The AAAI-17 Workshop on
Knowledge-Based Techniques for Problem Solving and Reasoning
WS-17-12

T2KG: An End-to-End System for Creating
Knowledge Graph from Unstructured Text

Natthawut Kertkeidkachorn,'> Ryutaro Ichise'->?
'Department of Informatics, Sokendai (The Graduate University for Advanced Studies)
National Institute of Informatics, Tokyo, Japan
*National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
natthawut @nii.ac.jp, ichise @nii.ac.jp

Abstract

Knowledge Graph (KG) plays a crucial role in many modern
applications. Nevertheless, constructing KG from unstruc-
tured text is a challenging problem due to its nature. Con-
sequently, many approaches propose to transform unstruc-
tured text to structured text in order to create a KG. Such
approaches cannot yet provide reasonable results for mapping
an extracted predicate to its identical predicate in another KG.
Predicate mapping is an essential procedure because it can
reduce the heterogeneity problem and increase searchability
over a KG. In this paper, we propose T2KG system, an end-
to-end system with keeping such problem into consideration.
In the system, a hybrid combination of a rule-based approach
and a similarity-based approach is presented for mapping a
predicate to its identical predicate in a KG. Based on prelim-
inary experimental results, the hybrid approach improves the
recall by 10.02% and the F-measure by 6.56% without reduc-
ing the precision in the predicate mapping task. Furthermore,
although the KG creation is conducted in open domains, the
system still achieves approximately 50% of F-measure for
generating triples in the KG creation task.

Introduction

A knowledge graph (KG) is a graph-structured knowledge
base that stores knowledge in the form of the relation be-
tween entities. An example KG is DBpedia(Auer et al.
2007). The KG plays an important role in various appli-
cations, e.g., question answering, browsing knowledge and
data visualization. However, most of the published data is
unstructured data and the trend of publishing such data is
dramatically growing faster than publishing structured data
(Kriz et al. 2014). Consequently, a large amount of data can-
not be straightforwardly transformed into a KG and so is left
as unstructured data.

Recently, many approaches have proposed transforming
unstructured text to structured text in order to create a KG
(Carlson et al. 2010; Fader, Soderland, and Etzioni 2011;
Schmitz et al. 2012; Cattoni et al. 2012; Augenstein, Pado,
and Rudolph 2012; Kriz et al. 2014; Exner and Nugues
2012). Although those studies perform well for extracting
triples (subject, predicate, object) from unstructured text,
they still have a limitation regarding mapping a predicate

Copyright (© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

743

of a triple extracted from unstructured text to its iden-
tical predicate in the KG. Generally, many studies (Au-
genstein, Pado, and Rudolph 2012; Ratinov et al. 2011;
Mendes et al. 2011) focus on mapping only an entity, which
is usually a subject or an object of a triple, to its identical en-
tity in a KG. Mapping a whole predicate to its identical pred-
icate is usually ignored. Mapping a predicate to its identical
predicate in a KG is an essential procedure because it can
reduce the heterogeneity problem and increase the search-
ability over a KG. Although one study (Exner and Nugues
2012) introduced mapping a predicate of a triple extracted
from unstructured text to an identical predicate in a KG, the
approach uses the simple rule-based approach. As a result, it
cannot efficiently deal with the limitation of rule generation
due to the sparsity of unstructured text.

In this paper, we introduce T2KG: an end-to-end system
for creating a KG from unstructured text. In T2KG, we pro-
pose a hybrid approach that combines a rule-based approach
and a similarity-based approach for mapping a predicate of
a triple extracted from unstructured text to its identical pred-
icate in an existing KG. The existing KG is used as control
knowledge when creating a new KG. In the similarity-based
approach, we present a novel vector-based similarity metric
for computing the similarity between the elements of triples
to overcome the sparsity problem.

The rest of this paper is organized as follows. Section 2
gives a brief survey and related work regarding KG creation.
In Section 3, the detail of T2KG is presented. Experiments
and results are conducted in Section 4. Eventually, this work
is concluded in section 5.

Related Work

KG construction generally considers the following three
tasks: 1) knowledge extraction, 2) entity mapping and 3)
data integration. Based on these tasks, previous approaches
can be roughly divided into three groups.

The first group (Carlson et al. 2010; Fader, Soderland, and
Etzioni 2011; Schmitz et al. 2012) mainly focuses on knowl-
edge extraction from unstructured text. NELL (Carlson et al.
2010) is a never-ending system that learns to read the web.
To extract triples in NELL, bootstrap constraints are used
to learn new constraints. ReVerb (Fader, Soderland, and Et-
zioni 2011) and OLLIE (Schmitz et al. 2012) are open infor-
mation systems that extract a triple from a sentence by using

syntactic and lexical patterns. Although these approaches
successfully extract triples from unstructured text, they still
do not consider entity mapping. As a result, ambiguity of an
extracted entity might occur.

The second group (Cattoni et al. 2012; Augenstein, Pado,
and Rudolph 2012; Kriz et al. 2014) also investigates knowl-
edge extraction and entity mapping. In some studies (Cattoni
et al. 2012; Kriz et al. 2014), a triple is extracted from un-
structured text by using Natural Language Processing (NLP)
techniques. Then, a triple is stored as an RDF triple by using
its own ontology. LODifier (Augenstein, Pado, and Rudolph
2012) uses a deep semantic analysis system and a named
entity recognition system with a coreference resolution sys-
tem to acquire a triple and generates an RDF triple by using
WordNet representation without considering other ontolo-
gies. Even though these approaches can resolve the ambigu-
ity of an extracted entity, all elements of a triple are not yet
integrated into other KGs.

The third group (Exner and Nugues 2012) considers all
aspects for creating a KG. Exner et al. use a semantic role
labeling method with a state-of-the-art NLP to extract a
triple from Wikipedia and then applies a rule-based ap-
proach to integrate an RDF triple into the ontology of the KG
(Exner and Nugues 2012). Although this approach (Exner
and Nugues 2012) can integrate a predicate into the ontol-
ogy of a KG, it still has the following severe limitation. Due
to the sparsity of unstructured text, bootstrapping training
data for generating rules might not cover all possible pat-
terns; consequently, some rules are missing. To overcome
this problem, we introduce the hybrid approach that com-
bines the rule-based approach and the similarity-based ap-
proach by using a vector-based similarity metric to identify
the same predicate in the T2KG system.

Knowledge Graph Creation

In this section, the architecture of the T2KG system is de-
scribed. T2KG is designed to take unstructured text as in-
put and produce a KG as output. As shown in Figure 1,
T2KG has five components: 1) Entity Mapping, 2) Coref-
erence Resolution, 3) Triple Extraction, 4) Triple Integra-
tion, and 5) Predicate Mapping. The Entity Mapping compo-
nent links an entity in unstructured text to its corresponding
entity in the KG. The Coreference Resolution component
detects coreferring chains of entities in unstructured text.
The Triple Extraction component extracts a relation triple
from unstructured text by using the open information ex-
traction technique. The Triple Integration component gen-
erates a text triple by integrating the results from the En-
tity Mapping component, the Coreference Resolution com-
ponent and the Triple Extraction component. The Predicate
Mapping component maps a predicate of a text triple to a
predefined predicate in other KGs. The details of each com-
ponent are presented as follows.

Entity Mapping

The aim of the Entity Mapping component is to map an
entity in unstructured text to a uniform resource identifier
(URI) as output. In the Entity Mapping component, entities

744

O Entity from Unstructured Text
0 Entity from Knowledge Graph

&9

Knowledge Graph

' T e
iy e J-{ 55 | =
‘ Unstructured Knowledge

00
Entity Mapping Pairs

[] -
N Text l l(;raph
-_ 5
Coreference Resolution |- — | 5 * — |Predicate Mapping
Unstructured X000 & |7 i
Text Coreferring Chains | £ Text Triples l
(- g

Triple Extraction -

Relation Triples

—

Generated Knowledge Graph

Figure 1: Architecture of the T2KG system

Input Text : Barack Obama was born in Honolulu, Hawaii. It is located in United States.

¥ ¥
Entity Mapping Triple Extraction

Barack Obama = {dbpedia:Barack_Obama}
Honolulu, Hawaii = {dbpedia:Hawaii}
United States = {dbpedia:United States}

<Barack Obama, born_in, Honolulu Hawaii>
<It, located in, United States>

Coreference Resolution

Chain 1 = {Barack Obama }
Chain 2 = {Honolulu, Hawaii, it}
Chain 3 = {United States}

'

Triple Integration

<dbpedia:Barack_Obama, ex:born_in, dbpedia:Hawaii>
<dbpedia:Hawaii, ex:located_in, dbpedia:United States>

'

Predicate Mapping

<dbpedia:Barack_Obama, dbpedia:birthPlace_in dbpedia:Hawaii>
<dbpedia:Hawaii, dbpedia:country, dbpedia:United States>

Figure 2: Example of the data flow in the T2KG system

are recognized from unstructured text to create a set of ex-
tracted entities. If an extracted entity can be mapped to an
identical entity in any KG, the URI of such an entity in that
KG should be used as a representative for the extracted en-
tity. Otherwise, a new URI is given to the entity. For exam-
ple, consider “dbepdia:United_States”as a URI in the KG.
If the entity “United States”in unstructured text is mapped
to “dbepdia:United_States”, the same URI is used. On the
other hand, if the same entity does not exist in the KG, a
new URI, e.g., “ex:United_States”, is assigned to the entity
“United States”.

To further illustrate the flow of the T2KG system, an ex-
ample is given in Figure 2. In Figure 2, the given sentence is
“Barack Obama was born in Honolulu, Hawaii. It is located
in United States. ”, the expected results of the Entity Map-
ping component are a set of mapping entities for each entity,
e.g., Barack Obama = {dbpedia: Barack_-Obama}.

Coreference Resolution

The aim of the Coreference Resolution component is to de-
tect coreferring chains of entities in unstructured text and
to group such entities. This is also an essential compo-
nent because unstructured text usually contains abbrevia-
tions, pronouns and different expressions of entities that
point to the same entities. With the Coreference Resolu-

tion component, an entity and its different expressions can
be grouped so that actions of identical entities in different
expressions can be captured. To discover the chains of core-
ferring entities, a coreference resolver is used. An example
is shown in Figure 2. The expected results of the Corefer-
ence Resolution component are coreferring chains of enti-
ties. Based on the input in the example, the coreferring chain
is C2 = {Honolulu Hawaii, it}.

Triple Extraction

The aim of the Triple Extraction component is to extract re-
lation triples from unstructured text. This is a key step to
acquire knowledge from unstructured text. According to lin-
guistic theory (Fillmore 1976), the meaning of an arbitrary
sentence can be interpreted by considering a set of relations
and its associated arguments. Consequently, a relation triple
is defined as a triple describing a relation and its associated
arguments in an arbitrary sentence. In our scenario, the re-
lation is a predicate of a triple and its associated arguments
are a subject of a triple and an object of a triple.

To extract a relation triple from unstructured text, any
open information extraction technique can be used. An open
information extraction technique is used to extract informa-
tion in an arbitrary sentence by using pattern templates and
then to convert such information into a relation triple. In an
open information extraction technique, a relation and its as-
sociated arguments in a sentence are identified without us-
ing either prior domain knowledge or a predefined vocab-
ulary. For example, as depicted in Figure 2, the example
of the relation triple from the Triple Extraction component
is < Barack Obama, born in, Honolulu Hawaii >,
where “born in” is a relation, which is the predicate of the
triple, and “Barack Obama” and “Honolulu Hawaii’are its
arguments, which are the subject and the object of the triple,
respectively.

Triple Integration

The aim of the Triple Integration component is to gener-
ate text triples by using outputs from the Entity Mapping
component, the Coreference Resolution component and the
Triple Extraction component.

In the Triple Extraction component, we can extract rela-
tion triples from unstructured text; however, entity mapping
and coreference resolution among the entities of such triples
are not performed. As a result, ambiguity in the triple oc-
curs and interlinking to entities in the KG is not established.
Consequently, transformation of a relation triple that con-
forms to the standard of KB is required. Therefore, to deal
with such problems, the results from three components are
integrated and transformed by the following processes.

First, identical entities are grouping by using coreferring
chains from the Coreference Resolution component. Sec-
ond, a representative for the group of coreferring entities
is selected by the voting algorithm. Because entities in the
same group might have various representations, the major-
ity excluding pronouns in the group is chosen as the group
representative. Third, all entities belonging to the group in
the relation triples are replaced by the representative of its

745

group. Fourth, the relation of a relation triple is straightfor-
wardly transformed into a predicate by assigning a new URI.
Finally, if an object of a relation triple is not an entity, it is
left as literal. After performing these processes, text triples
are extracted from unstructured text.

Figure 2 shows our example of this component. The Triple
Integration component generates the text triple, e.g., <
dbpedia: Barack_Obama,ex: born_in,dbpedia: Hawai
>. However, the predicate of the triple, ex: born_in, is still
not mapped to any predicate in the KG.

Predicate Mapping

The aim of the Predicate Mapping component is to map a
predicate of a text triple to an identical predicate in the KG.
In the study (Exner and Nugues 2012), the rule-based ap-
proach is proposed for mapping a predicate of a triple to
an identical predicate in a KG. However, the study greatly
depends on the generated rules. Because of the sparsity of
unstructured text in open domains, generated rules cannot
cover all possible patterns. As a result, the study does not
generalize enough to discover new rules that have not ap-
peared before. Therefore, reasonable recall cannot be real-
ized. To deal with heterogeneous vocabularies and to allevi-
ate the sparsity of unstructured text, a hybrid combination of
arule-based approach and a similarity-based approach using
the vector-based similarity metric is proposed in this study.

In our hybrid approach, bootstrapping triples are used to
learn rules for mapping a predicate in a way similar to that of
the reference study (Exner and Nugues 2012), and then the
similarity-based approach using the vector-based similarity
metric is applied for unseen rules to determine the identi-
cal predicates, as depicted in Figure 3. First, a text triple is
enriched by the Triple Enrichment module. This module en-
riches a text triple and a KG triple by their data types and
classes, and then integrates and normalizes the text triples,
the KG triples and the enriched triples to create the boot-
strapping triples for the later modules. Second, the Rule-
based Candidate Generation module uses the bootstrapping
triples for creating rules and then generates predicate can-
didate pairs for the text predicate. Third, the Similarity-
based Candidate Generation module uses the bootstrapping
triples for embedding the elements of triples as vector rep-
resentations, and then such vectors are used to compute
the similarity between a text predicate and a KG predicate
in order to generate predicate candidate pairs. Eventually,
the Candidate Selection module selects the most suitable
mapping candidate. As a result, a candidate is selected and
the KG creation process is completed. An example of the
component is shown in Figure 2. As shown in the figure,
ex: born_in is mapped to dbpedia: birthPlace, and the
triple < dbpedia: Barack_-Obama,dbpedia: birthPlace,
dbpedia: Hawaii > is created as a triple for the generated
KG. The details of each module are as follows.

Triple Enrichment The Triple Enrichment module en-
riches text triples and KG triples and then integrates all
triples in order to create the bootstrapping triples for the later
modules. Text triples and KG triples are enriched by their
classes and data types. The enrichment process is performed

Unstructured Text

Triple Enrichment -—

Text Triple l Knowledge Graph

Bootstrapping Triple

Rule-based Similarity-based
Candidate Generation Candidate Generation

Candidate Selection -

Predicate Candidate Pairs

N
AN T

AA

Predicate Candidate Pairs

@H

Generated Knowledge Graph

A Predicate from Unstructured Text
A\ Predicate from Knowledge Graph

Figure 3: Diagram of the Predicate Mapping component

only on a subject (domain) and an object (range) of a triple.

To enrich a triple, the subject and the object of
the triple are bound to their corresponding class. For
KG triples and text triples, whose subject or object
is mapped to a KG entity, the subject and the ob-
ject of the triple are bound by using rdf:type. For ex-
ample, given DBpedia as the KG and the triple, <
dbpedia: Barack_Obama, dbpedia: birthPlace, dbpe —
dia Hawaii >, the enriched result is < dbpedia: Person,
dbpedia: birthPlace, dbpedia: Location >. For the text
triples, whose subject or object cannot be mapped to a KG
entity, the Name Entity Recognition (NER) system is used
to retrieve the class of the subject and the object of the triple.
Then, the class is map to KG class by using string matching
as a workaround. For example, the NER class, Person, is
mapped to KG class, dbpedia: Person.

Apart from the class of entities, the data type is also con-
sidered. In T2KG, we use the URI, string, number and date
as data types. The data types of a subject and an object of
the triple are converted by using a simple parser. If a sub-
ject or an object of a triple can parse the date, the date
type is used. If a subject or an object of a triple contains
only a number, the number type is used. If a subject or an
object of a triple is a URI, the URI type is used. Other-
wise, the string type is used. For example, given the triple <
dbpedia: Barack_Obama,ex: born_in, dbpedia: Haw—

746

ait >, theresultis < URI, ex: born_in, URI >. All gen-
erated triples, called bootstrapping triples, are used as the
output of this module.

Rule-based Candidate Generation The Rule-based Can-
didate Generation module extracts rules and uses these rules
to produce predicate candidate pairs. In this module, the
strategy in the reference study (Exner and Nugues 2012) is
implemented to create rules for mapping the predicate, as
follows. First, if the subject and the object of the text triple
are similar to the subject and the object of the KG triple, re-
spectively, it is assumed that the predicate of the text triple
and the predicate of the KG triple are identical. Second, the
class of the subject and the class of the object are used as
a constraint for mapping. For example, a finding rule can
be < Person, ex: born_in, Location > is mapped to
dbpedia : birthPlace (using DBpedia as the KG). Even
though this approach uses bootstrapping triples to gener-
ate reliable rules, the number of rules is very limited due
to the small number of bootstrapping triples and the spar-
sity of unstructured text. Therefore, some rules are missing.
To avoid such problems, the similarity-based approach us-
ing the vector-based similarity metric is applied in the T2KG
system.

Similarity-based Candidate Generation The Similarity-
based Candidate Generation module generates predicate
candidate pairs by using the similarity between predicates.
Generally, a string-based similarity metric is used for the
entity mapping or the predicate mapping task (Kertkeidka-
chorn et al. 2013; Gerber et al. 2013). Due to the heteroge-
neous vocabularies in the open information extraction task,
the string-based similarity metric can fail to identify the
similarity between predicates. To cope with heterogeneous
vocabularies, each vocabulary should be learned and rep-
resented at a deeper level than just their surface form. We
therefore propose the novel vector-based similarity metric
for computing the similarity between elements of triples.

Based on a review, we found that Mikolov et al. proposed
vector representations of words that can capture both syn-
tactic and sematic patterns (Mikolov et al. 2013). Inspired
by vector representations of words (Mikolov et al. 2013),
we present elements of triples in the vector space by using
other elements in the same triple. The objective function is
formulated as follows.

L(0) = argma 1 e " Ve
(6) = arg max > logo(ve - ve)
(e,c)eT

+ Z logo(ve -v.) (1)

(e,c)eT’

where o(z) = 1/(1 + exp(—z)), e is an element of a
triple, c is other elements of the same triple, 7" is a set of
bootstrapping triples from the triple enrichment module, 7"
is randomly generated triples (negative triple), which do not
existed in T, v, v. € 0 and v, v, are vector representations
of elements of triples e and c respectively.

After acquiring vector representations of each element of
the triples, the similarity between a predicate of a text triple

and a predicate of a KG triple is computed to generate a list
of predicate candidate pairs, ranked by their similarity score.
In our approach, the similarity score is defined as follows.

P.-P
| P3| Pral
text(Pgc) - (S7 — O
L(1—0 context(Pk¢q) (_7: _T2) ®
|context(Pkq)||St — O
N B — [
_. (S -0
Context(PKG) = Zn_l(PKGW/ PKGn) (3)

N
where S;, Pj, Oj are the subject, the predicate and the

object of the triple 7', respectively, T is a text triple, Pk is
a predicate in KG, S Pre, and Op, e, are the nth pair of
a subject and an object, respectively, corresponding to pred-
icate P in KG (< SPKGn7 Pra, OPKGn >e KG), N
is the number of triples in KG, whose predicate is Pg ¢, and
0 is a weight parameter between the predicate similarity and
the context similarity. The basis behind these equations is
that the similarity between predicates can be measured di-
rectly by the cosine similarity of the vector, as reflected in
the first term of Eq. 2. However, the predicate might be var-
ied by its context. Consequently, in the second term of Eq.
2, the similarity between contexts is also computed to val-
idate the suitability of the predicate with its context. This
assumption is based on the fact that the more suitable the
context, the more likely they can map. Because the first and
the second terms in Eq. 2 are different, the weight param-
eter is introduced for adjusting the salient aspect between
the predicate similarity and the context similarity. Eq. 3 is
proposed to compute an average vector representation of the
context of P .

Candidate Selection The Candidate Selection module se-
lects the mapping for the predicate of the text triple. In this
module, priority is given to the predicate candidate pair,
which is generated by the Rule-based Candidate Generation
module. If such a predicate candidate pair does not exist, the
predicate candidate pair generated by the Similarity-based
Candidate Generation module is considered. If the similar-
ity of the predicate candidate pair is greater than a threshold,
the predicate pair is mapped to the candidate. Otherwise, the
new URI of the text triple, e.g., ex: born_in, is assigned as
the predicate. The output of candidate selection is the gen-
erated KG, in which both the entities and the predicates are
linked to other KGs.

Experiment
Experimental Setup

The experiments are designed to evaluate the performance
of the hybrid approach in the T2KG system, and the perfor-
mance of the T2KG system.

In the experiments, 120,000 Wikipedia articles are ran-
domly selected and then pre-processing is applied to estab-
lish unstructured text as input for the system. In the pre-
processing, HTML markups, wiki marks and any hyperlink

747

annotations are removed. Duplicated sentences are reduced
to one sentence. Apart from the unstructured text, another
input is the KG. In our experiments, DBpedia (Auer et al.
2007) is set as the KG in the T2KG system. Note that any
KG can be used in the T2KG system.

In the T2KG system, each component is implemented and
its parameters are configured as follows. In the Entity Map-
ping component, DBpedia Spotlight (Mendes et al. 2011) is
used to map entities. If an entity cannot map to any DBpe-
dia entities, a new namespace “ex: “’is adopted as the prefix
of the entity for creating a new URI. This namespace also
applies for an unmapped predicate. In the Coreference Res-
olution component, the Stanford NLP tool (Lee et al. 2011;
Raghunathan et al. 2010) is used as a coreference resolver.
In the Triple Extraction component, OLLIE (Schmitz et
al. 2012), which is one of the state-of-the-art for open in-
formation extraction, is applied to extract relation triples
from unstructured text. In the Triple Enrichment module,
the Stanford NLP tool is also used as the NER system. In the
Similarity-based Candidate Generation module, word2vec is
used for the training vector representations of the elements
of triples. The parameters of word2vec are set by default.
The weight parameter ¢ in the similarity score computation
is set at 0.6. In the Candidate Selection module, the mapping
threshold of the similarity is set at 0.25.

Experiment 1

The aim of this experiment is to evaluate the performance
of our hybrid approach for the predicate mapping task. To
investigate the contribution of our approach, the rule-based
approach in the study (Exner and Nugues 2012) is used as
the baseline for comparison.

To conduct the experiment, the ground truth is automati-
cally constructed. The predicate mapping between the pred-
icates of text triples and the predicates in DBpedia is per-
formed. The strategy for constructing the ground truth is as
follows: if the subject of the text triple and the subject of
the DBpedia triple are the same and the object of the text
triple and the object of the DBpedia triple are the same, we
assume that the predicate of the text triple and the predicate
of the DBpedia triple are the same. Figure 4 demonstrates
an example for constructing the ground truth. As shown in
this figure, the subject and the object of the text triple and
the DBpedia triple are identical. Consequently, the predi-
cates, “ex:born_in” and “dbpedia:birthPlace”, are assumed
to be identical. In the ground truth construction, the targets
of the mapping predicate are 2,800 DBpedia ontology prop-
erties. Although this method can help to establish a lot of
ground truth, it is possible that the ground truth might be
ambiguous due to multiple matching. Multiple matching is
that two or more predicates share the same subject-object
pair. For example, “ex:bear_in” might be forcedly mapped
to both “dbpedia:birthPlace” and “dbpedia:deathPlace” if
the same person (subject) was born and died in the same
place (object). Consequently, multiple matching can lead to
ambiguity of the dataset. To alleviate this problem, we sim-
ply remove triples, of which the subject-object pair appears
more than once. According to the ground truth construction,
the number of remaining mapped predicate pairs is 43,800.

Input Text : Barack Obama was born in Honolulu, Hawaii.

Text Triple : dbpedia:Barack_Obama ex:born_in dbpedia:Hawaii
,,,,,,,,,,,,,,,,,,,,,,,,, Identical * | ,,,,,,,1,194@0!!9@,,,,,
DBpediaTriple : dbpedia:Barack_Obama dbpedia:Hawaii

Ground Truth : ex:born_in = {dbpedia:birthPlace}

Figure 4: Example of Ground Truth Construction

Table 1: Results of Experiment 1

Approach Precision Recall F-Measure

Rule-based (Exner et al.) 0.54135 0.36324 0.43473
Hybrid 0.54377 0.46340 0.50036

In this experiment, given a predicate text, an approach
returns the DBpedia predicate having the highest similar-
ity. Precision, recall and F-Measure then use to measure
whether the DBpedia predicate and the predicate text are
correctly match or not. To evaluate our similarity metric, 10-
fold cross-validation is performed.

Table 1 shows the results of the rule-based approach com-
pared with our hybrid approach. The experimental results
indicate that the hybrid approach can improve precision by
0.24%, recall by 10.02% and F-measure by 6.56%. Because
the results show that the discoverability of the hybrid ap-
proach outperforms the baseline, it conforms to our hypoth-
esis that the hybrid approach including the similarity-based
approach contributes to the discovery of identical predicates.
The hybrid approach therefore can alleviate the problem
caused by the limitation of patterns in constructing the rule-
based approach.

Experiment 2

The aim of this experiment is to evaluate the quality and
quantity of generated triples for the KG creation task. Be-
cause no gold standard exists for evaluating the results of
generating triples from unstructured text, we conduct the
evaluation by manual establishing a small set of the gold
standard of triple extracted from unstructured text. To create
the gold standard, we randomly select 100 sentences from
Wikipedia articles and then manually extract and map triples
to DBpedia triples.

Based on the results, T2KG could extract 1.76 triples per
sentence on average. The generated triples realized precision
of 49.39%, recall of 52.26% and F-measure of 50.78%.

To more deeply analyze the results, the errors in each
component of the system are investigated. The system con-
sists mainly of four components that can provide errors:
Entity Mapping, Coreference Resolution, Triple Extraction
and Predicate Mapping. We therefore calculate the ratio of
errors based on those four components. The results show
that 31.94% of the errors are caused by Triple Extraction,

748

26.85% by Predicate Mapping, 20.83% by Entity Mapping
and 20.37% by Coreference Resolution. The largest source
of errors is Triple Extraction because the task in this study is
the open domain task, in which no schema or prior knowl-
edge is provided. The errors in Triple Extraction mostly oc-
cur when extracting triples from a complex sentence, where
a relation and their arguments are not clearly identified.

Furthermore, errors in the elements of generated triples
are inspected. We find that the largest number of errors
is 41.94% caused by predicates, 34.68% by objects and
23.39% by subjects. Based on the error analysis, the major-
ity of errors are caused by the predicates of generated triples.
The reason is that Triple Extraction can not perfectly extract
predicates from unstructured text due to the complexity of
the text in open domains. Nonetheless, although KG cre-
ation in our study is conducted in open domains, the T2KG
system still achieves approximately 50% in both quality and
quantity of generated triples for creating the KG.

Conclusion

This paper presents T2KG, a system for automatic knowl-
edge graph creation from unstructured text. The experi-
mental results demonstrate that the T2KG system can suc-
cessfully generate a KG from unstructured text. Although
KG creation in this study is conducted in open domains,
the T2KG system still achieves approximately 50% in both
quality and quantity of triples generated for creating the KG.
Furthermore, the hybrid approach for mapping a predicate is
introduced. In the hybrid approach, the novel vector-based
similarity metric is proposed. The experimental results in-
dicate that the hybrid approach improves both the precision
and the recall for mapping a predicate to a KG.

Based on error analyses, the performance can still be im-
proved. In future work, we aim to improve the implementa-
tion of the T2KG system, in particular the Triple Extraction
component. Furthermore, because our approach does not ad-
here to any data resources, we also intend to conduct exper-
iments on other data resources.

Acknowledgements

This work was partially supported by NEDO (New Energy
and Industrial Technology Development Organization).

References

Auer, S.; Bizer, C.; Kobilarov, G.; Lehmann, J.; Cyganiak,
R.; and Ives, Z. 2007. DBpedia: A nucleus for a web of
open data. Springer.

Augenstein, I.; Pado, S.; and Rudolph, S. 2012. Lodifier:
Generating linked data from unstructured text. In The Se-
mantic Web: Research and Applications. Springer. 210-224.
Carlson, A.; Betteridge, J.; Kisiel, B.; Settles, B.; Hr-
uschka Jr, E. R.; and Mitchell, T. M. 2010. Toward an
Architecture for Never-Ending Language Learning. In Pro-
ceedings of AAAL

Cattoni, R.; Corcoglioniti, F.; Girardi, C.; Magnini, B.; Ser-
afini, L.; and Zanoli, R. 2012. The KnowledgeStore: an

Entity-Based Storage System. In Proceedings of LREC,
3639-3646.

Exner, P, and Nugues, P. 2012. Entity extraction: From
unstructured text to dbpedia rdf triples. In The Web of Linked
Entities Workshop, 58-69. CEUR-WS.

Fader, A.; Soderland, S.; and Etzioni, O. 2011. Identifying
relations for open information extraction. In Proceedings of
the Conference on Empirical Methods in Natural Language
Processing, 1535-1545. ACL.

Fillmore, C. J. 1976. Frame semantics and the nature of
language. Annals of the New York Academy of Sciences
280(1):20-32.

Gerber, D.; Hellmann, S.; Buhmann, L.; Soru, T.; Usbeck,
R.; and Ngomo, A.-C. N. 2013. Real-time RDF extraction
from unstructured data streams. In Proceedings of The Se-
mantic Web—ISWC 2013, 135-150. Springer.

Kertkeidkachorn, N.; Ichise, R.; Suchato, A.; and Pun-
yabukkana, P. 2013. An automatic instance expansion
framework for mapping instances to linked data resources.

In Joint International Semantic Technology Conference,
380-395.

Kriz, V.; Hladka, B.; Necasky, M.; and Knap, T. 2014. Data
Extraction Using NLP Techniques and Its Transformation to
Linked Data. In Proceedings of 13th Mexican International
Conference on Artificial Intelligence, 113—124. Springer.

Lee, H.; Peirsman, Y.; Chang, A.; Chambers, N.; Surdeanu,
M.; and Jurafsky, D. 2011. Stanford’s multi-pass sieve coref-
erence resolution system at the CoNLL-2011 shared task. In
Proceedings of the 15th Conference on Computational Nat-
ural Language Learning: Shared Task, 28-34. ACL.

Mendes, P. N.; Jakob, M.; Garcia-Silva, A.; and Bizer, C.
2011. DBpedia spotlight: shedding light on the web of doc-
uments. In Proceedings of the 7th International Conference
on Semantic Systems, 1-8. ACM.

Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G. S.; and
Dean, J. 2013. Distributed representations of words and
phrases and their compositionality. In Proceedings of Ad-

vances in neural information processing systems, 3111—
3119.

Raghunathan, K.; Lee, H.; Rangarajan, S.; Chambers, N.;
Surdeanu, M.; Jurafsky, D.; and Manning, C. 2010. A
multi-pass sieve for coreference resolution. In Proceedings
of the Conference on Empirical Methods in Natural Lan-
guage Processing, 492-501. ACL.

Ratinov, L.; Roth, D.; Downey, D.; and Anderson, M.
2011. Local and Global Algorithms for Disambiguation to
Wikipedia. In Proceedings of ACL.

Schmitz, M.; Bart, R.; Soderland, S.; and Etzioni, O. 2012.
Open language learning for information extraction. In Pro-
ceedings of the Joint Conference on Empirical Methods in
Natural Language Processing and Computational Natural
Language Learning, 523-534. ACL.

749

