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Abstract

Analysis of an organization’s computer network activity is a
key component of early detection and mitigation of insider
threat, a growing concern for many organizations. Raw sys-
tem logs are a prototypical example of streaming data that can
quickly scale beyond the cognitive power of a human analyst.
As a prospective filter for the human analyst, we present an
online unsupervised deep learning approach to detect anoma-
lous network activity from system logs in real time. Our mod-
els decompose anomaly scores into the contributions of indi-
vidual user behavior features for increased interpretability to
aid analysts reviewing potential cases of insider threat. Using
the CERT Insider Threat Dataset v6.2 and threat detection
recall as our performance metric, our novel deep and recur-
rent neural network models outperform Principal Component
Analysis, Support Vector Machine and Isolation Forest based
anomaly detection baselines. For our best model, the events
labeled as insider threat activity in our dataset had an aver-
age anomaly score in the 95.53 percentile, demonstrating our
approach’s potential to greatly reduce analyst workloads.

Introduction

Insider threat is a complex and growing challenge for em-
ployers. It is generally defined as any actions taken by an
employee which are potentially harmful to the organization;
e.g., unsanctioned data transfer or sabotage of resources. In-
sider threat may manifest in various and novel forms mo-
tivated by differing goals, ranging from a disgruntled em-
ployee subverting the prestige of an employer to advanced
persistent threats (APT), orchestrated multi-year campaigns
to access and retrieve intelligence data (Hutchins, Cloppert,
and Amin 2011).

Cyber defenders are tasked with assessing a large volume
of real-time data. These datasets are high velocity, hetero-
geneous streams generated by a large set of possible entities
(workstations, servers, routers) and activities (DNS requests,
logons, file accesses). With the goal of efficient utilization
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of human resources, automated methods for filtering system
log data for an analyst have been the focus of much past and
current research, this work included.

We present an online unsupervised deep learning sys-
tem to filter system log data for analyst review. Because in-
sider threat behavior is widely varying, we do not attempt to
explicitly model threat behavior. Instead, novel variants of
Deep Neural Networks (DNNs) and Recurrent Neural Net-
works (RNNs) are trained to recognize activity that is char-
acteristic of each user on a network and concurrently as-
sess whether user behavior is normal or anomalous, all in
real time. With the streaming scenario in mind, the time and
space complexity of our methods are constant as a function
of stream duration; that is, no data is cached indefinitely and
detections are made as rapidly as new data is fed into our
DNN and RNN models. To aid analysts in interpreting sys-
tem decisions, our model decomposes anomaly scores into
a human readable summary of the major factors contribut-
ing to the detected anomaly (e.g. that the user copied an ab-
normally large number of files to removable media between
12am and 6am).

There are several key difficulties in applying machine
learning to the cyber security domain (Sommer and Pax-
son 2010) that our model attempts to address. User activity
on a network is often unpredictable over seconds to hours
and contributes to the difficulty in finding a stable model of
“normal” behavior. Our model trains continuously in an on-
line fashion to adapt to changing patterns in the data. Also,
anomaly detection for malicious events is particularly chal-
lenging because attackers often try to closely mimic typical
behavior. We model the stream of system logs as interleaved
user sequences with user-metadata to provide precise con-
text for activity on the network; this allows our model, for
example, to identify what is truly typical behavior for the
user, employees in the same role, employees on the same
project team, etc. We assess the effectiveness of our models
on the synthetic CERT Insider Threat v6.2 dataset (Lindauer
et al. 2014; Glasser and Lindauer 2013) which includes sys-
tem logs with line-level annotations of insider threat activity.
The ground truth threat labels are used only for evaluation.
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Prior Work

A frequent approach to insider threat detection is to frame
the problem as an anomaly detection task. A comprehen-
sive overview of anomaly detection provided by Chandola
et al. (2012) concludes that anomaly detection techniques
for online and multivariate sequences are underdeveloped;
both issues are addressed in this paper. A real world system
for anomaly detection in system logs should address the set
of constraints given by the real time nature of the task and
provide a set of features suitable for the application domain:
concurrent tracking of multiple entities, analysis of struc-
tured multivariate data, adaptation to shifting distribution of
activities, and interpretable judgments. While each work sur-
veyed below addresses some subset of these components,
our work addresses all of these constraints and features.

As mentioned above, it is common to approach tasks like
intrusion detection or insider threat as anomaly detection.
Carter and Streilein (2012) demonstrate a probabilistic ex-
tension of an exponentially weighted moving average for
the application of anomaly detection in a streaming envi-
ronment. This method learns a parametric statistical model
that adapts to the changing distribution of streaming data.
An advantage of our present approach using deep learning
architectures is the ability to model a wider range of distribu-
tions with fewer underlying assumptions. Gavai et al. (2015)
compare a supervised approach, from an expert-developed
classifier, with an unsupervised approach using the Isolation
Forest method at the task of detecting insider threat from
network logs. They also aggregate information about which
features contribute to the isolation of a point within the tree
to produce motivation for why a user was flagged as anoma-
lous. Considering this to be a reasonable approach, we in-
clude Isolation Forests as one of our baselines.

Researchers have also applied neural network-based ap-
proaches to cybersecurity tasks. Ryan et al. (1998) train a
standard neural network with one hidden layer to predict the
probabilities that each of a set of ten users created a dis-
tribution of Unix commands for a given day. They detect a
network intrusion when the probability is less than 0.5 for
all ten users of the network. Differing from our work, their
input features are not structured, and they do not train the
network in an online fashion. Early work on modeling nor-
mal user activity on a network using RNNs was performed
by Debar et al. (1992). They train an RNN to convergence on
a representative sequence of Unix command line arguments
(from login to logout) and predict network intrusion when
the trained network for that user does poorly at predicting
the login to logout sequence. While this work partially ad-
dresses online training it does not continuously train the net-
work to take into account changing user habits over time.
Veeramachananeni et al. (2016) present work using a neural
network auto-encoder in an online setting. They aggregate
numeric features over a time window from web and firewall
logs which are fed to an ensemble of unsupervised anomaly
detection methods: principal component reconstruction of
the signal, auto-encoder neural network, and a multivari-
ate probabilistic model over the feature space. They addi-
tionally incorporate analyst feedback to continually improve
with time, but do not explicitly model individual user activ-

Figure 1: End to End System

ity over time.
Recurrent neural networks have, of course, been success-

fully applied to anomaly detection in various alternative do-
mains; e.g., Malhotra et al. (2016) in the domain of signals
from mechanical sensors for machinery such as engines, and
vehicles, Chuahan et al. (2015) in the domain of ECG heart
data, and Marchi et al. (2015a; 2015b) in the acoustic signal
processing domain. In contrast to the present work, these
applications are not faced with the task of processing a mul-
tivariate combination of categorical and continuous features.

System Description

Figure 1 provides an overview of our anomaly detection sys-
tem. First, raw events from system user logs are fed into
our feature extraction system, which aggregates their counts
and outputs one vector for each user for each day. A user’s
feature vectors are then fed into a neural network, creating
a set of networks, one per user. In one variant of our sys-
tem, these are DNNs; in the other, they are RNNs. In ei-
ther case, the different user models share parameters, but for
the RNN they maintain separate hidden states. These neural
networks are tasked with predicting the next vector in the
sequence; in effect, they learn to model users’ “normal” be-
havior. Anomaly is proportional to the prediction error, with
sufficiently anomalous behavior being flagged for an analyst
to investigate. The components in the system are described
in greater detail below.

Feature Extraction

One practical consideration that a deep learning anomaly de-
tection system must address is the transformation of system
log lines from heterogeneous tracking sources into numeric
features suitable as input. Our system extracts two kinds of
information from these sources: categorical user attribute
features and continuous “count” features. The categorical
user features refer to attributes such as a user’s role, depart-
ment, and supervisor in the organization. See Table 1 for
a list of categorical features used in our experiments (along
with the number of distinct values in each category). In addi-
tion to these categorical features, we also accumulate counts
of 408 “activities” a user has performed over some fixed time
window (e.g. 24 hours). An example of a counted activity
is the number of uncommon non-decoy file copies from re-
movable media between the hours of 12:00 p.m. and 6:00
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Categorical Var. # Unique Values

Role 46
Project 366
Functional Unit 11
Department 23
Team 90
Supervisor 246

Table 1: Categorical Variables

Figure 2: Enumeration of count features.

p.m. Figure 2 visually enumerates the set of count features:
simply follow a path from right to left, choosing one item in
each set along the way. The set of all such traversals is the
set of count features. For each user u, for each time period,
t, the categorical values and activity counts are concatenated
into a 414 dimensional numeric feature vector xut .

Structured Stream Neural Network

At the core of our system is one of two neural network mod-
els that map a series of feature vectors for a given user, one
per day, to a probability distribution over the next vector
in the user’s sequence. This model is trained jointly over
all users simultaneously and in an online fashion. First, we
describe our DNN model, which does not explicitly model
any temporal behavior, followed by the RNN, which does.
We then discuss the remaining components for making pre-
dictions of structured feature vectors and identification of
anomaly in the stream of feature vectors.

Deep Neural Network Model Our model takes as in-
put a series of T feature vectors xu

1 ,x
u
2 , . . . ,x

u
T for a user

u and produces as output a series of T hidden state vec-
tors hu

1 ,h
u
2 , . . . ,h

u
T (each to be later fed into the struc-

tured prediction network). In a DNN with L hidden layers
(l = 1, ..., L), our final hidden state, the output of hidden
layer L, hu

t = hu
L,t is a function of xu

t as follows:

hu
l,t = g(Wlh

u
l-1,t + bl) (1)

Where g is a non-linear activation function, typically
ReLU, tanh, or the logistic sigmoid, and hu

0,t = xu
t . The

trainable parameters are the L weight matrices (W), and L
bias vectors (b).

Figure 3: Unrolled LSTM Network with N Layers

Recurrent Neural Network Model Like the DNN, the
RNN model maps an input sequence xu

1 ,x
u
2 , . . . ,x

u
t to a

hidden state sequence hu
1 ,h

u
2 , . . . ,h

u
T . Unlike the DNN,

here the hidden state hu
t is computed as a function of

xu
1 ,x

u
2 , . . . ,x

u
t , and not on xu

t alone. Conditioning hu
t on

a sequence rather than the current input alone allows us to
capture temporal patterns in user behavior, and to build an
increasingly accurate model of the user’s behavior over time.

We use the popular Long Short-Term Memory (LSTM)
RNN architecture (Hochreiter and Schmidhuber 1997), in
which the hidden state hu

t at time t is a function of a long-
term memory cell, cut . In a deep LSTM with L hidden lay-
ers, our final hidden state, the output of hidden layer L,
hu
t = hu

L,t, depends on the input sequence and cell states
as follows:

hu
l,t = ou

l,t � tanh(cul,t) (2)
cul,t = ful,t � cul,t-1 + iul,t � gu

l,t, and (3)

gu
l,t = tanh

(
W

(g,x)
l hu

l-1,t +W
(g,h)
l hu

l,t-1 + bg
l

)
(4)

ful,t = σ
(
W

(f,x)
l hu

l-1,t +W
(f,h)
l hu

l,t-1 + bf
l

)
(5)

iul,t = σ
(
W

(i,x)
l hu

l-1,t +W
(i,h)
l hu

l,t-1 + bi
l

)
(6)

ou
l,t = σ

(
W

(o,x)
l hu

l-1,t +W
(o,h)
l hu

l,t-1 + bo
l

)
(7)

Where hu
0,t = xu

t , and cul,0, hu
l,0 are set to zero vectors for all

1 ≤ l ≤ L. We use� and σ to denote element-wise multipli-
cation and the (element-wise) logistic sigmoid function, re-
spectively. Vector gu

l,t is a hidden representation based on the
current input and previous hidden state, while vectors ful,t,
iul,t and ou

l,t, modulate how cell-state information is propa-
gated across time, how the input is incorporated into the cell
state, and how the the hidden state relates to the cell state,
respectively. The trainable parameters for the LSTM are the
8L weight matrices (W) and the 4L bias vectors (b); these
weights are shared among all users.

Probability Decomposition Given the hidden state at
time t − 1, hu

t−1, our model outputs the parameters θ for
a probability distribution over the next observation, xu

t . The
anomaly for user u at time t, aut , is then:

aut = − logPθ(x
u
t |hu

t−1) (8)
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This probability is complicated by the fact that our fea-
ture vectors, and thus the predictions our model makes, in-
clude six categorical variables in addition to the 408 di-
mensional count vector. Therefore, Pθ(x

u
t |hu

t−1) is actually
the joint probability over the count vector (x̂u

t ) and each
of the categorical variables: role (R), project (P), functional
unit (F), department (D), team (T) and supervisor (S). Let
C = {R,P, F,D, T, S} denote the set of categorical vari-
ables; e.g., let Ru

t denote the role of user u at time t. Then

Pθ(x
u
t |hu

t−1) = Pθ(x̂
u
t , R

u
t , . . . , S

u
t |hu

t−1). (9)

For computational simplicity, we approximate this joint
probability by assuming conditional independence:

Pθ(x
u
t |hu

t−1) ≈ Pθ(x̂)(x̂u
t |hu

t−1)
∏
V ∈C

Pθ(V )(V u
t |hu

t−1)

(10)
The seven parameter vectors, parameters θ(x̂) and θ(V ) for
V ∈ C, are produced by seven single hidden layer neural
networks:

θ
(x̂)
t = U′

x̂ tanh (Ux̂ht−1 + bx̂) + b′
x̂) (11)

θ
(V )
t = f(U′

V tanh (UV ht−1 + bV ) + b′
V ) (12)

Here f denotes the softmax function. Two additional weight
matrices (U) and two additional bias vectors (b) are intro-
duced for each of the seven variables we are predicting. Like
the LSTM weights, these parameters are shared among all
users. The parametric forms for the conditional probabilities
are described next.

Conditional Probabilities We model the conditional
probabilities for the six categorical variables as discrete,
while we model the conditional probability of the counts
as continuous. For the discrete models, we use the stan-
dard approach: the probability of category k is simply the
kth element of vector θ(V ), whose dimension is equal to the
number of categories. For example, there are 47 roles, so
θ(R) ∈ R

47. Because we use a softmax output activation
to produce θ(V ), the elements are non-negative and sum-to-
one.

For the count vector, we use the multivariate normal den-
sity: Pθ(x̂)(x̂u

t |hu
t−1) = N (x̂;μ,Σ). We consider two vari-

ants. In the first, our model outputs the mean vector μ
(θ(x̂) = μ) and we assume the covariance Σ to be the iden-
tity. With identity covariance, maximizing the log-likelihood
of the true data is equivalent to minimizing the squared error
‖x̂u

t − μ‖2. In the second, we assume diagonal covariance,
and our model outputs both the mean vector and the log of
the diagonal of Σ. This portion of the model can be seen as
a simplified Mixture Density Network (Bishop 1994).

Prediction Targets We define two prediction target ap-
proaches, “next time step” and “same time step”. Recall
from Eqn. 8, anomaly is inversely proportional to the log
probability of the observation at time t given the hidden rep-
resentation at time t-1; that is, given everything we know up
to and including time t-1, predict the outcome at time t. This
approach fits the normal paradigm for RNNs on sequential
data; in our experiments, we will refer to this approach as
“next time step” prediction.

However, it is common in anomaly detection literature
(Malhotra et al. 2016) to use an auto-encoder to detect
anomaly. An auto-encoder is a parametric function trained
to reproduce the input features as output. Its complexity is
typically constrained to prevent it from learning the trivial
identity function; instead, the network must exploit statis-
tical regularities in the data to achieve low reconstruction
error for commonly found patterns, at the expense of high
reconstruction error for uncommon patterns (anomalous ac-
tivity). Networks trained in this unsupervised fashion have
been demonstrated to be very effective in several anomaly
detection application domains (Markou and Singh 2003).

In the context of our present application, both techniques
may be applicable. Formally, we consider an alternative def-
inition of anomaly:

âut = − logPθ(x
u
t |hu

t ) (13)

That is, given everything we know up to and including time
t, predict the input counts xu

t . If xu
t is anomalous, we are un-

likely to produce a distribution that assigns a large density to
it. We refer to this approach as “same time step” prediction.

Detecting Insider Threat Ultimately, the goal of our
model is to detect insider threat. We assume the following
conditions: our model produces anomaly scores, which are
used to rank user-days from most anomalous to least, we
then provide the highest ranked user-day pairs to analysts
who judge whether the anomalous behavior is indicative of
insider threat. We assume that there is a daily budget which
imposes a maximum number of user-day pairs that can be
judged each day, and that if an actual case of insider threat
is presented to an analyst, he or she will correctly detect it.

Because our model is trained in an online fashion, the
anomaly scores start out quite large (when the model knows
nothing about normal behavior) and trend lower over time
(as normal behavior patterns are learned). To place the
anomaly score for user u at time t in the proper context,
we compute an exponentially weighted moving average es-
timate of the mean and variance of these anomaly scores and
standardize each score as it arrives.

One key feature of our model is that the anomaly score
decomposes as the sum over the negative log probabilities
of our variables; the continuous count random variable fur-
ther decomposes over the sum of individual feature terms:
(xi − μi)/σi. This allows us to identify which features
are largest contributors to any anomaly score; for exam-
ple, our model could indicate that a particular user-day is
flagged as anomalous primarily due to an abnormal number
of emails sent with attachments to uncommon recipients be-
tween 12am and 6am. Providing insight into why a user-day
was flagged may improve both the speed and accuracy of
analysts’ judgments about insider threat behavior.

Online Training

In a standard training scenario for RNNs, individual or
mini-batches of sequences are fed to the RNN, gradients
of the training objective are computed via Back Propaga-
tion Through Time, and then weights are adjusted via a
gradient-descent-like algorithm. For DNNs, individual or
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mini-batches of samples are fed into the DNN, and weights
are updated with gradients computed by standard backprop-
agation. In either case, this process usually iterates over the
fixed-size dataset until the model converges, and only then
is the model applied to new data to make predictions. This
approach faces a few key challenges for the online anomaly
detection setting: 1) the dataset is streaming and effectively
unbounded and 2) the model is tasked with making predic-
tions on new data as it learns. Attempting to shoehorn this
scenario into a standard training setup is impractical: it is
infeasible to either store or repeatedly to train on an un-
bounded streaming dataset and periodically retraining the
model on a fixed-size set of recent events risks excluding
important past events.

To accommodate an online scenario, we make important
adjustments to the standard training regimen. For DNNs,
the primary difference is the restriction of observing each
sample only once. For the RNN, the situation is more com-
plicated. We train on multiple user sequences concurrently,
backpropagating and adjusting weights each time we see a
new feature vector from a user. Logically, this corresponds
to training one RNN per user, where the weights are shared
between all users but hidden state sequences are per-user. In
practice, we accomplish this by training a single RNN with
a supplementary data structure that stores a finite window
of past inputs and hidden and cell states for each user. Each
time a new feature vector for a user is fed into the model,
the hidden and cell states for that user are then used for con-
text when calculating the forward pass and backpropagating
error.

Baseline Models

To assess the effectiveness of our DNN and RNN models,
we compare against popular anomaly/novelty/outlier detec-
tion methods. Specifically, we compare against one-class
support vector machine (SVM) (Schlkopf et al. 2001), iso-
lation forest (Liu, Ting, and Zhou 2008) and principle com-
ponent analysis (PCA) baselines (Shyu et al. 2003). We use
scikit-learn’s1 implementation of one-class SVM and isola-
tion forest, both included as part of its novelty and outlier
detection functionality (Pedregosa et al. 2011). For the PCA
baseline, we project the feature vector onto the first k prin-
ciple components and then map it back into the original fea-
ture space. Anomaly is proportional to the error in this re-
construction. Hyperparameter k is tuned on the development
set.

Experiments

We assess the effectiveness of our model, which we imple-
mented in Tensorflow2 (Abadi et al. 2015) on a series of ex-
periments. In this section we describe the data used, hyper-
parameters tuned, and present our results and analysis.

Data

Given security and privacy concerns surrounding network
data, real world datasets must undergo an anonymization

1http://scikit-learn.org/stable/modules/outlier detection.html
2https://www.tensorflow.org/

Development Test

Date Range Days 1 - 418 Days 419 - 516
# Device Events 1,285,341 266,487
# Email Events 9,068,429 1,926,528
# File Events 1,671,698 343,185
# HTTP Events 96,516,038 20,509,178
# Logon Events 2,916,161 614,124
Total Events 111,457,667 23,659,502

Threat Events 192 236
Threat User-Days 27 20

Table 2: Dataset statistics.

process before being publicly released for research pur-
poses. The anonymization process may obscure potentially
relevant factors in system logs. Particularly, user attribute
metadata that may be available to a system administrator
is typically absent in an open release data set. We perform
experiments on the synthetic CERT Insider Threat Dataset
v6.2, which includes such categorical information.

CERT consists of event log lines from a simulated orga-
nization’s computer network, generated with sophisticated
user models. We use five sources of events: logon/logoff ac-
tivity, http traffic, email traffic, file operations, and external
storage device usage. Over the course of 516 days, 4,000
users generate 135,117,169 events (log lines). Among these
are events manually injected by domain experts, represent-
ing five insider threat scenarios taking place. Additionally,
user attribute metadata is included; namely, the six categor-
ical attributes listed in Table 1.

Since this is an unsupervised task, no supervised training
set is required. We therefore split the entire dataset chrono-
logically into two subsets: development and test. The for-
mer subset (∼85% of the data) is used for model selection
and hyper-parameter tuning, while the latter subset (∼15%
of the data) is held out for assessing generalization perfor-
mance. Table 2 summarizes the dataset statistics. Our predic-
tions are made at the granularity of user-day; there are fewer
threat user-days than raw events because malicious users of-
ten conduct several threat events over the course of a single
day. Note that although the test set includes only 15% of
the events, it has over 40% of the threat user-days. One final
note is that we filtered our data to keep only weekdays, be-
cause what is normal is qualitatively different for weekdays
and weekends. If desired, a second system could be trained
to model normal weekend behavior.

Tuning

We tune our models and baselines on the development set
using random hyper-parameter search. For the DNN, we
tune the number of hidden layers (between 1 and 6) and
the hidden layer dimension (between 20 and 500). We fix
the batch size to 256 samples (user-days) and the learning
rate to 0.01. For the RNN, we tune the hidden layers and
hidden layer dimension over the same ranges as the DNN,
and also fix the learning rate to 0.01. The batch size is tuned
(between 256 and 8092 samples); larger batch sizes speed
up model training, which is more important for the RNN
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Model CR-400 CR-1000

LSTM-Diag 11.6 35.6
LSTM-Diag-Cat 9.2 32.3

Table 3: Cumulative Recall (CR-k) for budgets of 400 and
1000. Comparing the performance of diagonal covariance
LSTM models with (Cat) and without categorical features
included.

than the DNN. We also tune the number of time steps to
back propagate over (between 3 and 40). When our inputs
and outputs include the categorical variables, we addition-
ally tune a hyper-parameter which determines the size of
the input embedding vector of a category in relation to how
many classes in that category (between 0.25 and 1). Both
neural network models use tanh for the hidden activation
function and are trained using the ADAM (Kingma and Ba
2014) variant of gradient descent.

We also tune our baseline models. For the PCA baseline,
we tune over the number of principal components (between
1 and 20). For the Isolation Forest baseline, we tune the
number of estimators (between 20 and 300), the contami-
nation (between 0 and 0.5), and whether we bootstrap (true
or false). The max feature hyper-parameter is fixed at the de-
fault of 1.0 (use all features). For the SVM baseline, we tune
the kernel (in the set {rbf, linear, poly, sigmoid}), ν
(between 0 and 1) and whether to use the shrinking heuristic
(true or false). For the polynomial kernel, we tune the de-
gree (between 1 and 10) while for all other kernels we use
the default value for the remaining hyper-parameters.

For all models, our tuning criteria is Cumulative Recall k
(CR-k), which we define to be the sum of the recalls for all
budgets up to and including k. For computational efficiency,
we only evaluate budgets at increments of 25, so if we de-
fined R(i) to be the recall with a budget of i, CR-k is actu-
ally R(25)+R(50)+ · · ·+R(k). CR-k can be thought of as
an approximation to an area under the recall curve. For each
model, we picked the hyper-parameters that maximized CR-
1000, for which the maximum value achievable is 40. Given
the assumptions that 1) we have a fixed daily analyst budget
which cannot be carried over from one day to the next, 2)
true positives are rare, and 3) the cost of a missed detection
is substantially larger than the cost of a false positive, we feel
that recall-oriented metrics such as CR-k are a more suitable
measurement of performance than precision-oriented ones.

Results

We present three sets of experimental results, each designed
to answer a specific question about our model’s perfor-
mance.

First, we assess the effect of including or excluding the
categorical variables in our model input and output. Table 3
shows the comparison between two LSTM models, differing
only in whether they include or exclude the categorical in-
formation. It shows that while the difference is not huge, the
model clearly performs better without the categorical infor-
mation. While the original intention of including categorical
features was to provide context to the model, we hypothesize

Model CR-400 CR-1000

LSTM-Diag 11.6 35.6
LSTM-Diag-NextTime 5.9 25.1
DNN-Diag 11.7 35.7
DNN-Diag-NextTime 9.4 32.5

Table 4: Cumulative Recall (CR-k) for daily budgets of 400
and 1000. Comparing the performance of the diagonal co-
variance DNN and LSTM models predicting counts at the
next time steps (NextTime) vs the current time step.

Model CR-400 CR-1000

Isolation Forest 10.8 34.8
SVM 5.3 24.2
PCA 9.4 32.8
DNN-Ident 9.8 32.4
DNN-Diag 11.7 35.7
LSTM-Ident 10.8 33.0
LSTM-Diag 11.6 35.6

Table 5: Cumulative Recall (CR-k) for daily budgets of 400
and 1000. All results are based on count features only. For
the DNN and LSTM, diagonal (Diag) and identity (Ident)
covariances are contrasted.

that our dataset may be simple enough that such context is
not necessary (or that the model does not need explicit con-
text: it can infer it). It may also be that the added model com-
plexity hinders trainability, leading to a net loss in perfor-
mance. Because inclusion of categorical features adds com-
putational complexity to the model and harms performance,
all of the remaining experiments reported in this paper use
count features only.

Our second set of experiments is designed to determine
which of the prediction modes work best for our task: “same
time step” (Eqn. 13) or “next time step” (Eqn. 8). Table 4
shows these results, comparing two DNN and two LSTM
models. The “same time step” approach yields better per-
formance for both models, although the difference is more
dramatic for the LSTM. Based on this result, we only use
“same time step” for our remaining set of experiments. In-
terestingly, the DNN and LSTM perform equivalently. We
suspect that the CERT dataset does not contain enough tem-
poral patterns unfolding over multiple days to offer any real
advantage to the LSTM, though we would expect it to offer
advantages on real-world datasets.

Our final set of experiments is designed to assess the ef-
fect of covariance type for our continuous features (identity
versus diagonal) and to contrast with our baseline models.
Table 5 shows these results. Among the baselines, the Isola-
tion Forest model is the strongest, giving the third best per-
formance after DNN-Diag and LSTM-Diag. These results
also show that diagonal covariance leads to better perfor-
mance than identity covariance. One obvious advantage of
diagonal covariance is that it is capable of more effectively
normalizing the data (by accounting for trends in variance).
Wondering how well the identity model would perform if

229



Figure 4: Percentile ranges of user-day anomaly as a func-
tion of days for the DNN-Diag model. The vertical bar de-
notes the split between the development and test sets.

the data was normalized ahead of time, we conducted a pi-
lot study where the counts were standardized with an ex-
ponentially weighted moving average estimate of the mean
and variance, and found no improvement for either the iden-
tity or diagonal covariance models. In contrast to a “global”
normalization scheme, our diagonal covariance model is ca-
pable of conditioning the mean and variance on local con-
text (when either “next time step” or the LSTM are used);
for example, it might expect greater mean or variance in the
number of emails sent on the day after an abnormally large
number of emails were received. That said, it is not clear
whether our data exhibits patterns that our models can take
advantage of with this dynamic normalization.

Analysis

We perform two analyses to better understand our system’s
behavior, using our best DNN model to illustrate. In the
first, we look at the effect of time on the model’s notion of
anomaly. Because the model begins completely untrained,
anomaly scores for all users are very high for the first
few days. As the model sees examples of user behavior, it
quickly learns what is “normal.” Fig. 4 shows anomaly as
a function of day, (starting after the “burn in” period of the
first few days, to keep the y-axis scale manageable). Per-
centile ranges are shown (computed over the users in the
day), and malicious (insider threat) user-days are overlayed
as red dots. Notice that all malicious events are above the
50th percentile for anomaly, with most above the 95th per-
centile.

In our second analysis, we study the effect of daily budget
on recall for best DNN, best LSTM and the three baseline
models. Fig. 5 plots these recall curves. Impressively, with a
daily budget of 425, DNN-Diag, LSTM-Diag and the Isola-
tion Forest model all obtain 100% recall. It also shows that
with our LSTM-Diag system, 90% recall can be obtained
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Figure 5: Test set recall curves.

with a budget of only 250 (a 93.5% reduction in the amount
of data analysts need to consider).

Conclusions

We have presented a system employing an online deep learn-
ing architecture that produces interpretable assessments of
anomaly for the task of insider threat detection in streaming
system user logs. Because insider threat takes new and dif-
ferent forms, it is not practical to explicitly model it; our sys-
tem instead models “normal” behavior and uses anomaly as
an indicator of potential malicious behavior. Our approach
is designed to support the streaming scenario, allowing high
volume streams to be filtered down to a manageable number
of events for analysts to review. Further, our probabilistic
anomaly scores also allow our system to convey why it felt a
given user was anomalous on a given day (e.g. because the
user had an abnormal number of file uploads between 6pm
and 12am). We hope that this interpretability will improve
human analysts’ speed and accuracy.

In our evaluation using the CERT Insider Threat v6.2
dataset, our DNN and LSTM models outperformed three
standard anomaly detection technique baselines (based on
Isolation Forest, SVMs and PCA). When our probabilistic
output model uses a context-dependent diagonal covariance
matrix (as a function of the input) rather than a fixed iden-
tity covariance matrix, it provides better performance. We
also contrasted two prediction scenarios: 1) probabilistically
reconstructing the current input given a compressed hidden
representation (“same time step”) and 2) probabilistically
predicting the next time step (“next time step”). In our ex-
periments, we found that the first works slightly better.

There are many ways one could extend this work. First,
we would like to apply this to a wider range of stream-
ing tasks. Although our focus here is on insider threat,
our underlying model offers a domain agnostic approach
to anomaly detection. In our experiments, the LSTM per-
formed equivalently to the DNN, but we suspect that the
LSTM will yield superior performance when applied to
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large-scale real-world problems with more complicated tem-
poral patterns.

Another promising angle is to explore different granular-
ities of times. The current work aggregates features over in-
dividual users for each day; this has the potential to miss
anomalous patterns happening within a single day. Again,
our LSTM model has the greatest potential to generalize:
the model could be applied to individual events / log-lines,
using its hidden state as memory to detect anomalous se-
quences of actions. Doing so would reduce or eliminate the
“feature engineering” required for aggregate count-style fea-
tures. It could also dramatically narrow the set of individual
events an analyst must inspect to determine whether anoma-
lous behavior constitutes insider threat.
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