
Distributed Hessian-Free Optimization for Deep Neural Network

Xi He
Industrial and Systems Engineering

Lehigh University, USA
xih314@lehigh.edu

Dheevatsa Mudigere
Parallel Computing Lab

Intel Labs, India
dheevatsa.mudigere@intel.com

Mikhail Smelyanskiy
Parallel Computing Lab

Intel Labs, SC
mikhail.smelyanskiy@intel.com

Martin Takáč
Industrial and Systems Engineering

Lehigh University, USA
takac.mt@gmail.com

Abstract

Training deep neural network is a high dimensional and a
highly non-convex optimization problem. In this paper, we re-
visit Hessian-free optimization method for deep networks with
negative curvature direction detection. We also develop its dis-
tributed variant and demonstrate superior scaling potential to
SGD, which allows more efficiently utilizing larger computing
resources thus enabling large models and faster time to obtain
desired solution. We show that these techniques accelerate the
training process for both the standard MNIST dataset and also
the TIMIT speech recognition problem, demonstrating robust
performance with upto an order of magnitude larger batch
sizes. This increased scaling potential is illustrated with near
linear speed-up on upto 32 CPU nodes for a simple 4-layer
network.

Introduction

Deep learning has shown great success in many practi-
cal applications, such as image classification (Krizhevsky,
Sutskever, and Hinton 2012; Simonyan and Zisserman 2014;
He et al. 2015), speech recognition (Hinton et al. 2012;
Seide et al. 2014; Amodei et al. 2015), etc. Stochastic gradi-
ent descent (SGD), as one of the most well-developed method
for training neural network, has been widely used. Besides,
there has been plenty of interests in second-order methods for
training deep networks (Martens 2010). The reasons behind
these interests are multi-fold. At first, it is generally more sub-
stantial to apply weight updates derived from second-order
methods in terms of optimization aspect, meanwhile, it takes
roughly the same time to obtain curvature-vector products
(Kiros 2013) as it takes to compute gradient which make it
possible to use second-order method on large scale model.
Furthermore, computing gradient and curvature information
on large batch (even whole dataset) can be easily distributed
across several nodes. Recent work has also been used to
reveal the significance of identifying and escaping saddle

Copyright © 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

point by second-order method, which helps prevent the dra-
matic deceleration of training speed around the saddle point
(Dauphin et al. 2014).

Line search Newton-CG method (also known as the trun-
cated Newton Method), as one of the practical techniques
to achieve second-order method on high dimensional opti-
mization, has been studied for decades (Nocedal and Wright
2006). Note that Newton-CG method does not require ex-
plicit knowledge of Hessian matrix, and it requires only the
Hessian-vector product for any given vector. One special
case for using Hessian-vector product is to train deep neural
network, also known as Hessian-free optimization, and such
Hessian-free optimization is exactly used in Marten’s HF
(Martens 2010) methods.

It is well known that traditional SGD method is inherently
sequential and becomes very expensive (time-to-train) to ap-
ply on very large data sets. More detail discussion can be
found in (Zhang 2016), wherein Momentum SGD (MSGD)
(Sutskever et al. 2013), ASGD and MVASGD (Polyak and
Juditsky 1992), are considered as alternatives. However, it is
shown that these methods have limited scaling potential, due
to the limited concurrency. However, unlike SGD, Hessian-
free method can be distributed naturally, allow for large mini-
batch sizes (increased parallelism) while improving conver-
gence rate and also the better the quality of solution - we
are therefore motivated to develop a distributed variant of
Hessian-free optimization.

In this paper, we explore the Hessian-free methods to de-
velop more robust and scalable solver for deep learning. We
discuss novel ways to utilize negative curvature information
to accelerate training speed. This is different with original
Marten’s HF, where the negative curvature is ignored by ei-
ther using Gauss-newton Hessian approximation or truncated
Newton method. We perform experimental evaluations on
two datasets without distortions or pre-training: hand written
digits recognition (MNIST) and speech recognition (TIMIT).

Additionally, we explore Hessian-free methods in a dis-
tributed context. Its potential scaling property is discussed,
showcasing scaling potential of distributed Hessian-free

The AAAI-17 Workshop on
Distributed Machine Learning

WS-17-08

485

50 100 150 200 250 300 350 400 450 500

10
−2

10
−1

MNIST, 3 layers

Number of Iteration

O
b

je
c

ti
v
e

 V
a

lu
e

SGD(128)

hess−cg(512)

ggn−cg(512)

hess−bicgstab(512)

10
0

10
1

10
2

10
3

10
−2

10
−1

10
0

MNIST, 3 layers

Effective Passing over Data

O
b

je
c

ti
v

e
 V

a
lu

e

SGD(128)

hess−cg(512)

ggn−cg(512)

hess−bicgstab(512)

10
0

10
2

10
4

10
6

10
−2

10
−1

10
0

MNIST, 3 layers

Number of Communications

O
b

je
c

ti
v

e
 V

a
lu

e

SGD(128)

hess−cg(512)

ggn−cg(512)

hess−bicgstab(512)

Figure 1: Performance comparison among SGD and Hessian-free variants.

method and how it allows taking advantage of more com-
puting resources without being limited by the expensive com-
munication.
Contributions.

• In this paper, we propose an algorithm which outperforms
Newton-CG method. This is achieved by considering
negative curvature information. The algorithm is able to
escape saddle points in a cheaper manner and therefore
have better training performance.

• We evaluate the distributed variant of this second-order
method, showcasing its superior scaling property com-
pared to conventional SGD.

• We compare and analyze different methods both from
algorithmic (convergence) and computing perspectives.
We show in this paper that by using distributed Hessian-
free method, we are able to achieve much better and
stable scaling performance in terms of nodes and size of
mini-batch.

Distributed Hessian-free Optimization

Algorithms

DNN training can be parallelized using the following two
strategies - model parallelism (we split weights across many
computing nodes) and data parallelism (when the data is
partitioned across nodes).
Model Parallelism. In the model parallelism the weights

of network are split across N nodes. In one SGD iteration all
nodes work on the same data but each is responsible only for
some of the features. Hence after each layer they have to syn-
chronize to have the activations needed for the portion of the
model they have for in next layer. For the backward pass they
have to also synchronize after each layer and exchange the
δ’s used to compute gradients. After gradients are computed
they can be applied to weights stored locally.

If a mini-batch of size b is used and the weights for hid-
den layer have dimensions d1 × d2, then each node (if split
equally) will have to store d1×d2

N floats. The total amount of
data exchanged over network for this single layer is d1× b. If
we consider a deeper network with dimensions d1, d2, . . . , dl
then the total number of floats to be exchanged in one epoch
of SGD is approximately 2× n

b × b
∑

i di and total number
of communications (synchronizations) needed per one epoch
is 2× l × n

b .
Data Parallelism. The other natural way how to imple-

ment distributed SGD for DNN is to make a copy of weights
on each node and split the data across N nodes, where each
node owns roughly n/N samples. When a batch of size b is

chosen, on each node only b
N samples are propagated using

forward and backward pass. Then the gradients are reduced
and applied to update weights. We then have to make sure
that after each iteration of SGD all weights are again synchro-
nized. In terms of the amount of data sent over the network,
in each iteration of SGD we have to reduce the gradients and
broadcast them back. Hence amount of data to be send over
the network in one epoch is n

b × log(N) × ∑l
i=1 d0 × di,

where d0 = d is the dimension of the input samples. Total
number of MPI calls per epoch is hence only n

b × 2 which is
considerably smaller then for the model parallelism approach.

Limits of SGD. As it can be seen from the estimates for
amount of communication and the frequency of communica-
tion, choosing large value of b will minimize communication
and for data parallelism also amount of data sent. However, as
it was observed e.g. in (Takáč et al. 2013) that SGD (even for
convex problem) can benefit from mini-batch only for small
batch size b. After increasing b above a critical value b̃, num-
ber of iterations needed to achieve a desired accuracy will
not be decreased much if batch size b > b̃. Quite naturally
this can be observed also for training DNN (Das et al. 2016;
Zhang 2016).
Benefits of Distributed HF. As we will show in fol-

lowing sections, distributed HF needs less synchroniza-
tions/communications per epoch. SGD requires synchroniza-
tion after each update (mini-batch). In distributed HF, one
needs to synchronize only once for gradient computation
and then several times when solving the Newton system e.g.
using Conjugate Gradient (CG) method.

Let us in next Section describe the distributed Hessian-free
algorithm. We assume that the size of the model is not huge
and hence we choose data parallelism paradigm. We assume
that the samples are split equally across K computing nodes
(MPI processes).

Distributed HF Optimization Framework

Within this Hessian-free optimization approach, for the sake
of completeness, we first state the general Hessian-free op-
timization method (Martens 2010) in Algorithm 1. Here
θ ∈ R

N is the parameters of this neural network. At k-th it-
eration, full gradient of error function f(θk) is evaluated and
(approximated) Hessian matrix is defined as H(θk). Based
on this (approximated) Hessian and a proper damping pa-
rameter, which aims to make the damped Hessian matrix Bk

positive definite and/or avoid Bk being singular. Following
this, a quadratic approximation of f around θk is constructed
as

486

Algorithm 1 The Hessian-free optimization method
1: for k = 1, 2, . . . do
2: gk = ∇f(θk)
3: Compute/adjust damping parameter λ
4: Define Bk(d) = H(θk)d+ λd
5: pk = CG-Minimize(Bk,−gk)
6: θk+1 = θk + pk
7: end for

mk(d) := f(θk) + gTk d+
1

2
dTBkd. (1)

If Bk is positive definite, then we can obtain Newton step dk
by letting dk := argmind m(d) = −B−1

k gk. Otherwise, we
solve mind m(d) by CG method and choose the current iter-
ation whenever a negative curvature direction is encountered,
i.e., exist a conjugate direction p, such that pTBkp < 0. If
the negative curvature direction is detected at the very first
CG iteration, the steepest descent direction −gk is selected
as a descent direction.

(Martens 2010) modified Algorithm 1 in several ways to
make it suitable for DNNs. Within neural network, Hessian-
vector can be calculated by a forward-backward pass which
is roughly twice the cost of a gradient evaluation by using
R-operator. On the other side, due to non-convexity of error
function f , Hessian matrix is more likely to be indefinite
and therefore a Gauss-Newton approximated Hessian-matrix
is used. Note that Gauss-Newton is positive semi-definite
matrix but it can be treated as a good approximation when
the current point is close to local minimizer, which also mo-
tivates our work to design a Hybrid approach. Moreover,
pre-conditioning and a CG-backtracking technique is used
to decrease the number of CG iterations and obtain the best
descent direction. However, it is claimed in (Wiesler, Li, and
Xue 2013) that such techniques are not very helpful and even
can lead to degraded performance, increased computing and
storage requirements. Therefore, we skip these steps and
directly move on to our distributed HF algorithm depicted
in Algorithm 2. For example, to calculate full gradient (or
Hessian vector product needed by BI-CG-STAB 1 solver),
each node is responsible for computing the gradient (and Hes-
sian vector products) based on data samples stored locally. A
reduction step is followed to aggregate them to a root node.

Dealing with Negative Curvature

As mentioned in (Dauphin et al. 2014), to minimize a non-
convex error functions over continuous, high dimensional
spaces, one may encounter proliferation of saddle points
which are surrounded by high error plateaus. One shortage
coming from the use of first-order methods like SGD is that
it can not recognize curvature information, and therefore dra-
matically slow down the learning rate around such saddle
points. The saddle-free Newton method (SFN) (Dauphin et

1BI-CG-STAB is a variant of CG which is used to solve indefi-
nite system. The numerical results in this paper are obtained using
Bi-CG-STAB.

Algorithm 2 Distributed Hessian-Free Algorithm
1: Initialization: θ0 (initial weights), λ (initial damping param-

eter), δ0 (starting point for CG solver), N (number of MPI
processes), distributed data

2: for k = 1, 2, . . . do
3: Calculate gradient∇f[i](θk) on each node i = 0, . . . , N−1
4: Reduce∇f[i](θk) to root node to obtain full gradient gk =

1
N

∑N−1
i=0 ∇f[i](θk)

5: Construct stochastic (approximated) Hessian-vector product
operator Gk(v)

• Calculate Hessian-vector product ∇2f[i](θk)v corre-
sponding to one Mini-batch on each node i = 0, . . . , N−
1

• Reduce ∇2f[i](θk)v to root node to obtain Gk(v) =
1
N

∑N−1
i=0 ∇2f[i](θk)v

6: Solve Gk(v) = −gk by BI-CG-STAB method with starting
point 0 or ηδk−1 (η is decay)

7: Use CG solution sk or possible negative curvature direction
dk to find the best descent direction δk

8: Find αk satisfying f(θk + αkδk) ≤ f(θk) + cαkg
T
k δk (c

is a parameter)
9: Update θk+1 = θk + αkδk

10: end for

al. 2014) is then proposed to identify and escape such sad-
dle points. To achieve this, they build an exact Hessian to
accomplish SFN on a small size neural network. However,
this is impractical or even infeasible for medium or large
scaled problems. In this paper, we propose another method
to exploit the local non-convexity of the error function even
for a large size network.

A negative curvature direction at current point θ of func-
tion f is defined as a vector d ∈ R

n/{0}, such that it is
dominant in the negative eigenspace (dTHd < 0), where
g,H are gradient and Hessian of f at point θ. By letting
d̃ = −sgn(gT d)d, where sgn(x) = 1, x ≥ 0; sgn(x) = −1,
we are able to always find a descent direction, since gT d̃ < 0.

Actually, along with those negative directions, the approx-
imated quadratic model is unbounded below, which shows
potential of reduction at such direction (at least locally, while
the quadratic approximation is valid). It was shown in (Oli-
vares, Moguerza, and Prieto 2008) that if algorithms uses
negative curvature directions, it will eventually converge to
second-order critical point.

We are now ready to show an improved method to find a
possible negative curvature by stabilized bi-conjugate gradi-
ent descent (Bi-CG-STAB, Algorithm 3), which is a Krylov
method that can be used to solve unsymmetrical or indefinite
linear system (Saad 2003). The benefits of using Bi-CG-
STAB is that we can use exact stochastic Hessian informa-
tion (which may not be positive definite) instead of using
Gauss-newton approximation, since the later one will lose
the curvature information. It is shown in (Martens 2010) that
HF-CG is unstable and usually fails to convergence. The
reason behind that is a fact that HF-CG ignores negative
curvature. At the point where the Hessian has relative large
amount of negative eigenvalues, it is also inefficient to find a
descent direction by restarting the CG solver and modifying
the damping parameter.

487

1 1.5 2 2.5 3 3.5 4 4.5 5

10
1

10
2

TIMIT, T=18

log
2
(Number of Nodes)

R
u

n
 T

im
e

 p
e

r
It

e
ra

ti
o

n

b=512

b=1024

b=4096

b=8192

1 1.5 2 2.5 3 3.5 4 4.5 5

10
0

10
1

TIMIT, T=18

log
2
(Number of Nodes)

R
u

n
 T

im
e

 p
e

r
O

n
e

 G
ra

d
ie

n
t

b=512

b=1024

b=4096

b=8192

1 1.5 2 2.5 3 3.5 4 4.5 5

10
0

TIMIT, T=18

log
2
(Number of Nodes)

R
u

n
 T

im
e

 p
e

r
O

n
e

 C
G

b=512

b=1024

b=4096

b=8192

1 1.5 2 2.5 3 3.5 4 4.5 5

10
0

10
1

TIMIT, T=18

log
2
(Number of Nodes)

R
u

n
 T

im
e

 p
e

r
O

n
e

 L
in

e
 S

e
a

rc
h

b=512

b=1024

b=4096

b=8192

1 1.5 2 2.5 3 3.5 4 4.5 5

10
0

10
1

10
2

10
3

TIMIT, T=18, b=512

log
2
(Number of Nodes)

R
u

n
 T

im
e

 p
e

r
It

e
ra

ti
o

n

Gradient

CG

Linesearch

1 1.5 2 2.5 3 3.5 4 4.5 5

10
0

10
1

10
2

10
3

TIMIT, T=18, b=1024

log
2
(Number of Nodes)

R
u

n
 T

im
e

 p
e

r
It

e
ra

ti
o

n

Gradient

CG

Linesearch

1 1.5 2 2.5 3 3.5 4 4.5 5

10
0

10
1

10
2

10
3

TIMIT, T=18, b=4096

log
2
(Number of Nodes)

R
u

n
 T

im
e

 p
e

r
It

e
ra

ti
o

n

Gradient

CG

Linesearch

1 1.5 2 2.5 3 3.5 4 4.5 5

10
1

10
2

10
3

TIMIT, T=18, b=8192

log
2
(Number of Nodes)

R
u

n
 T

im
e

 p
e

r
It

e
ra

ti
o

n

Gradient

CG

Linesearch

Figure 2: Performance scaling of different part in distributed HF on upto 32 nodes (1,152 cores).

To use BI-CG-STAB, we set a fixed number of itera-
tions (Kiros 2013) and choose the candidates of descent
direction for CG-backtracking (Martens 2010) by letting
d̃ = −sign(gT d)d. Therefore, at each CG iteration, either a
Newton-type descent direction where d̃THd̃ > 0, gT d̃ < 0
is found or a negative curvature descent direction where
d̃THd̃ < 0, gT d̃ < 0 is found. By combining Amijo line
search (see Algorithm 2), it is guarantee to have monotone
decrease on the objective function value and the saddle point
would be escaped whenever a negative curvature direction is
detected around the saddle plateaus.

Algorithm 3 Bi-CG-STAB Algorithm
1: Compute r0 := b−Ax0. Choose r∗0 such that (r0, r∗0) �=

0
2: p0 := r0, k := 0
3: if Termination condition not satisfied then
4: αj := (rj , r

∗
0)/(Apj , r

∗
0)

5: sj := rj − αjApj
6: γj := (sj , Asj)/(Asj , Asj)
7: xj+1 := xj + αjpj + γjsj
8: rj+1 := sj − γjAsj

9: βj :=
(rj+1,r

∗
0)

(rj ,r∗0)
× αj

γj

10: pj+1 := rj+1 + βj(pj − γjApj)
11: end if

Numerical Experiments

We study the multi-node scalability on the Endeavor clus-
ter. Each Endeavor compute node has two Intel®Xeon™E5-
2697V4 processors (18x2 cores), at a clock speed of 2.3 GHZ
and 128 GB DDR4 memory. We use Intel MPI 5.1.3.181,
and Intel compiler ICC 16.0.2.

We train MNIST (images) and TIMIT (speech) dataset
with various number of hidden layers and hidden units. Note
that we do not do any distortions or pre-training for these
two dataset as we are interested in scaling and stability of the
methods.

Comparison of Distributed SGD and Distributed
Hessian-free Variants. In Figure 1

We train MNIST dataset with one hidden layers of 400
units, with N = 16 MPI processes and compare the perfor-
mance of four algorithms in terms of the objective value vs.
iterations (left), effective passes over data – epochs (mid-
dle) and number of communications (right). Note that for
presentation purposes we count one epoch of SGD as "one it-
eration", even-though it is n/(N×b) iterations. If we look on
the evolution of objective value vs. iterations, all algorithms
looks very comparable, however, if we check the evolution
of objective value vs. epochs, we see that each iteration of
second order method requires multiple epochs (one epoch
for computing full gradient and possibly many more for a
line-search procedure). This can be seen as the trade-off due
larger mini-batch sizes, because of which the number of up-
dates within an epoch (one-pass through all the samples) is
reduced. We currently looking into methods to address this
issue which typical of large-batch second order methods. We
would like to stress, that in a contemporary high performance
clusters each node is usually massively parallel (e.g. in our
case 2.65 Tflops) and communication is usually a bottleneck.
The very last plot in Figure 1 shows the evolution of objec-
tive value with respect to communication. As it is apparent,
SGD needs in order of magnitude more communication (for 1
epoch it needs n/(Nb) communications). However, increas-
ing b would decrease number of communications per epoch,
but it would significantly decrease the convergence speed. We
can also see that SGD got stuck around training error 0.01,
whereas second order methods continues to make significant
additional progress.

In Figure 3 we show how increasing the size of a batch
is accelerating convergence of second order methods. On
contrary, increasing batch size for SGD from b = 64 to
b = 128 (beyond which the SGD-performance largely de-
teriorates). This also implies that increasing batch size to
decrease communication overhead of SGD will slow down
the method. Hybrid-CG is a method that uses Hessian in-
formation and Gauss-Newton information alternatively. At
the beginning, when the starting point may be far away from
local minimizer, we use HF-CG method and whenever a neg-

488

100 200 300 400 500 600 700 800 900 1000

10
−4

10
−3

10
−2

10
−1

10
0

MNIST, 4 layers

Number of iteration

Tr
a

in
 E

rr
o

r

SGD, b=64

SGD, b=128

ggn−cg, b=512

hess−bicgstab, b=512

hess−cg, b=512

hybrid−cg, b=512

100 200 300 400 500 600 700 800 900 1000

10
−4

10
−3

10
−2

10
−1

10
0

MNIST, 4 layers

Number of iteration

Tr
a

in
 E

rr
o

r

SGD, b=64

SGD, b=128

ggn−cg, b=1024

hess−bicgstab, b=1024

hess−cg, b=1024

hybrid−cg, b=1024

100 200 300 400 500 600 700 800 900 1000

10
−4

10
−3

10
−2

10
−1

10
0

MNIST, 4 layers

Number of iteration

Tr
a

in
 E

rr
o

r

SGD, b=64

SGD, b=128

ggn−cg, b=2048

hess−bicgstab, b=2048

hess−cg, b=2048

hybrid−cg, b=2048

10
1

10
2

10
3

10
2

10
3

MNIST, 4 layers

Size of Mini−batch

N
u

m
b

e
r

o
f

It
e

ra
ti
o

n
s

ggn−cg

hess−bicgstab

hess−cg

hybrid−cg

100 200 300 400 500 600 700 800 900 1000

10
−2

10
−1

10
0

MNIST, 4 layers

Number of iteration

Te
st

 E
rr

o
r

SGD, b=64

SGD, b=128

ggn−cg, b=512

hess−bicgstab, b=512

hess−cg, b=512

hybrid−cg, b=512

100 200 300 400 500 600 700 800 900 1000

10
−2

10
−1

10
0

MNIST, 4 layers

Number of iteration

Te
st

 E
rr

o
r

SGD, b=64

SGD, b=128

ggn−cg, b=1024

hess−bicgstab, b=1024

hess−cg, b=1024

hybrid−cg, b=1024

100 200 300 400 500 600 700 800 900 1000

10
−2

10
−1

10
0

MNIST, 4 layers

Number of iteration

Te
st

 E
rr

o
r

SGD, b=64

SGD, b=128

ggn−cg, b=2048

hess−bicgstab, b=2048

hess−cg, b=2048

hybrid−cg, b=2048

Figure 3: Performance comparison among various size of mini-batches on different methods (first 3 plots concern training error
and last 3 plots concern testing error). and number of iterations required to obtain training error 0.02 as a function of batch size
for second order methods. The neural network has two hidden layers with size 400, 150.

ative curvature is encountered, we turn to use Gauss-Newton
Hessian approximation for next iteration, and after this iter-
ation, HF-CG is used again. The intuition behind it is that
we want to use the exact Hessian information as much as
possible but also expected to have a valid descent direction
at each iteration. From Figure 3, we observe that unlike SGD
method, Hessian-free variants (except HF-CG), are able to
make further progress by reducing objective value of error
functions, as well as training error continuously. Meanwhile,
our proposed HF-Bi-CG-STAB outperforms other Hessian-
free variants, which shows consistently in all three figures
(and others figures in Appendix). If we consider the scaling
property in terms of mini-batch, we can see that as the size of
mini-batch increase, Hessian-free variants actually performs
better. The intuition behind it is that larger b is making the
stochastic Hessian approximation much closer to the true
Hessian. Figure 3 right shows scaling of convergence rate
as a function of mini-batch. In the plot, b represents the size
of mini-batch and the y-axis is the number of iteration the
algorithm needed to hit training error 0.04. We see that as
we increase the size of mini-batches, it takes less iteration
to achieve a training error threshold. The reason is that with
a larger mini-batches, we are able to approximate the Hes-
sian more accurate and it is then good to find an aggressive
descent direction.
Scaling Properties of Distributed Hessian-free Meth-

ods. Let us now study scaling properties of existing and
proposed distributed Hessian-free methods. All experiments
in this section were done on the large TIMIT speech
recognition data-set, with 360 features, 1973 classes, and
1013950 samples. The samples are split into two parts,
where we use 70% as training data-set and 30% as testing
data-set. The network is set to have 3 fully-connected hidden
layers with 512 units each. In Figure 2 (top-left) we show
the scaling or all studied second order methods with respect
to the number of nodes. Each node has two sockets, which
correspond to two non-uniform memory (NUMA) regions.
To exploit this we run a MPI rank per socket and within the
socket we use the multi-threaded Intel MKL functions for

the BLAS kernels (sgemm, sgemv), which make up the core
compute - to utilize the available 18 cores.

The picture on left shows how the duration of one iteration
scale with number of nodes for various size of batch size. Ob-
serve, that the scaling is almost linear for values B ≥ 4096.
Actually, the small batch size is the primary bottleneck for
scaling because of the limited parallelism. Hence this larger
batch-size (increased parallelism) is essential for scaling to
larger number of nodes. As was show in 3 large batch-size
are generally only beneficial for second order methods (as op-
posed to SGD). Figure 2 (top, last 3 plots) shows the speed-up
property of the 3 main components of the second order algo-
rithm. Note that both gradient computation and line search
inherit similar behavior as the total cost of one iteration. In
case of CG, we see that the time of one CG is increasing with
increasing size of nodes. The reason for it is that Hessian-
vector product is evaluated only for one batch (whose time
should be independent from the number of nodes used) but
the communication time is naturally increased with mode
nodes. It reminds us to remark that the time of communi-
cation in this case is comparable to the local compute and
hence the pictures suggest very bad scaling. Let us stress that
the time of one CG is in order of magnitude smaller then
computing of full gradient or line search procedure. As an
immediate next step, we are looking into more comprehen-
sive characterization of the compute and bottleneck analysis
of both single and multi-node performance. Figure 2 (bottom)
shows the each batch size the time of 3 major components of
the algorithm.

Conclusion

In this paper, we revisited HF optimization for deep neural
network, proposed a distributed variant with analysis. We
showed that unlike the parallelism of SGD, which is inher-
ently sequential, and has limitation (large batch-size helps
to scale it but slows convergence). Moreover, a cheap way
to detect curvature information and use negative curvature
direction by using BI-CG-STAB method is discussed. It is

489

known that to use of negative curvature direction is essential
on improves the training performance. Furthermore, a Hy-
brid variant is discussed and applied. We show a significant
speed-up by applying distributed HF in numerical experiment
and the basic comparison among SGD and other HF method
shows competitive performance.

Acknowledgments

This research was supported by National Science Foundation
grant (CCF-1618717).

References

Amodei, D.; Anubhai, R.; Battenberg, E.; Case, C.; Casper, J.;
Catanzaro, B.; Chen, J.; Chrzanowski, M.; Coates, A.; Diamos, G.;
et al. 2015. Deep speech 2: End-to-end speech recognition in
english and mandarin. arXiv:1512.02595.
Das, D.; Avancha, S.; Mudigere, D.; Vaidynathan, K.; Sridha-
ran, S.; Kalamkar, D.; Kaul, B.; and Dubey, P. 2016. Dis-
tributed deep learning using synchronous stochastic gradient de-
scent. arXiv:1602.06709.
Dauphin, Y. N.; Pascanu, R.; Gulcehre, C.; Cho, K.; Ganguli, S.;
and Bengio, Y. 2014. Identifying and attacking the saddle point
problem in high-dimensional non-convex optimization. In NIPS,
2933–2941.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2015. Deep residual learning
for image recognition. arXiv:1512.03385.
Hinton, G.; Deng, L.; Yu, D.; Dahl, G. E.; Mohamed, A.-r.; Jaitly,
N.; Senior, A.; Vanhoucke, V.; Nguyen, P.; Sainath, T. N.; et al.
2012. Deep neural networks for acoustic modeling in speech recog-
nition: The shared views of four research groups. Signal Processing
Magazine, IEEE 29(6):82–97.
Kiros, R. 2013. Training neural networks with stochastic hessian-
free optimization. arXiv:1301.3641.
Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012. Imagenet
classification with deep convolutional neural networks. In Advances
in neural information processing systems, 1097–1105.
Martens, J. 2010. Deep learning via hessian-free optimization. In
ICML, 735–742.
Nocedal, J., and Wright, S. 2006. Numerical optimization. Springer
Science & Business Media.
Olivares, A.; Moguerza, J. M.; and Prieto, F. J. 2008. Nonconvex
optimization using negative curvature within a modified linesearch.
European Journal of Operational Research 189(3):706–722.
Polyak, B. T., and Juditsky, A. B. 1992. Acceleration of stochas-
tic approximation by averaging. SIAM Journal on Control and
Optimization 30(4):838–855.
Saad, Y. 2003. Iterative methods for sparse linear systems. Siam.
Seide, F.; Fu, H.; Droppo, J.; Li, G.; and Yu, D. 2014. On paralleliz-
ability of stochastic gradient descent for speech dnns. In Acoustics,
Speech and Signal Processing (ICASSP), 2014 IEEE International
Conference on, 235–239. IEEE.
Simonyan, K., and Zisserman, A. 2014. Very deep convolutional
networks for large-scale image recognition. arXiv:1409.1556.
Sutskever, I.; Martens, J.; Dahl, G.; and Hinton, G. 2013. On the
importance of initialization and momentum in deep learning. In
ICML, 1139–1147.
Takáč, M.; Bijral, A.; Richtárik, P.; and Srebro, N. 2013. Mini-batch
primal and dual methods for svms. In ICML.

Wiesler, S.; Li, J.; and Xue, J. 2013. Investigations on hessian-free
optimization for cross-entropy training of deep neural networks. In
INTERSPEECH, 3317–3321.
Zhang, S. 2016. Distributed stochastic optimization for deep learn-
ing. Ph.D. Dissertation, New York University.

490

