
Rewards Structure in Games:
Learning a Compact Representation for Action Space

Margot Lisa-Jing Yann, Yves Lespérance, Aijun An
York University

4700 Keele St., Toronto, Canada
{lisayan}@cse.yorku.ca

Abstract

Learning approximate payoff functions is important to un-
derstand the dynamics in multi-player interactions. In gen-
eral repeat games, each player’s payoff can be represented
as a combination of all other players’ action choices using
normal forms, which grow exponentially as the number of
action choices increases. Graphical games, however, provide
a compact representation to specify the inter-relations where
one player’s action choice is influenced by its neighbourhood.
In this paper, we present how to learn players’ approximate
payoff functions from normal-form representations, yet also
learn a compact graphical game representation of the inter-
relations among the players. In this normal form representa-
tion, we explore the structural connections of mutual influ-
ence between players’ action choices in game playing. We
formally describe the problem of learning a player influence
network and give a novel reward structure-learning algorithm
for multiagent graphical games, called the Multi-Descendent
Regression Learning Structure Algorithm (MDRLSA). We
evaluate MDRLSA on random graphical games generated in
GAMUT. Experiments show that MDRLSA can efficiently
identify the independence among players and extract the in-
fluence graph accurately. The running time of MDRLSA in-
creases linearly with the number of strategy profiles of a
game. Compared with state-of-the-art graphical game model
learning methods, MDRLSA shows efficiency in terms of
time and accuracy.

Introduction
Computer game playing is an interesting and challenging
area that has important practical applications and also serves
as a key AI testbed (Finnsson 2012; Silver et al. 2016;
Genesereth and Love 2005). Game theory (Shoham and
Leyton-Brown 2009) studies how agents’ strategies affect
game outcomes/rewards. In this paper, we focus on games
from a game-theoretic perspective, but the techniques we
develop should apply to actual game playing in the sense
of computer games. In a game, each player is given a num-
ber of action choices. While playing, players explore their
individual action space combined with other players’ action
choices. Depending on the goal of each player, this action-
choosing process is non-stationary and dynamic. If we keep
a complete and uncompressed representation of a game, as

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

either the number of actions increases, or the number of
the players increases, the number of combinations of ac-
tion choices for a game grows exponentially. However, com-
monly, a player’s action choice is influenced by a subset of
all other players’ choices. Thus, it is practical and efficient
for a player to explore related players’ action spaces, instead
of doing a complete exhaustive search.

Using a compact representation to describe the inter-
dynamics among all the players provides a critical strategy
for global planning during the game. For example, in gen-
eral repeat games, each player’s payoff can be captured in
normal forms. Normal forms are represented as all possible
combinations of action choices with the payoff obtained for
each player. Graphical games (Kearns, Littman, and Singh
2001), however, provide a compact graphical representa-
tion, which represents the inter-relations among the players
(nodes) where a player’s action choice is influenced by its
connected neighbourhood (edges). This compact represen-
tation1 is useful for abstract reasoning, and then utilize stan-
dard methods for general game playing.

The inspiration for this work comes from observation
of rational agents’ common behaviour choice preference.
When a player chooses his action, he looks at other play-
ers’ action choice and varies the choices of his own action,
depending on other players’ joint strategy played, and co-
adapts to other players’ choices. Rationally, a player chooses
an action with a positive impact on his payoff to benefit from
it co-adapting with another players, and avoids actions with
a negative impact. The other players that do not have an im-
pact on his current payoff (called “irrelevant choice”) can
be ignored. Our interest is to identify these irrelevant play-
ers through exploring players’ payoff space, and to create
a compact representation of player interconnection to elim-
inate them from the search space of an individual’s action
choice. Therefore, the ultimate objective is to learn the pay-
off functions for each player. We assume that we can repre-
sent the payoff function (also called “utility function”) us-
ing linear model that combines all the action choices with
associated coefficient parameters. Second, we determine the
inter-connections among players based on the coefficient pa-

1In conclusion, we will discuss a “dual” representation: action-
graph games (Bhat and Leyton-Brown 2004), where nodes are ac-
tions and the edges between nodes express context-specific inter-
dependencies.

The AAAI-17 Workshop on
What's Next for AI in Games?

WS-17-15

1014

rameters. A graphical structure model is learned to com-
pactly represent relationships in a given game. We discuss
this in more details later in the paper.

Our contribution is: 1) to use regression methods to learn
payoff functions efficiently; 2) use the payoff functions to
identify independence among players and further generate a
graphical game structure representation. To our knowledge,
this is the first study to directly learn structures of graphical
games from payoff functions induced using regression mod-
els for normal-form games. We compare our work with a
state-of-art graphical game model learning method and show
that our method performs better in terms of time and accu-
racy. We also show that the running time of our method in-
creases linearly with respect to the number of strategy pro-
files of a game.

Related Work
Much multiagent systems (MAS) learning research has been
performed from both machine learning and game theoretic
perspectives. However, when characterizing a multiagent
system as a multiple players game, little research on how
to abstract structure among players’ actions has been per-
formed.

General game playing (GGP) (Genesereth and Love
2005) research focuses on designing artificial intelligence
programs to play general strategic games successfully based
solely on formal game descriptions, for example, computer
Poker programs, Chess and GO. One bottleneck issue is
the large size of both rewards and action search space.
The search space increases exponentially as the number
of actions increases, as well as the number of players in-
creases. Much research has been done to address searching
in reward/action space, such as branch-and-bound search,
breadth first search and Monte Carlo tree search (Finnsson
2012). On the other hand, GGP drives research to playing
a set of significantly different games, even new games un-
known a priori. Therefore, the main challenge of GGP is
that the agent/player needs to be general enough to learn the
structure of any game, guide the search to relevant states of
the search space, and be able to adapt to a wide variety of
situations in the absence of game-dependent heuristics.

Game theory (Shoham and Leyton-Brown 2009) gives a
theoretical framework for self-interested player reasoning,
where it requires complete specification of players’ payoff
function. This game information is exploited to compute an
equilibrium of optimal strategies for all players. How long
does it take until rational agents converge to an equilib-
rium? The complexity of the problem of computing a mixed
Nash equilibrium in a game can be high. There are games
in which convergence to such an equilibrium takes pro-
hibitively long. Traditionally, computational problems fall
into two classes: those that have a polynomial-time algo-
rithm, and those that are NP-hard. However, graphical games
have been shown to substantially speed up game-theoretic
equilibria computation or approximation, or other solution
concepts (Daskalakis, Goldberg, and Papadimitriou 2006).

Research has been done in this field to reduce the space
for presentation of normal form games. Using Bayesian net-
works learning methods, Duong et al. (2009) assumes the

inter-connection as causal relations, and learns the graph
structure using a branch-and-bound (BB) learning algo-
rithm. However, as the size of the data set becomes large,
the advantage of BB over the greedy algorithm dissipates,
while its computation time increases considerably. Vorob-
eychik, Wellman, and Singh (2007) addressed approxima-
tion payoff-function learning in normal-form games. How-
ever, further difficulties are introduced by intractably large
strategy sets. We seek to identify the full game with real-
value strategies and payoff information available only in the
form of data from a given sample of strategy profiles. We
not only address payoff-function learning as a standard re-
gression problem, but also provide for capturing structure in
the multiagent environment. In this paper, we present how to
learn a graphical games representation to describe the inter-
relations among the players from payoff given in a normal
form presentation.

Preliminaries
In this paper, we focus on one-stage games, where each
player chooses an action simultaneously and is then re-
warded with a payoff, and the game ends. This single-shot
game representation is quite general since strategies can be
arbitrary histories of past play. For any multi-stage game
(also called “extensive-form games”), it may be converted
to a one-stage game with strategy sets for actions of all pos-
sible histories of play.

Notions
A generic normal-form game is formally expressed as [I,
(xi),yi(s)], where I refers to the set of players and np = |I|
is the number of players. x is the set of pure strategies
(actions) available to player i ∈ I . The utility function,
yi(s) : x1 · · ·xnp

→ R defines the payoff of player i when
players jointly play x = (x1, · · · , xnp

), where each player’s
strategy (action) xi is selected from its strategy set, Xi.
Definition 1. For every player i, i ∈ I , a strategy profile
x = (x1, · · · , xnp

) is a pure Nash Equilibrium of game
[I, (xi),yi(s)], if for any available strategy, x′i ∈ Xi,

yi(xi, x−i) ≥ yi(x
′
i, x−i).

where, xi is i’s strategy, and the rest of the players’ joint
strategy is denoted as x−i.

Graphical Games
Graphical games (Kearns, Littman, and Singh 2001) are a
representation of multiplayer games to capture direct influ-
ence among players. A graphical game is described as an
undirected graph G in which players are represented as ver-
tices, and each edge identifies influence between two ver-
tices. In natural settings, a player, represented as vertex v,
has payoffs that are specified in terms of the action of vertex
v and that of neighbours of v who have influence over vertex
v. Each player’s payoff is given by a matrix with all combi-
nations of players’ action choices using normal form repre-
sentation. However, each player is influenced by its neigh-
bours, which normally consist of some of the players in the
game. In other words, a player’s neighbour set is a subset of

1015

the complete player set. Rather than describing a game using
the normal form (i.e. by way of a matrix), a graphical struc-
ture gives a direct and visual representation of the relation-
ships among all the players. Graphical games are a suitable
representation when sparse strong influences exist, whereas
when there exists a large number of weak influences on each
player, congestion games (Rosenthal 1973) are applicable.

In our research, we tackle the problem of learning a
graphical game representation that captures the relation-
ships among players from a normal-form game. We ran-
domly generate multiplayer graphical games using GAMUT
(Nudelman et al. 2004). GAMUT is a suite of game genera-
tors designed for testing game-theoretic algorithms.

Graphical Game Example
For example, Figure 1 describes a six player random graph-
ical game. In this game, each player has a choice of actions
represented from 1 to 6, and the total connections among
players are represented as 10 reflexive edges (we assume
mutual influential connections which exist among players,
called “reflexive edges”, simply called “edge” in this paper).
Each edge is a randomly selected connection between two
players which determines/influences the payoff received for
each player 2. In order to compare different games, we nor-
malize each game’s payoff between 0 and 1. A strategy set
[2, 2, 1, 1, 1, 1] represents all players’ action choices at one
stage of the game, which indicates that player 1 chooses ac-
tion 2, while player 2 chooses action 2, and players 3, 4, 5
and 6 all choose action 1. These action combinations (also
called a “joint strategy”), gives payoffs for player 1 to player
6 as follows respectively: [0.95, 0.19, 0.34, 0.13, 0.55, 0.77].
In Figure 1, the normal form representation of this 6-player
game states the total number of 46656 (66) action profiles
and the corresponding utilities for each player.

Figure 1: Data sample from a 6-player random graphical
game

In n-player games, assuming that each player has the
same number of a actions, a normal-form representation re-

2If there is not an edge between i and j, it means their payoff
is completely independent (as the payoff has been generated with-
out additional noise.) In real games, it needs to consider a cutoff
threshold in the situation when the dependence is very small.

quires an entries of action profiles to describe multiple play-
ers’ utilities. However, as the number of players n increases,
the action profiles size grows exponentially. Thus, a compact
representation to capture how every player’s action choice
influence others’ utilities is interesting and critical.

Next, we introduce an algorithm for learning a graphical
structure representation of a multiplayer game from its nor-
mal form representation using a multi-gradient descendent
regression model.

Structure Learning Algorithm: MDRLSA
In an action space, not all actions have direct impact on a
given action at a certain stage. Let each node denote a player.
We identify the influence between paired actions as a con-
nection, described as one edge. Knowing the influence be-
tween players’ action choices can provide a compact rep-
resentation for player’s utility function, as well as reduce
the search space for each player’s utility function learn-
ing process. In this paper, we provide a structure learning
algorithm, “Multi-Descendent Regression Learning Struc-
ture Algorithm” (MDRLSA), to extract the action connec-
tions/edges from graphical games.

We are given a set of data points (x,y), each describ-
ing an instance where players choose a pure strategy profile
x and realized value y = (y1, · · · , ynp

). For deterministic
games of complete information, y is simply f(x). We ad-
dress payoff-function learning as a standard regression prob-
lem: selecting a function f̂ to minimize some measure of
deviation from the true payoff function f . The MDRLSA al-
gorithm uses a regression model to learn a player’s utility
function. Our hypothesis is that each player’s utility func-
tion can be represented as a linear function of all players’
individual action choices.

The algorithm proceeds in two steps.
Step 1: given all players’ action profiles as input, define
parameters θ and fit θ to all players’ utility profiles y =
[y1y2 . . . ynp], where np is the total number of players. For
any player k, the hypothesis hθk

(x) to approximate its util-
ity yk is given as the Eq. 1 linear model:

hθk
(x) = θᵀ

kx+ εk (1)
= θ1kx1 + · · ·+ θikxj + · · ·+ θnakxnp∗na + εk

where,

θk =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

θ1k
θ2k

...
θik
...

θnak

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, i ∈ [1, na], j ∈ [1, np ∗ na], k ∈ [1, np].

Here, θᵀ
k is the transpose of θk, for every θik, θik ∈ R; xj

represents a player’s action choice, xj ∈ {0, 1}, where xj =
1 indicates taking action xj and xj = 0 indicates action xj is
not chosen. Variable εk is an unobserved random variable to
add noise to the linear relationship. To simplify the explana-
tion, we assume all np players have the same number of ac-
tion choices, denoted by na. For any player k in a np-player

1016

game, joint strategy of [x1, x2, . . . , xna] describes player 1’s
action profile, and [xna+1, xna+2, . . . , xna+na] represents
player 2’s action profile, and so on. Here, j ∈ [1, np ∗ na],
np × na is the total number of bits used to represent a joint
strategy profile. For example, in a 6-player game, where
each player has 6 action choices, the total number of bits
used to represent a strategy profile is 36. The first 6 bits are
used to represent action choice of player 1, and only 1 bit
can be ‘on’ to show a single action choice of this player. In
Figure , it shows joint strategy x = [x1, x2, . . . , x36] which
includes each player’s action choice towards a1, a2, . . . , a6.

{np player’ action mapping

The objective is to adjust the parameter θk values to ap-
proximate the function value hθk

to the payoff value yk
given all players’ joint strategy profiles. Thus, we define the
cost function J(θk) as the difference in values between the
approximated hθk

and the obtained payoff value yk of any
given player k, see Eq. 2:

J(θk) =
1

2m

m∑
l=1

(
hθk

(x(l))− y
(l)
k

)2

. (2)

Here, m is nna
p , the total count of joint strategy profiles.

We apply multi-gradient descent to achieve the objective of
using linear regression for each player k to minimize the cost
function value J(θk) by adjusting the θik values. In batch
gradient descent, each iteration simultaneously updates θj
for all j in Eq. 3:

θik := θik − α
1

m

m∑
l=1

(
hθk

(x
(l)
k − y

(l)
k)

)
x
(l)
ik . (3)

In this experiment, we randomly initialize the parameters
Θ to 0, the learning rate α to 0.01 and number of iterations
as 400. In order to avoid the model over-fitting or under-
fitting the data, we use Figure 2 to observe the performance
of our hypothetical linear regression model. Figure 2 shows
the cost function J(θk) as each kth player’s utility loss func-
tion is decreasing as the number of iteration increases. This
decrease of the cost function J demonstrates that our linear
model hypothesis stated in Eq. 1 has accurately captured the
function between players’ action choices and their utilities.

However, this batch gradient descent learning is quite
slow, as Eq. 2 is summed over all samples. We can rewrite
the least-squares cost function by replacing the explicit sum
by matrix multiplication, as follows:

J(θk) =
1

2m

(
Xθk − yk

)ᵀ(
Xθk − yk

)
. (4)

Figure 2: Convergence of gradient descent with learning rate
α = 0.01

In order to find where the cost function has a minimum,
we take derivative by θ and set it to 0, as follows:

∂J

∂θk
= XᵀXθk −Xᵀyk = 0. (5)

Thus, when the matrix XᵀX is invertible, we have,

θ̂k = (XᵀX)−1Xᵀyk, (6)

where

yk =

⎡
⎢⎢⎣
y0k
y1k

...
yjk

⎤
⎥⎥⎦ .

θ̂k is the optimal θk that minimizes J(θk). In other words,
in a large number of data entries, m is large, we choose nor-
mal equation Eq. 6 to optimize θ instead of Eq. 3 if the ma-
trix XᵀX is invertible. As we can see, Eq. 6 includes no
loop in the program, and the learning rate α is not required;
the optimal θ̂k is computed directly.

Step 2: We define the influence coefficiency between each
player’s action choice and all possible combination of action
choices, denoted as Θ:

Θ = [θ1 . . .θk . . .θnp].

According to the regression model, the parameter Θ is
learned as the best fit for the payoff functions for all players.
Next, we map the coefficiency into players action influential
relationships based on the given utilities. The guideline is as
follows: for any player p, for any move by p and all other
players other than q, if the payoff obtained by p from the
joint strategy by any choice of q, differs little between the
best move of q and the worst move of q, then we note player
p and q do not have an influential relationship between them;
otherwise, an influential edge exists between player p and q.
This independence between p and q also corresponds to co-
efficiency between the two players strategy choices being
constant.

Definition 2. Consider a game [I, (x),y(s)], player p and
q have no influential relationship and are δ-independent, if

1017

for every xp, xp ∈ Xp, and for any available joint strategy
of x−pq,

max
i∈[1,Na]

yp(xp, x
i
q, x−pq)− min

j∈[1,Na]
yp(xp, x

j
q, x−pq) ≤ δ

where, Na is the total number of action choice, xp is p’s
strategy with a reward yp, xq is q’s strategy, and the rest of
the players’ joint strategy is denoted as x−pq .

We define an influence graph as a np × np binary matrix
to represent the influential connections among players, as
follows:

graph param(i, j) =

{
0, if i & j are δ-independent;
1, otherwise.

δ is set as a parameter to control the tolerance level of the
influence among players.

Alg. 1 describes the graphical structure learning algorithm
MDRLSA, which extracts the influence graph between play-
ers, i.e. whether they are related or independent. Step 1,
essentially uses Eq. 6 to compute Θ to linearly approxi-
mate payoff functions for all players. Step 2, first initializes
a np × np matrix to an all-ones matrix as graph parame-
ters, to represent full connections among between any two
players; second, in the matrix, for each column player, it
searches all row players, according to Def. 2, to identify the
δ-independent players and set the corresponding value as ‘0’
in the graph parameter matrix. For each row player, we take
the coefficiency of this player’s learned payoff function, if
for all of the row player’s strategies combined with all other
players’ joint strategy provides a utility for the given col-
umn player that differs within δ, we identify this row player
as having no influence (‘δ-independence’) on this column
player. We repeat this until every pair of players has been
checked.

Emperical Evaluation
We implemented the Multi-Descendent Regression Learn-
ing Structure Algorithm (MDRLSA) in Matlab, which com-
putes a graphical structure representation of players actions’
influence for multiagent graphical games.

Experimental Results
Taking one random graphical game with six players, six ac-
tions and ten influence edges as an example, the influence
graph learned among the players is shown in the following
matrix:

graph param =

⎛
⎜⎜⎜⎜⎜⎝

player 1 2 3 4 5 6

1 1 1 0 1 1 0
2 1 1 0 1 1 1
3 0 0 1 1 1 0
4 1 1 1 1 1 1
5 1 1 1 1 1 0
6 0 1 0 1 0 1

⎞
⎟⎟⎟⎟⎟⎠

(7)

Figure 3 illustrates the conversion of Eq. 7 into a graph
representation.

From the graph in Figure 3, we can produce utility func-
tions for this 6-player game, shown in Eq.8. fpi

represents

Algorithm 1: MDRLSA
Data: X := action profile; // read game file;
U := utility profile;
δ := 0.00001 // set δ to a very small value;

Result: Θ, E, graph param;
// coefficiency data, estimated error, influence graph

parameters;
begin

Step 1: Use Regression Model to Learn Payoff
Functions: compute Θ ;

Initialize: Θ = [];
for each player i do

y = U(:, i); // get player i’s payoff: ith column;
// notation: U(:,i) takes the vector of the ith column

from the matrix U; similarly to others;
Θ = [Θ, normalEqn(X, y)];

// Compute Θ according to Eq. 6;
end
Step 2: Convert to Graphical Representation: map

coefficiency Θ into the graph connections;
Initialize:
data := Θ(1:end,:);

// all players’ coefficiency excluding modelled noise;
[m,n] := size(data); // n is number of player;
graph param := ones(n,n);

// initial graph parameter matrix to all connected;
temp coef := zeros(n,n); // initial a temporary matrix;
for each column player i do

a := data(:,i);
// take the vector of the ith column: player i’s data

for each row player j do
index = (j-1)*(m/n);

// get the index for player j’s action choice in
player i’s data;
temp = a((index+1):(index+n));

// extract all data reflecting i and j’s joint
strategy combinations;
player coef max = max(temp);

// find the max;
player coef min = min(temp);

// find the min;
temp coef(j,i) = player coef max −

player coef min;
// compute the difference of j’s action choices of
max and min to player i;
if temp coef(j,i) ≤ δ then

// all action choices of jth row player’s
influence on ith column player less than δ;
graph param(j,i) = 0;

// set graph parameter as ‘0’, player i and j
δ-independent;

end
end

end
end

1018

Figure 3: 6 player graphical game structure

the utility function for the ith player. In this 6-player game,
a complete normal-form representation (matrix) includes 66
entries for each player to query in order to make an opti-
mal choice decision. However, according to Eq.8, the com-
plete matrix can be partitioned into smaller matrices. For
example: player 1 requires a matrix of 64 entries; player
6 requires a size of 63 entries. For all 6 players, the total
size of the matrix required to represent the game is 18576
(= 65 ∗ 2+ 64 ∗ 2+ 63 ∗ 2), which is approximately 40% of
the original.

F =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

fp1 = f1(p1, p2, p4, p5);
fp2 = f2(p1, p2, p4, p5, p6);
fp3 = f3(p3, p4, p5);
fp4 = f4(p1, p2, p4, p5, p6);
fp5 = f5(p1, p3, p4, p5);
fp6 = f6(p2, p4, p6);

(8)

Comparing the structure shown in Eq. 7 with the bench-
mark generated by GAMUT, MDRLSA learns an accurate
underlying structure for a 6-player random graphical game.

We tested MDRSLA on a set of random graphical games
with a different number of players, actions and number of
influence edges generated from GAMUT. As we can see in
Table 1, MDRLSA can efficiently identify the independence
among players and extract the influence graph accurately. In
Figure 4, the graphical structural representation learned us-
ing MDRSLA is shown for the given set of random graph-
ical games, a to h. The running time for each game, using
an average of ten runs of MDRLSA, is listed in Table 1. The
program runs in Matlab on Mac OS X, with Processor 2.8
GHz Intel Core i7, Memory 8GB 1067 MHz.

Game Player
Number

Action
Number

Edge
Number

Runtime
(Seconds)

Accuracy
(%)

Normal
Form
Profile
Entries

a. 4 3 3 0.0063 100 81
b. 4 4 4 0.0091 100 256
c. 5 3 5 0.0136 100 243
d. 5 4 6 0.0156 100 1024
e. 5 5 7 0.0193 100 3125
f. 6 4 5 0.0340 100 4096
g. 6 5 8 0.1029 100 15625
h. 6 6 10 0.2999 100 46656

Table 1: MDRLSA performance on random graphical games
experiments

Given the listed random generated graphical games in
the table, the structures learned are shown in Figure 4.
MDRLSA shows robust promising results of learning struc-

ture representation efficiently and effectively in random
graphical games. While the number of strategy profiles
grows exponentially with the number of players or actions,
the runtime increases linearly to the number of strategy pro-
files.

(a) 4 players, 3 ac-
tions, 3 edges

(b) 4 players, 4 ac-
tions, 4 edges

(c) 5 players, 3 ac-
tions, 5 edges

(d) 5 players, 4 ac-
tions, 6 edges

(e) 5 players, 5 ac-
tions, 7 edges

(f) 6 players, 4 ac-
tions, 5 edges

(g) 6 players, 5 ac-
tions, 8 edges

(h) 6 players, 6 ac-
tions, 10 edges

Figure 4: MDRLSA learned graphical structures

Comparison
Duong et al. (2009) give a state-of-art work of structure
learning algorithm for graphical game structure learning.
This approach comes from a game theoretical perspective,
which constructs a loss function and focuses on minimizing
the loss of utility function in strategy choice. However, our
approach comes from a machine learning perspective, and
focuses on revealing the coefficiency between all the action
choices and the outcome utility, directly converting the pay-
off functions to graphical structures. Through the correlated
coefficiency, the relative neighbour influence is identified.
Both approaches are tested on GAMUT generated games.

In terms of structure accuracy of the learning algorithms,
MDRLSA has shown consistent 100% accuracy for any
given random number of influence edges which exist among
players in a game (see Figure 1); Duong et al., (measured ac-
curacy as structural similarity), demonstrated approximately
90% structural similarity when the maximum of 6 edges
is allowed for any player. In terms of the runtime effi-
ciency, without demonstrating this in the same program-
ming languages, we cannot evaluate the runtime efficiency
difference for both methodologies. However, Duong et al.’s
structure learning algorithms (written in Java) have shown

1019

that runtime increases exponentially as the number of con-
straints (maximum number of connections) increases for
each player. It has also shown that the runtime takes ap-
proximately 200 seconds for a maximum of 3 edges al-
lowed for any player, and above 500 seconds for a maxi-
mum of 5 edges allowed for any player. Comparing with
MDRLSA, for a maximum of 5 edges each player, see Fig-
ure 4 (h), runtime is approximately 0.3 seconds (written in
Matlab), which is significantly faster (even though Matlab
has slower performance compared to Java). Furthermore,
comparing both approaches, there are methodological ad-
vantages: MDRLSA is intuitive, straightforward and simple,
and shows efficacy compared with state-of-the-art results.

Concluding Remarks and Future Work

In this paper, we presented and developed a method and
algorithm to identify the structure in a self-interested
multiagent environment. The Multi-Descendent Regression
Learning Structure Algorithm learns a compact represen-
tation among agents’ action influence towards each other.
MDRLSA was tested on a set of randomly generated graph-
ical games generated using GAMUT. Experiments demon-
strate that MDRLSA is suited to various graphical game
applications, and provides promising results. The structure
representation compared with normal form utility matrices
reduces the search space and identifies the mutual action in-
fluence among agents. In fully observable games, MDRLSA
can learn an accurate representation for games where there
are strong influences in individual player payoff.

We believe that MDRLSA can be applied for games with
either a large number of players or a large number of ac-
tions. Our method is useful and practical to achieve some
reduction in the search space, when the expected payoff of
certain actions is only affected if some other player chooses
certain other actions. In future work, we will work to scale
up MDRLSA and extend it to deal with a large number of ac-
tions or a large number of players in computer games where
this abstraction technique is practical. On one hand, we can
adjust the parameter δ to balance the tradeoff between the
amount of computation of a game and approximation. The
larger we set the δ parameter, the coarser the approxima-
tion of the game, but the smaller the number of connec-
tions in the graphical game, resulting in larger computational
gains. On the other hand, we can extend MDRLSA from
graphical games representation to other types of games,
such as action-graph games. Action-graph games (Bhat and
Leyton-Brown 2004; Jiang, Leyton-Brown, and Bhat 2011)
provide a “dual” representation where nodes are actions
and the edges between nodes express context-specific inter-
dependencies of the utilities. The proposed approach could
be applied even for games with small numbers of players,
for example, a two-player game with large numbers of ac-
tions, while still aiming to achieve some reduction in the
search space. Using a learned compact representation, it can
speed up search in the action space and estimate the payoff
for global strategy planning, then utilize standard methods
for game playing.

Acknowledgments
We are grateful for the support from NSERC, and the anony-
mous reviewers for the helpful suggestions.

References
Bhat, N. A. R., and Leyton-Brown, K. 2004. Computing Nash
equilibria of action-graph games. In Proceedings of the 20th Con-
ference on Uncertainty in Artificial Intelligence, UAI ’04, 35–42.
Arlington, Virginia, United States: AUAI Press.
Daskalakis, C.; Goldberg, P. W.; and Papadimitriou, C. H. 2006.
The complexity of computing a Nash equilibrium. In SICOMP,
71–78. ACM Press.
Duong, Q.; Vorobeychik, Y.; Singh, S.; and Wellman, M. P. 2009.
Learning graphical game models. In Proceedings of the 21st In-
ternational Joint Conference on Artificial Intelligence, 116–121.
Morgan Kaufmann.
Finnsson, H. 2012. Generalized Monte-Carlo tree search exten-
sions for general game playing. In Proceedings of the Twenty-Sixth
AAAI Conference on Artificial Intelligence, AAAI’12, 1550–1556.
AAAI Press.
Genesereth, M., and Love, N. 2005. General game playing:
Overview of the AAAI competition. AI Magazine 26:62–72.
Jiang, A. X.; Leyton-Brown, K.; and Bhat, N. A. 2011. Action-
graph games. Games and Economic Behavior 71(1):141–173.
Kearns, M.; Littman, M.; and Singh, S. 2001. Graphical models
for game theory. In Proceedings of the Seventeenth Conference
Annual Conference on Uncertainty in Artificial Intelligence, 253–
260. Morgan Kaufmann.
Nudelman, E.; Wortman, J.; Shoham, Y.; and Leyton-Brown, K.
2004. Run the GAMUT: A comprehensive approach to evaluat-
ing game-theoretic algorithms. In Proceedings of the Third Inter-
national Joint Conference on Autonomous Agents and Multiagent
Systems, AAMAS ’04, 880–887. Washington, DC, USA: IEEE
Computer Society.
Rosenthal, R. W. 1973. A class of games possessing pure-strategy
Nash equilibria. International Journal of Game Theory 2(1):65–67.
Shoham, Y., and Leyton-Brown, K. 2009. Multiagent Systems: Al-
gorithmic, Game-Theoretic, and Logical Foundations. Cambridge
University Press.
Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre, L.; van den
Driessche, G.; Schrittwieser, J.; Antonoglou, I.; Panneershelvam,
V.; Lanctot, M.; Dieleman, S.; Grewe, D.; Nham, J.; Kalchbrenner,
N.; Sutskever, I.; Lillicrap, T.; Leach, M.; Kavukcuoglu, K.; Grae-
pel, T.; and Hassabis, D. 2016. Mastering the game of Go with
deep neural networks and tree search. Nature 529(7587):484–489.
Vorobeychik, Y.; Wellman, M. P.; and Singh, S. 2007. Learning
payoff functions in infinite games. Machine Learning 67(1-2):145–
168.

1020

