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Abstract

Goal Recognition Design (GRD) is the problem of design-
ing a domain in a way that will allow easy identification of
agents’ goals. This paper extends the original GRD problem
to domains that are described using hierarchical plans (GRD-
PL), and defines the Plan Recognition Design (PRD) prob-
lem which is the task of designing a domain using plan li-
braries in order to facilitate fast identification of an agent’s
plan. While GRD can help to explain faster which goal the
agent is trying to achieve, PRD can help in faster understand-
ing of how the agent is going to achieve its goal. Building
on the GRD paradigm, we define for each of these two new
problems (GRD-PL and PRD) a measure that quantifies the
worst-case distinctiveness of a given planning domain. Then,
we study the relation between these measures, showing that
the worst case distinctiveness of GRD-PL is a lower bound to
the worst case plan distinctiveness of PRD, and that they are
equal under certain conditions. Methods for computing each
of these measures are presented, and we evaluate these meth-
ods in three known hierarchical planning domains from the
literature. Results show that in many cases, solving the sim-
pler problem of GRD-PL provides an optimal solution for the
PRD problem as well.

Introduction

Goal Recognition is the problem of inferring an agent’s goal
from observations given a domain description (Winikoff et
al. 2002; Sukthankar et al. 2014b; Ramırez and Geffner
2009). Keren et al. (2014) define Goal Recognition Design
(GRD) as the problem of building a domain in a way that
will minimize the number of observations needed to recog-
nize an agent’s goal. They introduce a worst-case distinc-
tiveness (wcd) measure that is an upper bound on the num-
ber of observations needed to solve the GRD problem for a
given domain, and showed how to compute this measure in
domains based on the STRIPS representations.

An alternative representation for a planning domain is
plan libraries (Wiseman and Shieber 2014; Kabanza et al.
2013; Blaylock and Allen 2006) which describe agents’ ac-
tivities as hierarchies of basic and complex actions. Plan li-
braries provide a rich domain representation but require the
GRD task to explicitly reason about the hierarchical struc-
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ture during domain design. To this end, the paper makes the
following contributions:

First, it extends the GRD problem to domains represented
using plan libraries (GRD-PL). We adapt the wcd compu-
tation to reasoning about hierarchical plans, and how to
change a given domain in a way that will minimize its
wcd without restricting the agent from reaching its possible
goals. In this case, the wcd is computed using a search tree
which finds the longest sequence of actions that the acting
agent can perform before revealing its plan.

Second, it defines the Plan Recognition Design (PRD)
problem, which is the task of designing a domain using
plan libraries in order to facilitate fast identification of an
agent’s plan. In this case, identifying an agent’s plan re-
quires to infer the complete hierarchy of activities the agent
is doing, not just its goal. Consider the case where a foot-
ball player needs to decide about the strategy of a team-
mate. The goal of the teammate can be to attack or to de-
fend, but there are various ways to execute each strategy.
In order to help, the player must know the complete strat-
egy of the teammate rather than just the goal: it is insuffi-
cient to know that the teammate is going to attack the goal;
the player needs to know from which direction the team-
mate plans to attack, whether there will be a pass in this
attack and when. All this information is part of the plan in
the teammate’s mind, and the player needs to infer it from
observing the teammate. This is called the Plan Recogni-
tion problem, which is more challenging than the equiva-
lent Goal Recognition problem (Sukthankar et al. 2014a;
Blaylock and Allen 2006).

The paper formally defines PRD as the problem of min-
imizing the number of actions required to observe before
unambiguously identifying the agent’s plan. While GRD
can help to explain faster which goal the agent is trying to
achieve, PRD can help in faster understanding of how the
agent is going to achieve its goal, allowing a deeper under-
standing of its activities which is crucial in providing assis-
tance. For example, a tutor can guide a student’s interaction
in an educational software after it understands the student’s
intended solution strategy.

The paper defines a new measure, called worst-case plan
distinctiveness, wcpd, which is analogous to the wcd mea-
sure in the GRD setting, and presents the longest sequence of
observations that are required to recognize the agent’s plan
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Input Output Metric Meaning of Metric

GRD STRIPS domain
A list of goals

STRIPS domain
with less actions wcd How many observations we need to see

before we know the goal of the agent?

GRD-PL Grammar-based plan library
A list of goals

Plan Library
with less rules wcd How many observations we need to see

before we know the goal of the agent?

PRD Grammar-based plan library
A list of goals

Plan Library
with less rules wcpd How many observations we need to see

before we know the full plan of the agent?

Table 1: The scope of the paper is GRD-PL and PRD.

given a domain. We provide means of computing and mini-
mizing the wcpd measure and formalize the relationship be-
tween wcd and wcpd. Specifically, we show that the wcd in
the GRD-PL setting is a lower bound of the wcpd measure in
the PRD setting and define the conditions under which they
are equal. In particular, in some cases, solving a GRD-PL
problem, which is shown to be easier computationally, can
provide the optimal solution for the PRD problem as well.

The third contribution of this paper is an empirical evalu-
ation of both GRD-PL and PRD paradigms on three known
domains from the literature. We show the value and runtime
of computing the wcd and wcpd in these domains. We show
empirically that in two of the domains, the values of the wcd
measure are always equal to the wcpd measure. This demon-
strates that in practice, many times solving GRD-PL does
provide an optimal solution for the PRD problem as well.

Table 1 summarizes the contributions of this paper.

Related Work

In Keren et al. (2014), the notion of worst-case distinctive-
ness (wcd) was introduced as a measure that assesses the
ease of performing goal recognition within an environment.
The wcd of a problem is the maximal length of a prefix of
an optimal path an agent may take within a system before
it becomes clear at which goal it is aiming. The objective
in GRD is then to minimize the wcd without constraining
the actor from achieving all goals. Later works by Keren et
al. improved these approaches to account for non-optimal
agents (2015) and non-observable actions (2016a).

Wayllace et al. (2016) defined GRD with stochastic agent
action outcomes and Son et al. (2015) presented an approach
to solving GRD using Answer Set Programming (ASP). An-
other recent work extends GRD to discuss partially observ-
able environments, where the observer has partial observ-
ability of the agent’s actions, while the agent is assumed
to have full observability of its environment (Keren et al.
2016b). All these works assume a domain representation
based on STRIPS and were not applied to hierarchical plans.

Another possible representation which allows hierarchi-
cal plans is grammar-based plan-libraries. The problem of
grammar-based domain design was known for a long time.
For context-free grammars, the metric LL(k) is used to de-
scribe how many tokens of look-ahead are needed for a
left linear parser without backtracking (e.g. until all am-
biguity can be solved) (Rosenkrantz and Stearns 1969;
Aho et al. 1975). However, these works discuss parsers of
context-free grammars for compilation, without actual de-
sign of the grammars. Moreover, these works were not ap-

plied in the context of goal and plan recognition, where
grammars are not necessarily context-free due to possible
interleaving of actions.

A recent technical report (Ramirez and Geffner 2016)
suggested an approach to compile plan libraries into a
STRIPS problem representation. However, the compilation
process is not without cost - the outputted problems are sig-
nificantly larger than the original plan libraries (e.g. a plan
library with 85 nodes becomes a STRIPS problem with 800
actions. A plan library with 251 nodes becomes a STRIPS
problem with over 10,000 actions). The original GRD com-
pilation was presented for domains with 8 to 920 grounded
actions, and did not always manage to finish the reduction
process for the larger domains. Thus, using GRD-PL and
PRD to optimize plan libraries is a faster process than com-
piling the domain to STRIPS and using GRD on the out-
putted domain. Moreover, it is sometimes the case that plan
libraries are chosen due to their descriptive representation
(e.g., to visualize the hierarchical nature of the agent’s ac-
tivities). In such cases, even if the compilation to STRIPS is
feasible, there is still a preference to use plan libraries.

Definitions

We define a plan library in the standard way it is defined
in the plan recognition literature (Geib and Goldman 2009;
Kabanza et al. 2010; Mirsky and Gal 2016)
Definition 1 A plan library is a tuple L = 〈B,C,G,R〉,
where B is a finite set of basic actions, C is a finite set of
complex actions, G ⊆ C the possible goals and R is a set of
rules of the form c → τ | O, where c ∈ C, τ is a string from
(B ∩ C)∗ and O = {(i, j) | ci ≺ cj} where ci, cj refer to
the i-th and j-th actions in τ respectively.

Intuitively, B represents all of the atomically observable
actions an agent can execute, C represents more complex
or abstract actions with G as the goals the agent can try to
achieve and each r ∈ R represents how a complex action
from C can decompose to a sequence of other actions. For
ci, cj ∈ τ , we say that ci ≺ cj if there exists an ordering
constraint (i < j) ∈ O.

Throughout the following sections, we will use a running
example to exemplify the terminology:
B = {run, block, kick}.
C = G = {Defend,Attack}.
R is a set with the following rules:

• Defend → (run, block) | O = {(1, 2)}.
• Attack → (run, kick) | φ.
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Figure 1: Two plans which can be constructed using the
given plan library.

• Attack → (block, kick) | O = {(1, 2)}.

This example is inspired by the soccer example used
in several works from the plan recognition literature
(Avrahami-Zilberbrand and Kaminka 2005; Tambe et al.
1999; Kitano et al. 1998), an agent can either execute a de-
fense or an attack. The basic actions that can be observed
are run, block and kick. Notice that the rule for execut-
ing a defense plan has a constraint over the order by which
the actions can be performed – the agent must first run and
only then block, and not vice versa. There are also two rules
which represent two different ways to perform an attack -
one is by running and kicking (in either order) and the other
is by blocking and then kicking the ball.

A plan is a labeled tree p = (V,E,L), where V and E are
the nodes and edges of the tree, respectively, representing the
actions and their decomposition from the goal to the observ-
able actions and L is a labeling function L : V → B ∪ C
mapping every node in the tree to either a basic or a com-
plex action in the plan library. The root note is called the
goal of the plan and is labeled with a complex action from
G. Each inner node is labeled with a complex action such
that its children nodes are a decomposition of its complex
action into constituent actions according to one of the rules.
The set of all leaves of a plan p is denoted by leaves(p). The
notation ci ≺ cj is used to denote a pair of leaves ci and cj
of a plan p where ci must be performed before cj . This oc-
curs if there is such an ordering constraint in the rules used
to create each node in the paths in p from the goal to ci and
cj . Given a set of plans G, we define Plans(gi) to be the set
of all plans in G with the root goal gi and Goal(pi) to be the
root goal of some plan pi in G.

Figure 1 shows two plans. Plan p1 is a plan which repre-
sents how a Defend goal can be achieved – by performing
two actions of run, block. Plan p2 represents one way of
how an Attack goal can be achieved – by performing two
actions of run, kick

An observation sequence is an ordered set of basic ac-
tions that represents actions carried out by the observed
agent. A plan p describes an observation sequence O iff
every observation is mapped to a leaf in the tree in an or-
der that does not collide with the ordering constraints of
the plan. More formally, a plan p = (V,E,L) describes
an observation sequence O iff there exists a partial function
f : O → leaves(p)∩B such that ∀o ∈ O ∃v ∈ V f(o) = v,
and ∀oi, oj ∈ O oi < oj → ¬(f(oj) ≺ f(oi)). The last
condition is needed to enforce the ordering constraints. Note

that according to this definition, not all leaves of the plan
are mapped to observations, meaning that a plan describes
all observation sequences that can be mapped to its leaves
and all of their prefixes. For each plan p we define OBS(p)
as the set of observation sequences such that each observa-
tions sequence in this set (1) is described by p, and (2) is
not a prefix of a different observation sequence in OBS(p).
To illustrate, Figure 1 shows two plans based on the exam-
ple plan library. Plan p1 describes the observation sequence
〈run, block〉, the only sequence in OBS(p1). For the sec-
ond plan OBS(p2) = {〈run, kick〉, 〈kick, run〉} since in
an attack plan, run and kick can be performed in any order.

GRD with Plan Libraries (GRD-PL)

Keren et al. (2014) defined the wcd measure for any two
goals g, g′ as the longest sequence of observations required
to observe before there is no ambiguity regarding which
of the goals the acting agents is pursuing. The original
GRD was defined using STRIPS for the domain descrip-
tion PD = 〈F, I, A〉, where F are the fluents, I ⊆ F is
the initial state and A are the actions. For such a domain,
wcd(P ) = maxg,g′∈Gwcd(g, g

′).

Definition 2 The Goal Recognition Design (GRD) problem
is defined as a tuple D = 〈PD, GD〉 ∀g ∈ GD, g ⊆ F is a
set of possible goals. The output of a GRD problem is P ′

D =
〈F, I, A′〉 such that A′ ⊆ A and for all other domains P ′′

D
that reduce the number of actions in A and the set of goals
GD, it holds that wcd(P ′

D) ≤ wcd(P ′′
D) without restricting

the agent from achieving any of the goals in GD.

We extend the GRD problem to deal with hierarchical plan
libraries as follows:

Definition 3 Goal Recognition Design (GRD-PL) is defined
as a tuple D = 〈PD, GD〉, where PD is a planning domain
represented by a plan library PD = 〈B,C,G,R〉 and GD

is a set of possible goals such that GD = G. The output of a
GRD-PL problem is P ′

D = 〈B,C,G,R′〉 such that R′ ⊆ R,
∀P ′′

D ⊆ PD wcd(P ′
D) ≤ wcd(P ′′

D), and every goal in GD

is achievable in P ′
D.

In our example plan library, the wcd between the goals
in the plans in Figure 1 is 1. To illustrate, suppose that the
first observation is run. In this case both plans p1 and p2 are
still possible, so run cannot be used to distinguish between
the goals Attack and Defend. Any observation sequence
of size 2 or more can be used to distinguish the goal of the
agent. We therefore have wcd(Attack,Defend) = 1 and
similarly wcd of the example PL is 1.

Finding the wcd in GRD-PL

The challenge of GRD-PL is in finding the wcd for a given
domain. To this end, we propose to construct plans top-down
for each goal until we reach a point where the observation
sequences that can be described by each goal is unique. For
a GRD-PL problem 〈PD, GD〉, we define a set of plans at
iteration i,Pi.

P0 is a set containing one plan per goal, where each plan
has only one node, the root node, labeled with a unique goal
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Algorithm 1: Calculating wcd

Input: PL: the complete plan library
Output: wcd: the length of the longest non-distinct

sequence in PL
1 wcd ← 0
2 # OPEN is the current set of plans
3 OPEN ← {g | g ∈ G}
4 # Distinct is described in Algorithm 2
5 while !Distinct(OPEN) do
6 newOpen ← ∅
7 p ← OPEN.pop()
8 rules ← pl.rules()
9 for r ∈ rules s.t. r = c → τ |O do

10 if c ∈ leftmost(p) then
11 p′ ← p.extend(c)

newOpen ← newOpen ∩ {p′}
12 # To avoid losing completed plans
13 if p.isComplete() then
14 newOpen ← newOpen ∩ {p′}
15 OPEN ← newOpen

16 return wcd

from GD. For each plan p ∈ Pi, we will create a plan p′ ∈
Pi+1 for each possible rule that can extend p to p′.

To decide the set of possible rules that can be used to ex-
pand each plan, we use the leftmost child definition (Geib
and Goldman 2009). For a node n representing a plan p, the
node c is a leftmost child of p if:

• c ∈ leaves(p).

• There exists a rule r ∈ R such that r = l → τ | O where
c ∈ τ .

• In O, there is no other child that precedes l and was not
already expanded.

Given a plan p, we can expand p using a rule r iff the plan
p has a leftmost child c and r = c → τ | O. This process
guarantees a sound and complete process to expand the plan
over possible rules (Geib and Goldman 2009).

The final iteration n is the one where the set of plans Pn is
distinctive, meaning if it is possible to unambiguously rec-
ognize each goal in GD from the observations that are de-
scribed by the plans in Pn In this case we say that the goals
in GD are distinct from each other. Formally, ∀g1, g2 ∈
GD, g1 �= g2 → OBS(Plans(g1)) ∩ OBS(Plans(g2)) =
∅.

We now show how to extract the wcd of a plan library
from the set of plans Pi. The wcd of the plan library is the
size of the longest observation sequence described by one of
the plans pi ∈ Pi that is also a prefix of another observation
sequence described by pj ∈ Pi s.t. Goal(pi) �= Goal(pj).
Algorithm 2 computes whether the goals in GD are distinct
and returns the wcd of PD.

From (Keren et al. 2014), Corollary 1 proves that if an
observations sequence O is distinct, then any observation
sequence O′ such that O is a perfix of O is distinct as well.

Algorithm 2: Check Goal Distinction
Input: OPEN : the plans in the current set of plans Pi.
Input: GD: the set of goals in the plan library.
Output: isDistinct: whether the goals are distinct.
Output: wcd: the wcd of the plan library.

1 isDistinct ← True
2 for gi ∈ GD do
3 Pi ← Plans(gi) ∩ OPEN

4 for pi ∈ Pi, pj ∈ Pj do
5 for seqi ∈ OBS(pi), seqj ∈ OBS(pj) do
6 if seqi.contains(seqj) then
7 obsLength ← |seqi|
8 if wcd < obsLength then
9 wcd ← obsLength

10 isDistinct ← False

11 return (isDistinct, wcd)

This corollary can be used to enforce some improvements to
the search process:

Distinctive goals if the set of plans P 1
i = Pi ∩ plans(g1)

is distinct from the plans of all other goals, then we can stop
expanding the plans in P 1

i . This means that if at some iter-
ation i, there is no more ambiguity between the plans of a
goal g1 to the other goals, there will be no such ambiguity
in the future as well and we can stop expanding this goal’s
plans.

Distinctive plans for some iteration i and a set of plans Pi,
if a plan p ∈ Pi is distinct from all other plans, when we can
stop expanding p. This means that all OBS(p) are distinct,
and according to the Corollary, there is no sequence that can
be added to OBS(p) that will make it non-distinct, so we
can stop expanding this plan.

We note that if the grammar contains recursive rules, we
will need to set a recursion bound in order to make sure that
the same rule won’t be used infinitely. This is a common
relaxation of plan libraries (Geib and Goldman 2009; 2011;
Kabanza et al. 2013).

Reducing the wcd in GRD-PL

The search after a minimal set of rules to remove in order
to minimize the wcd in GRD-PL can be done by traversing
over all combinations of rules from the original plan library
to find which combination provides the smallest wcd with-
out restricting the acting agent from achieving each goal.

The stopping conditions are: (1) There are no more rules
that can be removed, meaning all combinations that are re-
movable (without hindering the ability of the acting agent
to reach all goals) were tested; (2) We have reached a plan
library with a wcd of 0.

Removing rules from the plan library will restrict the act-
ing agent, and considering different combinations of rules
can be costly. Therefore we propose an anytime search that
gradually constrains the plan library, so that we first exam-
ine all removals of a single rule, then removals of two rules,
etc. In the empirical section, we show that this anytime al-
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gorithm provides wcd which is close or equal to the optimal
by reducing only 1 rule, in reasonable time.

Plan Recognition Design

Plan Recognition Design (PRD) is the problem of design-
ing a domain in a way that will allow faster recognition of
the plan of an acting agent. While in GRD the design tries
to minimize the number of observations required until there
is no ambiguity regarding the goal of the acting agent, PRD
tries to minimize the number of observations required un-
til there is no ambiguity regarding the complete plan of the
acting agent. We define a new metric, worst case plan dis-
tinctiveness (wcpd), which is defined as the number of ob-
servations we will need to see, in the worst case, until we
know for certain what the agent’s plan is. Formally, for each
two plans p1, p2, we define

Definition 4 wcpd(p1, p2) = max
O∈(OBS(p1)∩OBS(p2))

|O|

We extend this definition to plan libraries, such that the wcpd
of a plan library PD is the maximal wcpd of every pair
of plans that can be generated for goals in PD. Formally,
wcpd(PD) = max

p1,p2∈
⋃

g∈G Plans(g)
wcpd(p1, p2).

The wcpd of the plan library from our running example
is 1, since after observing run there is still ambiguity re-
garding the plan of the agent. Note that an additional obser-
vation (e.g., kick) will unambiguously identify the plan of
the agent. We are now ready to define the new problem of
Plan Recognition Design, which aims to minimize the plan
library’s wcpd.

Definition 5 Plan Recognition Design (PRD) is defined as
a tuple D = 〈PD, LD〉, where PD is a planning domain
represented by a plan library 〈B,C,G,R〉 and LD is a set of
possible plans such that LD =

⋃
g∈G Plans(g). The output

of a PRD problem is P ′
D = 〈B,C,G,R′〉 such that R′ ⊆ R

and ∀P ′′
D ⊆ PD wcpd(P ′

D) ≤ wcpd(P ′′
D).

Next, we study the relation between PRD and GRD, and
compare the costs of computing them.

Lemma 1 The wcd of any two different goals is the maximal
wcpd of the plans that achieve these goals:
wcd(gi, gj) = max

pi∈Plans(gi),pj∈Plans(gj)
wcpd(pi, pj).

Proof : Let Pi = Plans(gi) for i = 1, 2. As-
sume by contradiction to the lemma that there
are plans p1, p2 such that Goal(pi) = gi and
wcpd(p1, p2) > wcd(Goal(p1), Goal(p2)). This
means that there is an observations sequence of length
higher than wcd(Goal(p1), Goal(p2)) that can be
described both by a plan to achieve g1 and a plan
to achieve g2,but this contradicts wcd(g1, g2) =
wcd(Goal(p1), Goal(p2)). Thus, wcd(g1, g2) =
maxp1∈Plans(g1),p1∈Plans(g1)wcpd(p1, p1)�

Theorem 1 For every pair of plans pi, pj , if
Goal(pi) �= Goal(pj), it holds that wcpd(pi, pj) ≤
wcd(Goal(pi), Goal(pj)).

Figure 2: Plans for “Defend” and “Attack”.

Proof : Let p1, p2 be plans such that p1 ∈ Plans(g1)
and p2 ∈ Plans(g2). If g1 �= g2, then ac-
cording to Lemma 1, wcd(Goal(p1), Goal(p2)) =
maxpi∈Plans(g1),pj∈Plans(g2) ≥ wcpd(p1, p2). If g1 = g2,
then wcd(g1, g2) = 0 ≤ wcpd(g1, g2)�

To illustrate, we show that the wcpd of two plans can
be strictly smaller than the wcd of their respective goals.
Such an example is presented in Figure 2, where we assume
that the actions must be fully ordered. Defend and Attack
are two goals from PD, Plans(Defend) = {p1, p2} and
Plans(Attack) = {p3, p4}. Following Lemma 1 and The-
orem 1 we get that:[-0.5em]

wcd(Goal(p1), Goal(p3)) = wcd(Defend,Attack) =

maxpi∈Plans(Defend),pj∈Plans(Attack)wcpd(pi, pj) =

1 > wcpd(p1, p3) = 0 (1)

The discussion so far was about the wcpd of plans assum-
ing that the goals they aim to achieve are different. However,
when we discuss the measures of a complete plan library, we
need to also consider the wcpd of plans that have the same
goal. In such cases, wcpd(p1, p2) might be bigger than zero
while wcd(Goal(p1), Goal(p2)) = 0.

Theorem 2 For every plan library PD it holds that
wcd(PD) ≤ wcpd(PD).

Proof : We prove this by separating all pair of plans into
two groups: the first group G= holds all pairs p1, p2 such
that Goal(p1) = Goal(p2), and the second group G �= con-
tains all pairs of plans with different goals. According to
Definition 4, wcpd(PD) = maxp1,p2∈LD

wcpd(p1, p2) =
maxG∈G=,G �=wcpd(G). For G=, we know that

wcpd(G=) = max〈p1,p2〉∈G=
wcpd(p1, p2)

≥ wcd(Goal(p1), Goal(p2)) = wcd(G=) = 0. (2)

For Gneq , we know that

wcpd(Gneq) = maxpi,pj
wcpd(pi, pj) =

maxpk∈Plans(Goal(pi)),pl∈Plans(Goal(pj))wcpd(pk, pl) =

maxpi,pj∈G2wcd(Goal(pi), Goal(pj)) = wcd(Gneq)�
(3)

863



Calculating the wcpd of a domain can be performed us-
ing the same search tree of the wcd calculation. The only
change will be the stopping condition – where each goal
contains an exclusive set of plans. The wcpd then will be
the longest length of OBS of these plans. The algorithm for
finding the distinctiveness of the current plans in the open
list is described in Algorithm 2.

Reducing the wcpd can also be performed using the same
search tree of the wcd calculation. The change will only be
in the stopping conditions – in this search, we will not stop
even if the wcd is 0, since we might still be able to reduce
the wcpd.

The cost of computing the wcpd of a domain is higher
than the cost of computing its wcd. There are two parts for
this computation - first, the cost of expanding a level in the
search tree; and second, the cost of deciding whether another
level should be expanded.

The first level requires us to produce |G| nodes, one node
per possible goal. Expanding the search tree from the i−1th
level to the ith level, requires us to create child nodes for all
leftmost children from level i−1. For each node n describing
plan p, and for every leftmost child c, we need |r′| edges
from n to its child nodes s.t. r′ ⊆ r | r′ : c → τ | O .
Let τmax be the rule with the longest righthand side, then
if we have k nodes in level i − 1, at the worst case we will
have all possible leaves as leftmost children such that we
will have k · (|τmax| − 1)i−1 · |r| nodes in the ith level. In
total, expanding k levels of the search tree will require us
O(|G| · Σk

i=1(|τmax| − 1)i · |r|i−1).
Next, when we reach a level with k plans, we need to

see if these nodes represent plans which describe a mutually
exclusive sets of observations. Let G1, . . . , Gn be the set of
goals in the plan library, and let P1, . . . , Pn be the number
of different plans for each goal, i.e., Pi is the number of
plans for goal Gi. Denoting X as the cost of checking the
longest observation sequence described by a pair of plans
(Definition 4), then the runtime of computing the longest
observation sequence between different goals for a complete
plan library, denoted Twcd, is Twcd =

∑n−1
i=1

∑n
j=i+1 Pi·Pj ·

X .
Next, we need to combine these two results to show the

complete calculation time of expanding the search tree, with
the distinctiveness check at each level. Together we get a
runtime of O(|G| · Σk

i=1(Twcd · |τmax|)i · |r|i−1).
Since the wcd of a plan library is smaller than or equal

to the wcpd, this result highlights that computing the wcd
can be done faster than computing the wcpd. This advantage
is mainly present when wcpd and wcd are very different.
As we show in the next section, in practice it is sometimes
enough to find a reduction to the wcd, which is easier to
compute, in order to find a solution for the wcpd reduction
as well.

Empirical Evaluation

We evaluate our work in three common domains from
the plan recognition literature. The first is the Monroe, a
disaster management domain (Blaylock and Allen 2005).
The second domain is the Soccer domain from Avrahami-

wcd wcpd wcd time wcpd time
(sec.) (sec.)

Monroe 6 10 0.24 4.0
Soccer 2 2 0.06 0.069

Simulated1 0.82 0.82 7.37 7.33
Simulated2 3.66 3.89 9.71 177.79

Table 2: wcd and wcpd values for all domains (for the sim-
ulated domains, the reported values are averages).

Zilberbrand and Kaminka (2005), which was inspired by the
behavior hierarchies of RoboCup soccer teams (Kitano et al.
1997; Tambe et al. 1999). The third is a simulated domain
generated to evaluate plan recognition algorithms (Geib et
al. 2008; Kabanza et al. 2013; Mirsky et al. 2016). The ben-
efit of the simulated domain is that it allows different con-
figurations to better study the algorithms.

In Monroe, there are 30 basic actions, 40 basic actions, 10
possible goals and 49 rules. The rules are partially ordered,
meaning that a sequence of actions can be executed in sev-
eral orders.

The Soccer domain is relatively small in size and all ac-
tions are fully ordered. It has 7 basic actions, 10 complex
actions, 3 possible goals and 13 rules.

We used two types of simulated domains, named Simu-
lated1 and Simulated2. Both domains included 30 complex
actions, 2 possible goals and 50 rules with partial ordering.
Simulated1 had 100 basic actions, which was similar to the
configuration used in the prior work mentioned above. Sim-
ulated2 had 20 basic actions (a smaller vocabulary) which
made the domain more ambiguous (MacDonald et al. 1994),
as there can be more possible plans for completing each
goal.

The wcd and wcpd values of these domains, and their
computation time, are summarized in Table 2. The values
for the simulated domains are averaged over the 100 gen-
erated instances. As shown in the table, the wcd and wcpd
varied across the different domains, and the value of wcd
was smaller than or equal to the value of wcpd for all do-
mains, consistent with Theorem 2. In addition, the computa-
tion time for wcd was smaller than or equal to the computa-
tion time of wcpd.

In two domains, Soccer and Simulated1, the wcd and
wcpd values, as well as their computation time, were prac-
tically equal. This is consistent with the runtime analysis
shown in Section 11.

In the Monroe domain, the value for the wcpd was sig-
nificantly higher than the value for wcd. We attribute this
fact to the high number of possible plans for achieving the
same goal. To illustrate, there is a possible plan for provid-
ing electricity which includes, or does not include, driving
to get fuel for the generator.

The time required to compute the wcpd for the Simu-
lated2 domain was significantly higher than that for Simu-
lated1, which we attributed to the higher ambiguity of this
domain.

Next, we evaluate the ability to modify the plan library in
the different domains in order to reduce the wcd and wcpd.
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1-Rule All Rules
wcd wcpd Time wcd wcpd Time

Monroe 0 0 7.31 – – –
Soccer 50% 50% 1.26 50% 50% 6.53

Simulated1 82% 82% 720 92% 92% 2,326
Simulated2 49% 51% 2,141 83% 84% 6,580

Table 3: wcd and wcpd reduction.

Table 3 summarizes the percentage of reduction of the wcd
and wcpd values for the following conditions: removing a
single rule, and removing all possible combinations of rules
which represent the upper bound on the reduction potential
of the domain. These results also demonstrate the anytime
capabilities of the search algorithm.

As shown in the table, for the Soccer domain, we were
able to reduce the wcd and wcpd by 50% by removing a
single rule from the plan library. This is the maximal possi-
ble reduction for this domain. For the Simulated1 domain,
we were able to achieve 90% of the possible reduction po-
tential for this domain. For the more ambiguous Simulated2
domain, we were able to realize 60% of the reduction po-
tential for this domain. Interestingly, in the Monroe domain,
the wcd and wcpd values could not be reduced by remov-
ing one rule, as well as removing all combinations of two
to four rules from the plan library (not shown in the table).
There were 49 rules in this domain, hence considering the
removal of all possible 249 combinations was not feasible.

Conclusion

This paper presented two new approaches for plan- and
goal-recognition domain design: Plan Recognition Design
(PRD), is the task of designing a domain using plan libraries
in order to facilitate fast identification of an agent’s plan.
Goal Recognition Design with Plan Libraries (GRD-PL) ex-
tends Goal Recognition Design (Keren et al. 2014) approach
to using plan libraries as a domain representation.

For each of these approaches the paper defines a new mea-
sure – wcd and wcpd respectively – and provides an anytime
algorithm for computing them and optimizing the recogni-
tion domain accordingly. We show that the wcd of GRD-PL
is a lower bound to the wcpd for PRD, and are equal under
certain conditions. Therefore, solving the (simpler) GRD-PL
problem may at times yield an optimal solution for the PRD
problem. We evaluated our approach in three known hierar-
chical planning domains from the literature using the new
measures. Our empirical work provides a novel evaluation
for known plan libraries as well as how plan libraries can
be modified in the different domains in order to reduce their
wcd and wcpd. We showed that in two out of three domains,
the anytime algorithm was able to achieve a significant re-
duction in the wcd and wcpd of the domains in reasonable
time. These results demonstrate the applicability of domain
design for plan and goal recognition.

We are currently extending our work in several directions.
First, removing rules from plan libraries might put heavy re-
strictions on agent’s actions. We are considering other, less
restrictive, manipulations on the domain, such as adding or-
dering constraints on actions. We are also designing heuris-

tics for ordering which rule combinations to consider for re-
moval from the plan libraries.
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