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Abstract

We present an approach to reasoning with strict and defeasi-
ble rules over literals. A controlled natural language is em-
ployed as human/machine interface to facilitate the specifica-
tion of knowledge and verbalization of results. Reasoning on
the rules is done by a direct semantics that addresses several
issues for current approaches to argumentation-based defeasi-
ble reasoning. Techniques from formal argumentation theory
are employed to justify conclusions of the approach; there-
fore, we not only address automated reasoning but also hu-
man acceptance of provided conclusions.

Introduction

Approaches to artificial intelligence in general and to auto-
mated problem solving in particular should be – in virtue of
their intelligence – able to explain and justify their conclu-
sions and actions in a rational discourse. This is not always
done: the Go playing computer program AlphaGo (Silver et
al. 2016), while very proficient in choosing the right move
(i.e. solving a range of problems), cannot explain to a hu-
man user why it chose that particular move (i.e. justifying
its solution). A recent Nature editorial concluded that “[t]he
machine becomes an oracle; its pronouncements have to be
believed.” (Nature 529, 2016, p. 437)

To make believable, useful results, they have to be com-
municated to human users, which implies that the for-
mal knowledge models and efficient inference mechanisms
ought to be in a familiar, relevant form for humans. In this
paper, we aim at addressing specific problems of usabil-
ity of automated reasoning in a particular, restricted set-
ting. The restricted setting is that of reasoning with non-
monotonic semantics of knowledge bases that are given in
the form of strict and defeasible rules, since people reason
non-monotonically about many matters. For this, we make
use of several techniques. Firstly, to address the communi-
cation issue (between humans and machines), we employ
a controlled natural language as specification language for
the input of the model as well as the output of inferences.
Controlled natural languages (CNLs) are subsets of natu-
ral language that have been restricted in lexicon and gram-
mar, thereby eliminating ambiguity and reducing complex-
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ity (Kuhn 2014). Some systems automatically translate sen-
tences into formal, machine-readable semantic representa-
tions; we adapt one such system, AceRules (Kuhn 2007),
for user specification of defeasible theories. Secondly, to ad-
dress the explanation issue (justifying answers) we employ
techniques from formal argumentation theory. Argumenta-
tion studies how arguments, which consist of prerequisites,
a claim, and an inference between the two, along with their
relationships with other arguments, such as rebuttal, deter-
mine which arguments are acceptable, that is, which argu-
ments can be defended in a rational discourse. Formal argu-
mentation theory and its implementations formally and auto-
matically construct conclusions from a knowledge base. The
CNL interface allows a user to build the knowledge base and
to receive justified conclusions in language. We discuss our
approach to CNLs and argumentation theory further below.

In contrast to previous approaches that deal with strict
and defeasible rules in argumentation theory, in our ap-
proach “argument” objects are no longer directly computed
upon, but rather constructed as optional by-products for ex-
planation and justification. We show that this novel view
addresses a range of problematic issues in existing ap-
proaches that are based on Dung’s argumentation frame-
works (AFs) (1995). These issues are outlined below.

In Dungian AFs, “arguments” are nodes and “attacks” are
arcs that indicate some incompatibility between arguments;
semantics such as grounded or stable are provided to calcu-
late sets of arguments that can be interpreted as being collec-
tively acceptable. Existing approaches to give substance to
strict and defeasible rules all fall into the realm of instan-
tiated abstract argumentation (Besnard and Hunter 2009;
Prakken 2010; Bondarenko et al. 1997) (LB, ASPIC+, and
ABA, respectively). In such approaches, a knowledge base
of strict and defeasible rules over literals is construed as
complex “argument” objects (reasoning from prerequisites
and rules to conclusions) in attack relations (i.e. contrastive-
ness between propositions) and then evaluated in a Dungian
abstract AF to derive knowledge base conclusions. They do
not make use of natural language interfaces.

Such theories must address a range of issues: the rational-
ity postulates (Caminada and Amgoud 2007; Amgoud and
Besnard 2013),1 arguments with subarguments, exponential

1The rationality postulates of Caminada and Amgoud essen-
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overgeneration of arguments, opacity of attacks, regenera-
tion of arguments when the knowledge base changes, and
partial knowledge bases. Moreover, the approaches (except
(Besnard and Hunter 2005)) treat propositional knowledge
bases while (at least some) elements of predicate logic are
needed for any natural language interface to argumentation.

An approach that addresses some of these matters is the
work by Wyner et al. (2015), but their approach – despite
making use of additional meta-level definitions on top of
AF semantics – does not satisfy the rationality postulates
(it would violate closure in Example 3 of this paper). An-
other approach is by Strass (2015), who defines a semantics
for defeasible theories based on abstract dialectical frame-
works (Brewka and Woltran 2010) and also several direct
semantics, but the definitions do not assume that the world is
“as normal as possible” (Brewka, Niemelä, and Truszczyn-
ski 2008), which is a cornerstone of defeasible reasoning.
Moreover, neither of those approaches treats any first-order
aspects or connects to a natural language interface.

More generally, the approaches to instantiated argumen-
tation do not strongly tie-in to intuitions about natural lan-
guage as well as its use. Argument mining (Lippi and Tor-
roni 2016) is promising, but requires extensive (and cur-
rently infeasible) preprocessing and normalisation to sup-
port formal inference.

In view of the communication aspect, there are controlled
natural language tools which translate natural language
into First-order Logic expressions and interface to non-
monotonic inference engines (Kuhn 2007; Fuchs, Kaljurand,
and Kuhn 2008; Fuchs 2016; Guy and Schwitter 2016). Yet,
these are not coupled to argumentation or related inference
engines. More pointedly, defeasible rules are modeled using
‘not provably not’, which we show has a different interpre-
tation than the natural expression ‘usually’ as a normative
quantifier over contexts (Kratzer 2012). The following run-
ning example is paraphrased from Pollock (2007).

Example 1 (Moustache Murder). Jones is a person.
Paul is a person. Jacob is a person. Usually, a person
is reliable. If Jones is reliable then the gunman has a
moustache. If Paul is reliable then Jones is not reliable.
If Jacob is reliable then Jones is reliable.

Clearly not both Paul and Jacob can be reliable, and any se-
mantics should be able to “choose” between the two options.

In the approaches of (Fuchs 2016) and (Guy and Schwitter
2016), the adverb of quantification ‘usually’ is translated as
“not provably not” (perhaps along with an abnormality pred-
icate), e.g. a paraphrase for “usually, a person is reliable” is
along the lines of “if a person is not provably not reliable
then the person is reliable”. However, this formalisation can
be incorrect,as demonstrated by its straightforward ASP im-
plementation:
1: person(jones). person(paul). person(jacob).

2: has(gunman,moustache) :- reliable(jones).

3: -reliable(jones) :- reliable(paul).

4: reliable(jones) :- reliable(jacob).

5: reliable(X) :- person(X), not -reliable(X).

tially say that each mutually acceptable set of conclusions as per
the semantics must be consistent and closed under strict rules.

This answer set program is inconsistent: Roughly, the literal
-reliable(jacob) cannot ever be derived from the pro-
gram, so reliable(jacob) must be in every answer set
by (5) and (1). Thus reliable(jones) must be in ev-
ery answer set by (4). However, the same holds for paul,
whence the literal reliable(paul) must be in every answer
set. Thus -reliable(jones) must be in every answer set
by (3). Consequently, any answer set would have to con-
tain both reliable(jones) and -reliable(jones), there-
fore no answer set exists.2 Yet, a program ought to produce
the intended interpretations as stable models. Thus, the “not
provably not” reading of “usually, 〈conditional〉” phrases is
not always correct.3 In contrast, our approach gets the cor-
rect reading as “usually, 〈conditional〉” is interpreted as a
defeasible proposition that holds in as many worlds as con-
sistently possible. �
Overgeneration There is a fundamental flaw with using
“arguments” as explicit objects to be computed as there
might be just too many of them. For example, consider the
“argument” definition of Caminada and Amgoud (2007) and
Prakken (2010), and observe what explicitly creating “argu-
ment” objects can amount to computationally:
Example 2. The sequence (Dn)n∈N of rule sets is given by
D0 = {⇒ p0,⇒ q0}, D1 = D0 ∪ {p0 → p1, q0 → p1} and
for all i ≥ 1, Di+1 = Di ∪ {p0, pi → pi+1, q0, pi → pi+1}.
For any n ∈ N, the size of Dn is linear in n, but Dn leads
to 2n+1 “arguments”, among them 2n “arguments” for pn.
Here are the sets Ai of “arguments” for Di for 0 ≤ i ≤ 2:

A0 = {[⇒ p0], [⇒ q0]}
A1 = A0 ∪ {[[⇒ p0] → p1], [[⇒ q0] → p1]}
A2 = A1 ∪ {[[⇒ p0], [[⇒ p0] → p1] → p2],

[[⇒ p0], [[⇒ q0] → p1] → p2],

[[⇒ q0], [[⇒ p0] → p1] → p2],

[[⇒ q0], [[⇒ q0] → p1] → p2]} �
The same exponential overgeneration can be observed in
assumption-based argumentation (Bondarenko et al. 1997),
which uses tree-shaped arguments, and the approach of
Amgoud and Nouioua (2015) who essentially use the AS-
PIC “argument” construction.4 In recent work, Craven and
Toni (2016) addressed some of the computational problems
of tree-shaped arguments in ABA; however, their definition
of “argument graph” still allows for exactly the above (expo-
nentially many distinct) structures. For the work of Craven
and Toni (2016) this is not a substantial problem since they
primarily focus on reasoning problems concerned with cred-
ulous and sceptical acceptance of conclusions.

2We are not claiming that ASP is not adept at treating this ex-
ample right; we claim that the straightforward “not provably not”
reading of “usually, 〈conditional〉” phrases is not always correct.

3Adding an abnormality atom into the body of line 5 (like in
rule (12) of (Baral and Gelfond 1994)) would solve the technical
problem of inconsistency, but still not get us the intuitive reading
we want, and would introduce the problem of having to create ab-
normality predicates from language input that does not use them.

4The Di are strictly speaking not valid ABA input but can be
turned into one using the translation given later in this paper.
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However, overgeneration is a problem in all approaches
that create argument objects and attacks in order to instanti-
ate Dung’s abstract AFs. In addition, every time the knowl-
edge base changes, the arguments (and extensions) must be
recalculated. Of course, some method may be to block or fil-
ter overgeneration; however, it is clearly worthwhile to avoid
overgeneration in the first instance. On the technical side,
we show in this paper that our approach is as expressive as
(flat) ABA for stable semantics. As a corollary, this entails
that our proposal is as expressive as ASPIC+ without pref-
erences, since Heyninck and Straßer (2016) have recently
shown that the latter can be translated into ABA and thus
that both frameworks are equally expressive.
Complex Arguments and Opacity of Attacks Example 2
can also be used to illustrate (at a simple level) complex ar-
guments and opacity of attacks. A2 contains arguments with
subarguments, though the subarguments can only be identi-
fied by decomposing the superordinate argument, requiring
a further analytic step. Relatedly, were the rule set to have
⇒ ¬q0, then the contrasting argument at A0 is attacked; this
attack percolates up to abstractly attack arguments at A2.
Thus, attacks proliferate; if we only looked at arguments at
the level of A2, we would not know precisely the nature of
the attack. Of course, workarounds may be feasible, but a
better theory would not induce the issue in the first instance.
Contributions of this paper In our approach, we provide
interpretations for defeasible theories and then construct ar-
gument objects as optional by-products for explanation, jus-
tification, and querying. This is in contrast with prevail-
ing approaches that first construct argument objects for a
knowledge base and then derive interpretations for knowl-
edge bases from argument extensions. Our approach satisfies
the rationality postulates and addresses the range of issues
outlined above. In addition, we contribute a new interface
between natural language and a defeasible knowledge base,
which is largely non-existent in other approaches. This is
a useful and straightforward approach since reasoning from
the knowledge base, argumentation about it and their natu-
ral language counterparts must all be tuned to each other. We
have an implementation for our reasoner and apply an exist-
ing Controlled Natural Language tool that largely provides
the requisite translation to the reasoner’s format.
Outline In the rest, we define and exemplify the direct se-
mantics for propositional defeasible theories, outline prop-
erties of the approach, define defeasible theories with vari-
ables, construct higher level argument structures over theo-
ries, and finally tie theories to a natural language interface.
We close with some discussion and notes on future work.

Propositional Defeasible Theories

For a set P of atomic propositions, the set LP of its literals
is LP = P ∪ {¬p | p ∈ P}. A rule over LP is a pair (B, h)
where the finite set B ⊆ LP is called the body (premises)
and the literal h ∈ LP is called the head (conclusion). For
B = {b1, . . . , bk} with k ∈ N, we sometimes write rules in a
different way: a strict rule is of the form “b1, . . . , bk → h”;
a defeasible rule is of the form “b1, . . . , bk ⇒ h”. In case
k = 0 we call “→ h” a fact and “⇒ h” an assumption.

The intuitive meaning of a rule (B, h) is that whenever we
are in a state of affairs where all literals in B hold, then also
literal h holds. Given a set L of literals representing a state of
the world, a rule (B, h) is applicable if B ⊆ L and inappli-
cable otherwise. We say that a rule (B, h) holds for a set L
of literals if B ⊆ L implies h ∈ L. (Put another way, (B, h)
holds for L iff B ∪ {h} ⊆ L or B �⊆ L.) So a rule makes
a statement about a world, and can hold for one world but
possibly not so for another. For example, the rule ({a} , b)
holds in the worlds {a, b} and ∅ but not in {a} or {a,¬b}. In
particular, a rule ({a} , b) is not equivalent to its contrapos-
itive ({¬b} ,¬a), as the former holds in the world {¬b} but
the latter does not. Thus rules are not to be confused with
material implication in propositional logic.

The difference between strict and defeasible rules is the
following: A strict rule must hold in all possible worlds. A
defeasible rule should hold in most possible worlds. That
is, there might be some worlds that are exceptional with re-
spect to some defeasible rules, but we can still consider those
worlds possible. On the other hand, a world where some
strict rule does not hold is impossible.

A defeasible theory is a tuple T = (P,S,D) where P is
a set of atomic propositions, S is a set of strict rules over
LP and D is a set of defeasible rules over LP . The mean-
ing of defeasible theories is defined as follows. To define
the meta-level negation of literals, we define p = ¬p and
¬p = p for p ∈ P . A set L ⊆ LP of literals is consistent iff
for all z ∈ LP we find that z ∈ L implies z /∈ L. For a set
R ⊆ S ∪ D of rules and a set L ⊆ LP of literals, we define
R(L) = {h ∈ LP | (B, h) ∈ R,B ⊆ L}; a set L of literals
is closed under R iff R(L) ⊆ L. We next present the first bit
of our direct semantics. The main underlying intuition goes
back to foundational work on the treatment of inconsistency
by Rescher and Manor (1970), and to work on defeasible
logical reasoning by Poole (1988).
Definition 1. Let T = (P,S,D) be a defeasible theory. A
set M ⊆ LP of literals is a possible set for T if and only if
there exists a set DM ⊆ D such that:
1. M is consistent;
2. M is closed under S ∪ DM ;
3. DM is ⊆-maximal with respect to items 1 and 2. �

Intuitively, a possible set of literals is consistent, closed
under strict rules and maximally consistent with respect to
applying defeasible rules. It follows that each possible set
M induces a set DM of defeasible rules that hold in M .

Not every defeasible theory has possible sets:
Example 3. The theory ({a} , {→ a, a → ¬a} , ∅) does
not have a possible set, as in any candidate L we have a ∈ L
and by closure also ¬a ∈ L, thus violating consistency. �

Regarding the “usually, if B then h” reading of a defea-
sible rule (B, h), the maximality condition in Definition 1
ensures that possible sets are as “usual” as possible (with re-
spect to the given rules). But in a possible set, there might
still be cyclic or otherwise unjustified conclusions.
Example 4. Consider T = ({a, b} , ∅, {a ⇒ b, b ⇒ a}),
a simple defeasible theory with seven possible sets, M1 = ∅,
M2 = {¬a}, M3 = {¬b}, M4 = {¬a,¬b}, M5 = {a,¬b},
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M6 = {¬a, b}, M7 = {a, b}. Almost all of the possible sets
(except M1 = ∅) contain unjustified conclusions. For exam-
ple in M2, literal ¬a is just there although there is no rule
support for it. Likewise, in M7, literal a holds because b
does and vice versa. In some contexts, e.g. causal reason-
ing (Denecker, Theseider-Dupré, and van Belleghem 1998),
a model like M7 can be unintended as there is no “outside”
support (no causal reasons) for any of a, b. �

Below, we further refine our direct semantics to rule out
interpretations where some literals cannot be justified. We
start with the notion of a derivation, which is basically a
proof of a literal using only modus ponens over rules.

Definition 2. Let T = (P,S,D) be a defeasible theory. A
derivation in T is a set R ⊆ S ∪ D of rules with a partial
order � on R such that:

1. � has a greatest element (Bz, z) ∈ R;
2. for each rule (B, h) ∈ R, we have: for each y ∈ B, there

is a rule (By, y) ∈ R with (By, y) ≺ (B, h) (where ≺ is
the strict partial order contained in �);

3. R is ⊆-minimal with respect to items 1 and 2. �
Intuitively, a derivation always concludes some specific
unique literal z via a rule (Bz, z), and then in turn con-
tains derivations for all y ∈ Bz needed to derive z, and so
on, down to facts and assumptions. Minimality ensures that
there are no spurious rules that are not actually needed to
derive z. The partial order � guarantees that derivations are
acyclic. For the above, we say that R is a derivation for z.

Example 5. Consider the defeasible theory T = (P,S,D)
with P = {a, b, c}, strict rules S = {→ a, a, b → c}, and
defeasible rules D = {⇒ b, a ⇒ c}. There are two dis-
tinct derivations for the literal c, where the order of presen-
tation reflects the ordering ≺ on the rules:

d1 = {(∅, a), (∅, b), ({a, b} , c)} =̂ {→ a,⇒ b, a, b → c}
d2 = {(∅, a), ({a} , c)} =̂ {→ a, a ⇒ c} �

Now we refine the direct semantics such that only literal
sets with derivations for all its elements are considered.

Definition 3. Let T = (P,S,D) be a defeasible theory and
M ⊆ LP be a possible set for T . M is a stable set for T iff
for every z ∈ M there is a derivation of z in (P,S,DM ). �
Thus stable sets are possible sets where all contained liter-
als are grounded in facts and assumptions. It does not matter
which of the two – there is no ontological distinction be-
tween defeasible and strict rules on the level of a single sta-
ble set. Intuitively, a stable set is a coherent, justified set of
beliefs in which the world is as normal as possible. Each sta-
ble set M is uniquely characterized by a set DM of applied
defeasible rules; we will sometimes make use of this herein.

Properties of the Direct Semantics

Rationality Postulates It is immediate from Definition 1
(possible sets) that the semantics satisfies the rationality pos-
tulates closure and direct consistency (Caminada and Am-
goud 2007), simply because they are built into the definition.

Proposition 1. Let T be a defeasible theory. All possible
sets of T are consistent and closed under strict rules.
The satisfaction of indirect consistency, and the same prop-
erties for stable sets then follow as easy corollaries.
Formal Expressiveness With regard to the measure of be-
ing able to express sets of two-valued interpretations (Gogic
et al. 1995), is quite clear that our approach is as expres-
sive as propositional logic. Consider a propositional for-
mula ϕ over a propositional vocabulary P . ϕ can be trans-
formed into an equivalent formula ψ in conjunctive nor-
mal form, that is, of the form ψ = ψ1 ∧ . . . ∧ ψn where
each ψi is a disjunction of literals.5 We create a defea-
sible theory Tϕ = (P,Sϕ,DP ) as follows: the defeasible
rules are DP = {⇒ p,⇒ ¬p | p ∈ P}; for each conjunct
ψi = ψ1

i ∨ . . . ∨ ψmi
i of ψ, the set Sϕ contains the strict

rules ψ2
i , ψ

3
i , . . . , ψ

mi
i → ψ1

i , ψ1
i , ψ

3
i , . . . , ψ

mi
i → ψ2

i , . . . ,
ψ1
i , ψ

2
i , . . . , ψ

mi−1
i → ψmi

i . (Intuitively, these rules corre-
spond to all transpositions of the disjunction ψi.)
Proposition 2. For any propositional formula ϕ, the stable
sets of Tϕ correspond one-to-one with the models of ϕ.

Relationship to ABA Our approach can faithfully model
flat ABA for stable semantics. Let (L,R,A, ·̂) be a flat ABA
framework (Bondarenko et al. 1997; Toni 2014). We de-
fine the defeasible theory T = (P,S,D) with vocabulary
P = L, strict rules S = R ∪ {â → ¬a | a ∈ A}, and defea-
sible rules D = {⇒ a | a ∈ A}. (For the purposes of this
translation, we treat the elements of L as atomic entities.)
Intuitively, the elements of the original language underlying
the given ABA framework F are considered the atoms of
the resulting defeasible theory language. The strict rules of
the original language persist, and are enriched by additional
rules â → ¬a that encode the meaning of contraries via clas-
sical negation. The created defeasible rules implement the
intended meaning of assumptions, namely that they can be
assumed without justification.
Theorem 3. Let F = (L,R,A, ·̂) be an ABA framework
and T be its corresponding defeasible theory according to
the above definition. The stable sets of T correspond one-
to-one with the stable sets of assumptions of F.

We conjecture that a translation in the converse direction
can be done in a similar way: starting from T = (P,S,D),
we define the ABA framework (L,R,A, ·̂) with language
L = LP ∪ A where A = {ad | d ∈ D}, derivation rules
R = S ∪

{
(B ∪

{
a(B,h)

}
, h)

∣
∣ (B, h) ∈ D

}
, and the con-

trary of an assumption a(B,h) ∈ A is the literal h.
On the other hand, our approach offers the possible-set

semantics, which is beyond ABA in the sense that ABA has
groundedness of conclusions built into its core (via argument
construction). In Example 4, there are several pairs of possi-
ble sets M ′ and M ′′ such that M ′ � M ′′. Such a situation is
not easily reproducible with ABA (under stable semantics)
and would need the introduction of additional technicalities.
Computational Complexity We first analyze the most im-
portant decision problems associated with our direct seman-

5Since we are only interested in expressiveness here, a potential
exponential blowup during CNF conversion is of no interest.
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tics, namely stable set verification, stable set existence, and
credulous and sceptical reasoning. Unfortunately, there is no
space for the (quite technical) proofs, where we show hard-
ness for the first two items via original reductions and do the
same for the last two items via a reduction from (the com-
plement of) the second item.

Theorem 4. 1. The problem “given a defeasible theory T
and a set M ⊆ LP of literals, decide whether M is a sta-
ble set of T ” is coNP-complete.

2. The problem “given a defeasible theory T , decide
whether it has a stable set” is ΣP

2 -complete.
3. The problem “given a defeasible theory T and a literal

z ∈ LP , decide whether z is contained in some stable set
of T ” is ΣP

2 -complete.
4. The problem “given a defeasible theory T and a literal

z ∈ LP , decide whether z is contained in all stable sets of
T ” is ΠP

2 -complete.

Now for computing explanations for conclusions. Once
we have obtained a stable set M for a defeasible theory T
and are given a literal z ∈ M along with the question of why
z is true in M , our task is to compute a derivation of z in the
theory (P,S,DM ). For that task, we can employ the fact
that rules of our defeasible theories can – ignoring negation –
be seen as definite Horn clauses. For definite Horn clauses in
propositional logic, in turn, it is well-known that computing
a proof for a conclusion can be done in polynomial time.
Reasoning by cases By definition, stable-set semantics
does not do reasoning by cases, that is, does not explic-
itly consider that literals might hold for unspecified reasons.
Wyner et al. (2015) have argued why and when such be-
haviour can be useful, for example when dealing with in-
completely specified knowledge bases. Our possible-set se-
mantics of Definition 1 naturally does reasoning by cases
and still satisfies the rationality postulates; it thus can be
seen as combining the strengths of both approaches.
Implementation We implemented our semantics in (dis-
junctive) answer set programming (Gebser et al. 2012). For
representing defeasible theories, rules are identified by ASP
terms. The binary predicates head/2 and body/2 declare
rule heads and bodies, respectively; predicate def/1 de-
clares a rule to be defeasible. The implemenation consists
of a reasonably small encoding of Definition 3 into ASP;
the maximization aspects are implemented using saturation
techniques. The encoding works such that the union of the
encoding together with the specification of a defeasible the-
ory is given to a solver, and the answer sets of the resulting
logic program union correspond one-to-one to the stable sets
of the defeasible theory. The implementation is available at
github: https://github.com/hstrass/defeasible-rules.

Defeasible Theories with Variables

Having seen a language for defeasible reasoning and ana-
lyzed some of its formal properties, in this section we add
a limited set of first-order features that bring this language
closer to natural language, as discussed in a later section.
The first step, in this section, will add predicates, variables
and constants to the language. This will enable us to express

properties of and relationships between objects, to make re-
peated references to objects and it provides a limited form
of universal quantification. The resulting language of de-
feasible rules follows standard logical (Herbrand-style) ap-
proaches and will still be essentially propositional (Schulz
2002; Lierler and Lifschitz 2013) and thus still effectively
decidable by the same bounds established earlier.
Syntax Let V = {x0, x1, x2, . . .} be a countable set of
first-order variables and C be a finite set of constants,
that is, null-ary function symbols. For a finite first-order
predicate signature Π = {p1/k1, . . . , pn/kn} (where pi/ki
denotes that pi is a predicate with arity ki), the set of
all atoms over Π, V and C is atoms(Π,V ∪ C) =
{p(t1, . . . , tk) | p/k ∈ Π and t1, . . . , tk ∈ V ∪ C}. A defea-
sible theory with variables is of the form T = (P,S,D)
where P ⊆ atoms(Π,V ∪ C) and (as usual) S and D are
sets of (strict and defeasible, respectively) rules over literals
LP . In particular, rules can mention variables.
Semantics The semantics of defeasible theories with vari-
ables is defined via ground instantiation. A ground sub-
stitution is a function γ : V → C. Applying a ground sub-
stitution γ to a rule works via its homomorphic contin-
uation γ̃: γ̃((B, h)) = ({γ̃(b) | b ∈ B} , γ̃(h)), where for
P/n ∈ Π we have γ̃(P (t1, . . . , tn)) = P (γ̃(t1), . . . , γ̃(tn))
with γ̃(c) = c for all c ∈ C and γ̃(v) = γ(v) for all
v ∈ V . The grounding of a defeasible theory with variables
T = (atoms(Π,V, C),S,D) has a vocabulary of all ground
atoms and contains all ground instances of its rules:

ground(T ) = (atoms(Π, C), ground(S), ground(D))

ground(R) = {γ(r) | r ∈ R, γ : V → C}

A set M ⊆ Latoms(Π,C) is a stable set for a defeasible theory
with variables T iff M is a stable set of ground(T ).

We illustrate the language with our running example.

Example 1 (Continued). The text on the gunman mystery
from earlier leads to this defeasible theory with variables:

Π = {person/1, reliable/1, has/2}
C = {jones, paul , jacob, gunman,moustache}
T = (atoms(Π,V, C),S,D)

S = {→ person(jones),→ person(paul),→ person(jacob),

reliable(jones) → has(gunman,moustache),

reliable(paul) → ¬reliable(jones),
reliable(jacob) → reliable(jones)}

D = {person(x1) ⇒ reliable(x1)}

This defeasible theory has two stable sets:

M1 = M ∪ {reliable(jacob), reliable(jones),
has(gunman,moustache)} and

M2 = M ∪ {reliable(paul),¬reliable(jones)}, with
M = {person(jones), person(paul), person(jacob)}.

Thus our stable-set semantics makes a choice whether Jacob
is reliable or Paul is reliable, avoiding inconsistency. �
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Three Senses of “Argument”

Wyner et al. (2015) provided an analysis of the different ter-
minological meanings of the word “argument” and how the
term is used in instantiated abstract argumentation. In their
view, there are three distinct (although related) meanings of
“argument”: (i) a one-step reason for a claim (also called
argument in this paper), (ii) a chain of reasoning leading to-
wards a claim (a case), (iii) reasons for and against a claim
(a debate). Wyner et al. (2015) then went on to define an
AF-based approach for dealing with problems that they ob-
served to result from conflating the three senses in existing
work. Although technically their approach falls short of sat-
isfying all our needs, we nevertheless agree with their initial
analysis. In what follows, we show how the three different
senses of “argument” according to Wyner et al. (2015) ap-
pear as distinct entities in the approach of this paper.

Definition 4. Let T = (P,S,D) be a defeasible theory,
M ⊆ LP be a stable set of T and z ∈ LP be a literal.

• An argument for z from M is a rule (B, z) ∈ S ∪ DM .
• A case for z in M is a derivation for z in (P,S,DM ).
• A debate about z is a pair 〈C+, C−〉 of sets of cases,

where C+ only contains cases for z and C− only contains
cases for z, i.e., cases against z. �

Intuitively, an argument is just an atomic deduction where a
single rule (B, h) of the defeasible theory is used to make
the claim “h holds because all of B hold.” A case involves
a whole chain of reasoning (possibly involving several argu-
ments building on top of one another) that must be grounded
in facts and assumptions, and internally consistent (as wit-
nessed by there being a stable set where the derivation ap-
plies). A debate, in turn, involves several cases that might
originate from different (possibly incompatible) stable sets.

Example 1 (Continued). In Pollock’s moustache example,
the derivation

C1 = {→ person(jones),

person(jones) ⇒ reliable(jones),

reliable(jones) ⇒ has(gunman,moustache)}

is a case for has(gunman,moustache) in M1, and so is

C2 = {→ person(jacob),

person(jacob) ⇒ reliable(jacob),

reliable(jacob) → reliable(jones),

reliable(jones) ⇒ has(gunman,moustache)}

Both of these cases contain (sub-)derivations that are cases
for reliable(jones). We can also construct a case for the op-
posite literal ¬reliable(jones) in M2:

C3 = {→ person(paul),

person(paul) ⇒ reliable(paul),

reliable(paul) → ¬reliable(jones)}

Taking the sub-cases of C1 and C2 for reliable(jones) and
C3 together leads to a debate about reliable(jones). �

For the rule set S = {→ p, p → p}, which is trouble-
some for approaches with nested “arguments”, our defini-
tions above just yields two arguments for p, of which only
one (→ p) leads to a case for p. For Example 2, our definition
would also lead to an exponential number of derivations for
each pn; the important difference to previous approaches is
that we do not explicitly compute on them. Derivations only
become relevant after the semantics is computed.

The senses of argument here are related to, but different
from, arguments in AF analyses of instantiated argumenta-
tion. An argument in Definition 4 is just a rule in ASPIC+,
LBA, or ABA, where arguments require a deduction. A case
in Definition 4 is an argument in these other approaches. A
debate in Definition 4 is a Rebuttal attack in ASPIC+ and
LBA. We have no undercutters since as of yet rules have no
names; however, notionally an undercutter has applied when
a defeasible rule does not appear in an extension.

Obtaining Defeasible Theories from

Controlled Natural Language

In this section, we argue for using a Controlled Natural Lan-
guage (CNL) as an interface to argumentation using direct
semantics, whereby natural language input is subjected to
automatic analysis (parsing, semantic representation), then
reasoned with (direct semantics), and finally output in nat-
ural language. Our proposal is the first to facilitate auto-
matic reasoning from inconsistent knowledge bases in natu-
ral language (Kuhn 2007; Fuchs, Kaljurand, and Kuhn 2008;
Guy and Schwitter 2016). We touch on the main themes.

Argumentation and natural language processing has been
an area of intense, recent research (Lippi and Torroni 2016).
In argument mining, texts are extracted from unstructured
natural language corpora, then mapped to arguments for rea-
soning in Dungian AFs. Machine learning techniques are ap-
plied to identify topics, classify statements as claim or jus-
tification, or relate contrasting statements. However, natu-
ral language is highly complex and diverse in lexicon, syn-
tax, semantics, and pragmatics. Current mining approaches
do not systematically address matters of synonymy, contra-
diction, or deductions, which require fine-grained analysis
into a formal language such as Predicate Logic (also see the
recognizing textual entailment tasks (Androutsopoulos and
Malakasiotis 2010)).

We take a different approach, instead working with a
controlled natural language (CNL) (Kuhn 2014), which re-
stricts the lexicon and grammar as well as disambiguates
sentences. More specifically, we work with Attempto Con-
trolled English (ACE) (Fuchs, Kaljurand, and Kuhn 2008;
Kuhn 2007) (also see RACE (Fuchs, Kaljurand, and Kuhn
2008) and PENG-ASP (Guy and Schwitter 2016)). ACE
translates the input language to machine-readable, First-
order Logic expressions and interfaces with inference en-
gines for model generation and theorem proving. ACE fa-
cilitates an engineered solution to argumentation in NL by
addressing three critical issues. It provides normalised lan-
guage which, in principle, can serve as target expressions
for information extracted by argument mining; thus we can
process arguments and reason in the requisite way. We can
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experimentally control and augment the language input as
needed. ACE gives us an essential experimental interface
with inference engines, enabling testing of different forms
and combinations of transformations from natural language
to a formal language, then the interaction with alternative
inference engines. Finally, a formal, engineered approach
helps to scope and systematically resolve issues.

We used AceRules (Kuhn 2007), a sublanguage of ACE.
We select and briefly comment on AceRules. AceRules
has a range of lexical components: proper names, common
nouns, logical connectives, existential and universal quan-
tifiers, one and two place predicates, and relative clauses.
Construction rules define the admissible sentence structures,
e.g. declarative or conditional sentences. Interpretation rules
disambiguate admissible sentences and constrain their log-
ical analysis, while discourse representation accounts for
pronominal anaphora. There are further lexical elements and
syntactic constructions to use as needed. Verbalisation gen-
erates natural language expressions from the formal repre-
sentations. A range of auxiliary axioms (from ACE) can be
optionally added to treat generic linguistic inferences, e.g.
interpretations of “be”, relations between the plural and the
singular form of nouns, and lexical semantic inferences such
as throw implies move. Domain knowledge must be added as
well into AceRules.

Turning to semantical key issues, AceRules has linguis-
tic expressions for strong negation, negation-as-failure, the
strict conditional, and the adverb ‘usually’ on events. It con-
nects to different inference engines (courteous logic pro-
grams, stable models, and stable models with strong nega-
tion) and allows others, e.g. our direct semantics.6 These
features are sufficient to reason non-monotonically. How-
ever, there are two key problems with AceRules (and shared
with RACE and PENG-ASP): it cannot reason from incon-
sistent knowledge bases (as in the Nixon diamond example),
and it does not incorporate the defeasible conditional. We
have argued that both are essential for argumentation. We
have shown (see Example 1) that a conditional with ‘not
provably not’ is not semantically equivalent to the natural
interpretation of ‘usually 〈conditional〉’ as the defeasible
conditional. To address the first problem, AceRules logical
forms are evaluated with respect to our direct semantics. For
the second problem, we have manually represented ‘usually
〈conditional〉’ as a defeasible conditional.7

As with all CNLs, care must be taken to input statements
in AceRules since they must comply with the language con-
ventions. Terminology may need to be introduced. Informa-
tion that might be presupposed in natural language must be
made explicit. Importantly, one must check that the output
semantic representations conform to the intended meaning,
and where not, create a paraphrase that yields the intended
meaning. For Example 1, we have explicitly stated There is a

6RACE and PENG-ASP have the same expressions (Fuchs,
Kaljurand, and Kuhn 2008; Guy and Schwitter 2016). RACE is
based on Satchmo (written in Prolog), while PENG-ASP uses ASP.

7An integration to AceRules is feasible; see, in a related setting,
If Nixon is a quaker then Nixon usually is a pacifist. in https://
argument-pipeline.herokuapp.com/, which is based on (Wyner et
al. 2015).

gunman, which might be presupposed. Furthermore, “a per-
son” in Usually, a person is reliable is generic; to conform
to AceRules and our adaption of defeasible rules, this is ren-
dered as Usually, if someone X is a person then X is reliable.
Otherwise, we can input the example sentences to AceRules,
which parses and represents them, processes them through
the direct semantics, and verbalises the result as intended.
AceRules has been sufficient for inputting several standard
examples from the argumentation literature – Tweety, Nixon,
or Tandem – and receiving the correct direct semantic out-
puts. This thereby delivers a proof of concept.

Discussion and Future Work
We introduced and analysed a direct semantics for defeasi-
ble theories (with variables), and tied this semantics to input
(text) and output (verbalisation) in natural language.

Although we argue for our approach from first princi-
ples, several of its elements have precursors in the liter-
ature. For one, (Dung and Son 2001) define “defeasible
derivations” (which need not be minimal but are otherwise
just like our derivations) and a (stable) extension seman-
tics without explicit argument construction (which is simi-
lar to the stable set semantics of our approach). Moreover,
Amgoud and Besnard (2013) have a notion that is simi-
lar to our semantics: for a stable set M , they would call
(P,S,DM ) an “option” of T . Finally, our notion of deriva-
tion is similar to what Craven and Toni (2016) would call a
“focussed, rule-minimal argument graph”. In slightly more
distant related work, Denecker, Brewka, and Strass (2015)
introduced a general theory of justifications, where there are
also rules involving literals; they however do not have a nat-
ural language interface and a decidedly more philosophi-
cal/mathematical motivation. For example, they allow infi-
nite justifications, which is not immediately useful for our
setting. A more argumentation-oriented approach is that by
Schulz and Toni (2016), who provide tree-shaped justifica-
tions for why literals are elements of answer sets of a given
logic program, albeit they do not deal with natural language.

Another approach to avoiding inconsistency in ASP
formalisations of “usually, P s are Qs” are consistency-
restoring rules (Balduccini and Gelfond 2003). Since those
rules have to be added to the program, that approach is some-
what orthogonal to ours, where the semantics disregards
some of the specified defeasible rules to obtain consistency.

For future work, our approach could be extended to deal
with inconsistencies that arise purely among strict rules by
identifying minimal inconsistent rule-subsets and “down-
grading” the strict rules therein to defeasible rules. An ex-
treme form of this ‘downgrading’ happens in the approach
of Besnard and Hunter (2009), where all elements of a given
(possibly inconsistent) knowledge base are considered de-
feasible (as an analogue of closure need not hold for them).

Another major point of future work is extending the se-
mantics for priorities among defeasible rules, for example
by using ideas from preferred subtheories (Brewka 1989).
Clearly, the resulting semantics should satisfy the rational-
ity postulates of Dung (2016). A major area of future work
is the overall pipeline passing through natural language, for-
mal representation, argument semantics, and verbalisation.
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