
k(t) =

{vs(t)cosθs(t), vs(t)sinθs(t), as(t), τs(t)}. The state vec-
tor xs

k(t) ≡ {rsx(t), rsy(t), vs(t), θs(t)} consists of a posi-
tion vector rs(t) ≡ {rsx(t), rsy(t)}, forward velocity vs(t),
yaw angle θs(t), and input vector us(t) ≡ {as(t), τs(t)}
regarding acceleration and steering. Here, all state vari-
ables are confirmed observable ones. We apply Implicit
Euler method and build a constraint function F s

k (X
s,Us)

expressed as (3). We denote a state vector at discrete-time
k as xs

k ≡ {rsxk , rsyk , vsk, θ
s
k}, and input vector at discrete-

time k as us
k ≡ {ask, τsk}. Tp = TΔt is the temporal hori-

zon. We denote temporal series of state and input vectors as
Xs ≡ {xs

k|0 ≤ k ≤ T} and Us ≡ {us
k|0 ≤ k ≤ T}.
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∧
0≤k<T

⎡
⎢⎣
−rsxk+1 + rsxk + vsk+1cosθ

s
k+1Δt

−rsyk+1 + rsyk + vsk+1sinθ
s
k+1Δt

−vsk+1 + vsk + ask+1Δt
−θsk+1 + θsk + τ sk+1Δt

⎤
⎥⎦ = 0 (3)

A precise formulation of Fs
k(X

s,Us) is unnecessary, so
long as the state vectors Xs produced using {xs

0,U
s} cover

the whole reachable set. The impact of extending Δt is neg-
ligible, as the reachable set except for truncation error at
the boundary is roughly irrelevant to Δt. The idea of over-
approximating the reachable set prevents any flawed attempt
of precisely modeling an inherently imperfect and uncer-
tain real world. We reuse the same formulation regarding
a mover xm(t). We discretize the state vector of the mover
xm(t) as xm

k ≡ {rmx
k , rmy

k , vmk , θmk }, and the input vector
of the mover as um

k ≡ {amk , τmk }. We reuse the same for-
mulation of a constraint on the mover in the vehicle’s scope
and define Fm

k (Xm,Um) where Xm ≡ {xm
k |0 ≤ k ≤ T}

and Um ≡ {um
k |0 ≤ k ≤ T}.

Plan of Action A simple way of encoding a plan of action
is putting a constraint function C(Xs,Us) on {Xs,Us}.
We can let the vehicle move toward a terminal goal position
by setting a constraint on xs

T . Programming a complicated
plan of action involving a guard condition requires reformu-
lating the disjunction of constraints. Yet, IPOPT can only
receive conjunctions of constraint functions as shown in (2).
We will report a way of handling disjunctions in the future.

Static Safety Constraints Static safety constraints repre-
sent limits of the vehicle’s operational capability validated
by the coverage of the warranty or by design. We build a
formula Ss(Xs,Us) in (4) using constraints on the velocity
component vsk, on the input vectors Us regarding accelera-
tion ask and steering τ sk , and on their differentials.

Ss(Xs,Us) :=
∧

0≤k≤T

[
u
v

] ≤ [
us
k

vsk
] ≤ [

ū
v̄

]∧
∧

0≤k<T

du ≤ 1
Δt (u

s
k+1 − us

k) ≤ du
(4)

We define a formula of assumption on maneuverability of
movers in the field Sm(Xm,Um) that encodes by reusing
the same form of the constraints.

Spatial Geometric Constraints Traffic rules instruct the
vehicle to move on specified roadways. A spatial constraint
appears in dynamic constraints on Xs, and part of the as-
sumptions on Xm. Given a convex spatial region Wi 	 R

2

and a point r ∈ R
2, we can define a monotonic function

h(r,Wi) that returns 0 if r ∈ Wi, or that gives the Eu-
clidean distance from the point and monotonically increases
if r /∈Wj . As a non-convex region W consists of concatena-
tion of non-overlapping convex regions {Wi|0 ≤ i < |W |},
formula (5) encodes r ∈W .

W ≡ ∪
0≤i<|W |

Wi, h(r,W ) ≡ min
0≤i<|W |

h(r,Wi) = 0 (5)

Dynamic Safety Constraints A basic dynamic safety
constraint is a spatial constraint that originates from a road-
way, a crosswalk, a sidewalk, and an intersection where the
right of way is controlled by a traffic signal. It is formu-
lated as a constraint function Ds(Xs) ≡ h(rsk,W

s) where
W s represents a spatial region in which the vehicle can
move. We will reuse the same form of the constraint func-
tion Ds(Xm) ≡ h(rmk ,Wm) regarding the mover and spa-
tial region Wm. Another sort of dynamic safety constraints
is concerned with the criterion (1). It is controlled by the
position vector of the mover rmk .

Dm(Xs,Xm) := ¬
∨

0≤k≤T

haz(rsk, r
m
k ) (6)

Formula (6) suggests that the vehicle never attempts an
unsafe move {rsk|0 ≤ k ≤ T} when a nearby mover is
within ε at any time and that the vehicle moves evasively
at the time of a collision. We reiterate that (6) is irrelevant
to the unobservable variables Us and Um that represent the
both parties’ intent of action. Here ¬Dm(Xs,Xm) is the
disjunction of a predicate haz(rsk, r

m
k ) that consists of two

constraint functions. However, IPOPT can receive only a
conjunction of constraint functions. Here, we can reformu-
late s = min

0≤k≤T
‖rsk − rmk ‖2 to (7) by using auxiliary vari-

ables {qk ∈ R|0 ≤ k ≤ T} and a slack variable s ∈ R.

s =
[

k= 0]T
∑

qk ‖rsk − rmk ‖2 ∧
[

k= 0]T
∑

qk = 1∧∧
0≤k≤T

[
‖rsk − rmk ‖2 ≥ s ∧ 0 ≤ qk ≤ 1

] (7)

The formula (7) is satisfiable, and the index k that sat-
isfies ‖rsk − rmk ‖2 = s also satisfies qk = 1 while all of
other {qk} are zero. We can reformulate Hm(Xs,Xm) ≡
¬Dm(Xs,Xm) as (8) by using auxiliary variables {Rk ∈
R|0 ≤ k ≤ T} and a slack variable w ∈ R. Also, s and w
correspond to each predicate in (1), s ≤ ε2 and w/ε ≥ δ.

[
w
s

]
=

[

k= 0]T
∑

qk

[
vsk(cosθ

s
k, sinθ

s
k)

rmk − rsk

]
(rmk − rsk)∧∧

0≤k≤T

[‖rsk − rmk ‖2 − s = Rk ∧ 0 ≤ qk ≤ 1 ∧ 0 ≤ Rk

]∧
[

w
−s

]
≥

[
εδ
−ε2

]
∧

[

k= 0]T
∑

qk

[
1
Rk

]
=

[
1
0

]

(8)

Assumptions on Maneuverability An assumption on
maneuverability of the mover Am(Xm,Um) is given as (9).

∧
0≤k≤T

Fm
k (Xm,Um) ∧ Sm(Xm,Um) (9)

All reachable states Xm is enclosed by (9). We can use a
moderate assumption and enclose a subspace of the reach-
able states by tightening the constraint Sm(Xm,Um). We
will reuse the same form of a formula As(Xs,Us) to ex-
press the assumption on maneuverability of the vehicle.
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Detection of Infeasible Plan of Action
A simple way of losing functional integrity is to assert an
infeasible plan of action. We can detect such an infeasibility
by checking if formula (10) is unsatisfiable.

As(Xs,Us) ∧ C(Xs,Us) ∧Ds(Xs) (10)
If it is satisfiable, we get a solution vector U s = {us

k|0 ≤
k ≤ T} such that the plan of action is realized. Otherwise if
unsatisfiable, then the plan of action needs to be withdrawn.

Preemptive Detection of Unsafe Motion
The proposed scheme should offer a generic interface to
connect to a variety of motion planners and serve as a
generic independent subsystem. We can translate the plan
of action formulated as C(Xs,Us) into a satisfiable assign-
ment Xs that contains at least a temporal series of positions
{rsk = ps

k ∈ R
2|0 ≤ k ≤ T}. Then, we test if formula (11)

has a satisfiable assignment (Xm,Um).

Am(Xm,Um) ∧Ds(Xm) ∧Hm(Xs,Xm) (11)

If (11) is satisfiable, we get a solution vector Xm that con-
tains a temporal series of the mover’s trajectory {rmk |0 ≤
k ≤ T} that actually violate criteria (1) and we find a haz-
ard risk that the vehicle is liable for. Otherwise, if (11) is
unsatisfiable, the posed trajectory is free from liability so
long as the assumption on maneuverability Am holds. We
learned that IPOPT inefficiently repeats iterations and ex-
tends the decision time, if an unsatisfiable NLP instance is
posed. As we mostly try to check if (11) is unsatisfiable,
the decision time in the unsatisfiable case should be short as
well. Here, we can exploit the property that satisfiability of
(8) solely depends on the feasible bounds on the pair {s, w}.
Thus, we define Ĥm that excludes s ≤ ε2 and w � εδ from
Hm(Xs,Xm) in (8) and build the NLP instance (12). Next,
we check if f(s, w) = 0, in which case s ≤ ε2 ∧ w ≥ εδ
is satisfiable. Despite the local discontinuity of ∇f(s, w) at
s = ε2 and w = δ, the second derivatives are 0. Thus, the
behavior of IPOPT remains stable.

min f(s, w) =

⎧⎨
⎩
s > ε2 → s− ε2

s ≤ ε2 ∧ w < εδ → −w + εδ

s ≤ ε2 ∧ w ≥ εδ → 0

s.t. Am(Xm,Um) ∧Dm(Xm) ∧ Ĥm(Xs,Xm)

(12)

Selective Use of Assumptions
Multi-layered assumption set comprised of the moderate and
the pessimistic one is helpful to provide a preemptive deci-
sion quickly after the moderate assumption gets violated. As
far as the pessimistic one is satisfied, the vehicle can have
a chance of recovering functional integrity using the pes-
simistic one. We argue that a practically viable setting is to
monitor any violation of the moderate assumptions and on
satisfiability of (11), until there remains a satisfiable alter-
native plan of action subject to the pessimistic ones. The
assumption monitor using moderate one works as a thresh-
old for preemptively detecting a potential risk of hazard. It

safeguards the vehicle against the risk of hazard when the
mover could actually attempt an adverse move aggressively
beyond the moderate one. We do not definitely dismiss a
conservative setting of using the pessimistic ones only. But
the vehicle’s pessimistic decision on the risk of hazard and
resulting unusual driving experience can confuse neighbor-
ing movers. Indeed, sudden and frequent deceleration can
unexpectedly inflict rear-end collision.

Experiments
We used a dual-core Intel Core-i3 CPU of 2.0GHz run-
ning on Linux kernel 4.0.8 and the following software
libraries; IPOPT 3.12.3 with OpenBLAS 0.2.14 and La-
pack 1.5.0. The parameters used in (1) are ε=1.0 m and
ν=0.5 m/s. The parameters regarding the assumption on
maneuverability of a vehicle was expressed using {v,v̄}={-
1.,20.}, u={-7.,-0.5}, u= {7.,0.5}, du={-3.,-0.25}, and
du ={3.,0.25}. The assumption on maneuverability
of pedestrians was expressed using {v,v̄}={-10.,10.}, u
={-1.,-5.}, u={3.,5.}, du={-1.,-1.57} and du={1.,1.57}.
We used options to configure IPOPT suitable for solving
satisfiability problems; nlp_scaling_method=gradient-
based, mu_strategy=adaptive, theta_max_fact=10,
mu_max_fact=10, corrector_type=primal-dual.

Detection of Infeasible Plan of Action
A route planner can ignore the actual situation and force the
vehicle to try any unreasonable plan of action. Fig. 2 shows
a situation where the vehicle attempts to turn right at a four-
way intersection. The temporal steps T is 50, Δt = 0.1[s],
and spatial geometric constraints were applied every 3 steps.
A satisfiable plan of action was created by solving (10) using
an initial state x̂s

0 = {−2.,−9., 3., 1.57} and ûs
0 = {0., 0.},

and a reference plan of action C(x̂s
T ) using (13) and a final

state x̂s
T = {18., 1.8, 6., 0.};

C(x̂s
T ) = ‖x̂s

0 − x̂s
T ‖ ≤ 0.1 (13)

The NLP instance (2) consisted of n=306 variables and
m=429 constraints. Initially, it took IPOPT 35 iterations (56
ms) to decide that the plan of action was feasible. After-
ward, it took only one iteration (5 ms) by reusing the previ-
ous satisfiable solution vector {Xs,Us}. If the actual ini-
tial state of the vehicle could be xs

0={-2.,-9.,18.,1.57} and
us
0={0.,0.}, such an aggressive attempt of turn would result

in a departure from the plan. We replaced x̂s
0 with xs

0 and
solved (10) to check if the posed plan of action C(x̂s

T ) was
infeasible. It took IPOPT 77 ms to decide that the plan was
infeasible after IPOPT was forced to terminate at 50 New-
tion iterations. It took IPOPT 18-69 ms afterward by the
reuse. If the initial velocity vs0 was higher than 10 m/s, the
resulting motion was infeasible because of the limit on the
steering input τ sk ; the vehicle entered the sidewalk, as shown
in Fig. 2. The route planner had to withdraw the original
plan, before the infeasible motion was actually attempted
and loss of functional integrity occurred. A manufacturer of
the vehicle would be liable for this hazard.
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Figure 2: Infeasible plan of action.

Preemptive Detection of Unsafe Motion
What primarily impacts on the decision time for deciding
satisfiability using the proposed NLP encoding technique
is geometric complexity of the environment and the degree
of congestion measured by the number of movers who at-
tempt conflicting move that satisfies (1). Thus, we studied
the same situation at a four-way intersection at which the
vehicle attempted to turn right. As shown in Fig. 3, we
set five vehicles moving forward on opposite lanes and five
pedestrians on sidewalks and a crosswalk. Each mover’s
right-of-way was controlled by traffic lights. The vehicles
in opposite lanes could move in their lanes or cross the in-
tersection. We set a moderate assumption that pedestrians
can move on sidewalks or the crosswalk. The union of
these geometric regions corresponds to W in (5) and is non-
convex. Here, the vehicle attempted to follow a trajectory
{rsk = ps

k|0 ≤ k ≤ T} computed from the same plan of
action C(xs

T ) in (13) where xs
T = {12., 1.8, 6., 0.}. We

checked if (12) was unsatisfiable and dismissed a risk that
the mover can reach the trajectory in a way that the vehi-
cle is liable for. Here, Δt = 0.25 s, T = 20, and spatial
geometric constraints were imposed every four steps. As
this planning problem constrained only the initial point, we
had no clue as to whether the posed one was satisfiable or
not, and no clue as to the location of the final solution vec-
tor. We studied a good initial solution vector and selected
{xm

k = xm
0 |1 ≤ k ≤ T} and {um

k = 0|1 ≤ k ≤ T}.
NLP instance (2) for each mover consisted of n=170 vari-

ables and m=157 constraints. From the initial iteration when
IPOPT started from the posed solution vector and began to
explore a satisfiable one, it took 71-89 ms to check if (12)
regarding four among 10 movers was satisfiable. As shown
in Fig. 3, two vehicles in opposite lanes and two pedestrians
who attempted to go on the crosswalk were detected. If they
moved accordingly and (1) was actually satisfied, the vehicle
would have been at least partially liable for hazard because
of negligence. Other movers were irrelevant to the risk of li-
ability for a hazard, as they could not attempt to make an ad-
versarial motion that satisfied (12). This initial overhead was
negligible, as it occurred only when a new mover appeared

Figure 3: Detection of unsafe motion.

within the scope of the vehicle. In practice, we can exploit
the temporal locality of the solution vector to shorten the de-
cision time, as the positions of movers and the trajectory of
the vehicles have changed only slightly Δt after the initial
iteration. Once IPOPT finds a satisfiable solution vector, the
decision time gets shorter by reusing the previous one. It
took 28 ms - 59 ms to decide if (12) was satisfiable. The de-
cision time depended on the geometric relation between the
spatial component of the solution vector {rmk |0 ≤ k ≤ T}
and the non-convex spatial region in which the mover could
move. The time for checking the satisfiability of (12) regard-
ing the pedestrians varied, as their movements were within
the concatenated region of the crosswalk and the sidewalks,
which had a non-convex shape. In contrast, the time for
checking the satisfiability of (12) regarding the vehicles was
steady and short, as they moved in a simpler geometric re-
gion. Note that once the run-time monitor detected a viola-
tion of assumption Am and the hazard became inevitable, it
was time for insurers to get involved.

Discussion and Related Work
Potential undecidability of (1)(10)(11) could result from that
assumption violation is unpredictable. It could also re-
sult from partial observability is discussed in (Nishi 2016a).
While we inadvertently assume that the confirmed states in
them are available, corruption of the state can hardly be self-
detected by the sensors. We need to check integrity of redun-
dant data and statistically correct predicates. Particularly, a
hazard caused by false negative detection must be addressed.
In that case, no relevant data would be recorded on the run-
time log and a root-cause analysis would fail.

An idea of trajectory verification at the pre-market
stage separately from a planning algorithm (Wongpiromsarn
2009) is prone to loss of functional integrity and violation of
assumption. As the planner determines the actual motion at
run-time, the violation must be detected at run-time in order
to adapt to it (Bensalem 2014). If the validity of safety claim
is impaired that way, we may hardly suppress the rise in the
frequency of hazard. The proposed way of using the NLP
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solver replaces the method of analyzing a forward reachable
set that handles non-linearity inadequately and that suffers
from high computational costs (Althoff 2008). We judged
that control logic synthesis is costly (Tabuada 2013) and lim-
its the high-level decisions for handling fault and transient
assumption violations by re-programming a complex plan
and constraints at run-time.

Computing a satisfiable solution of (11) subject to an
assumption on Um serves as a verifiable run-time motion
planner. Liability-free motion is a satisfiable solution to
a quantified formula ∀Um, As(Xs,Us) ∧ Ds(Xs)∧s >
ε2∨ (

s ≤ ε2 ∧ w ≤ δε
)

using (s, w) in (12). This is close to
a reach-avoid problem (Fisac 2015). We note that a crowd
of pedestrians would not overburden the run-time scheme,
as the constraints regarding their initial positions is replaced
with a constraint function restricting their initial positions to
be within the spatial region. Uncertainty due to imperfect
sensors is handled in the same way. Lastly, we seek for a
sufficient condition for resolution completeness using only
abstract data in a compositional way (Yershov 2010).

Conclusions
We formalized a verification problem for supporting safety
claims of fully autonomous vehicles. Our insight is that mal-
functions of autonomous vehicles result from loss of func-
tional integrity due to design defects or assumption viola-
tions. To fairly divide up the liability for hazard for each
root-cause among the stakeholders, a safety claim should
consist of only confirmed observable states and a commonly
endorsed assumption set. We proposed a viable way of de-
ciding liability for hazard and a safety claim in which the
functional integrity with respect to the criteria is preserved.
We proposed a run-time scheme that preemptively detects
assumption violations and loss of functional integrity when
infeasible plans of action and unsafe motion are attempted.
A run-time scheme embodying the above ideas with encod-
ing techniques using the NLP solver IPOPT was shown to
be viable even in a real-world setting.
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