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Abstract

Many modern recommender systems rely on matrix factor-
ization techniques to produce personalized recommendations
on the basis of the feedback that users provided on differ-
ent items in the past. The feedback may take different forms,
such as the rating of a movie, or the number of times a user
listened to the songs of a given music band. Nonetheless, in
some situations, the user can perform several actions on each
item, and the feedback is multidimensional (e.g., the user of
an e-commerce website can either click on a product, add the
product to her cart or buy it). In this case, one can no longer
view the recommendation problem as a matrix completion,
unless the problem is reduced to a series of multiple inde-
pendent problems, thus loosing the correlation between the
different actions. In this case, the most suitable approach is to
use a tensor approach to learn all dimensions of the feedback
simultaneously. In this paper, we propose a specific instance
of tensor completion and we show how it can be heavily par-
allelized over both the dimensions (i.e., items, users, actions)
and within each dimension (i.e., each item separately). We
validate the proposed method both in terms of prediction ac-
curacy and scalability to large datasets.

Introduction
The aim of personalized recommender systems (RSs) is to
discover the preferences of each user and to predict which
items, among those available in the system, she likes the
most. The collaborative filtering approach (Hu, Koren, and
Volinsky 2008; Zhou et al. 2008; Koren, Bell, and Volinsky
2009) relies only on the identifiers of users and items to infer
implicit descriptions suitable for prediction. Since its suc-
cess in the Netflix Prize competition (Bennett et al. 2007),
one of the most popular collaborative-filtering methods is
based on matrix factorization (MF) techniques for latent fac-
tor models. In this approach, the RS problem is reduced to
the problem of completing a highly sparse user/item matrix
(i.e., each entry records the feedback of the user for a spe-
cific item) under low-rank assumptions.

Despite its success, MF cannot always capture the full
complexity of the problem. In several domains, users can
perform several actions on the items. For instance, in e-
commerce applications, while the user-item affinity is of-
ten predicted on the basis of the number of times the user
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clicked on the item, the action one would like to predict is
whether the user will actually add the product to her cart
and/or buy it. Unfortunately, these actions are much sparser
than the clicks, thus far more difficult to predict, and they are
not necessarily positively correlated with them, so predicting
click will not make an effective RS. As a result, applying
MF only on the click action may result in poor recommen-
dation for the actual actions of interest (i.e., buy). Another
scenario in which MF is not satisfactory is for RS where
the recommendation needs to be related, e.g., with a specific
moment of the day. For instance, previous studies on mu-
sic recommendation (Baltrunas and Amatriain 2009) have
shown that people listen to different artist depending on the
moment of the day or of the week (while working, driving,
resting at home). Again, ignoring this dimension and apply
MF directly on the user-item matrix, may severely affect the
final performance of the RS.

Related work. An effective approach in case of multidi-
mensional feedback is to use tensor factorization (TF) tech-
niques, which extends MF by taking into consideration all
actions/contexts at the same time. In particular, the user-
item matrix is expanded by adding one or more modes,
which contains the additional type of actions available. TF
is considerably more complicated than MF and it requires
extending previous methods. Symeonidis, Nanopoulos, and
Manolopoulos (2008) rely on a generalization of the singu-
lar value decomposition for tensors called higher-order sin-
gular value decomposition (HOSVD) introduced by Lath-
auwer, Moor, and Vandewalle (2000), part of the general
family of Tucker decomposition. In HOSVD, the n-order
tensor is unfolded into n matrices on which classic SVD
is applied. Its decomposition is then used to reconstruct
the full tensor factorization. An alternative approach is to
perform tensor decomposition using PARAFAC (parallel
factor analysis). For instance, Hu et al. (2013) performed
cross-domain recommendation using an alternating least
squares algorithm on the PARAFAC model called CP-ALS-
R (PARAFAC is also called CANDECOMP, that is what the
CP stand for here). However, recommendation problems al-
ways come with missing values (otherwise there would be
nothing to learn) and this problem has not been taken into
account neither in CP-ALS-R nor HOSVD. This problem
has been studied for tensor decomposition for instance in the
chemometric field for the PARAFAC decomposition (Acar
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Figure 1: Mode matrix unfolding of a 3-order tensor.

et al. 2010; Tomasi and Bro 2005) and the Tucker decompo-
sition (Filipović and Jukić 2013). Finally, Romera-Paredes
and Pontil (2013) studied the tensor completion problem not
with tensor factorization but working on the trace norm reg-
ularization and introduced a new convex relaxation method
for tensor completion. Unfortunately, most of these tech-
niques suffer from different shortcomings when applied to
RS: 1) they may not properly manage missing values (i.e.,
by filling unknown feedback with arbitrary values), 2) they
do not allow for modes with latent factors of different size
(i.e., constraining to a single dimension for all factors), 3)
they do not scale to large tensors (both in size and number
of modes).

Contributions. In this paper, we focus on an adaptation of
the alternating least squares approach used in MF. In dealing
with matrix factorization for RS, alternating least squares
with λ regularization (ALS-WR) introduced by Zhou et al.
(2008) proved to perform much better than SVD. While
both approaches assume a low-rank constraint on the ma-
trix, they differ in the way they deal with unknown values.
While SVD implicitly sets all unknown values to 0, the ALS-
WR minimizes the �2-norm error between the true feedback
and the factorized matrix only for the available entries, so
no assumption is made on the unobserved values. Further-
more, the ALS-WR also introduces a penalty term based
on Tikhonov regularization which penalizes large parame-
ters to prevent from overfitting. Building on this observa-
tion, we study a method called HOALS, for Higher Order
Alternating Least Squares, that leverages alternating least-
squares to perform tensor factorization. Beside being better
designed for RS, we prove that HOALS can be easily paral-
lelized both over tensor modes and within each dimension,
thus allowing it to be applied to large RS. Finally, we show
that the HOALS formulation allows to manage implicit feed-
back along the line of (Hu, Koren, and Volinsky 2008). To
the best of our knowledge, HOALS is the only tensor fac-
torization model that allows to perform tensor factorization
for implicit feedback and that deal with missing data and it
is scalable to large problems.

Preliminaries

RS as tensor completion. We define a recommender system
as a tuple 〈U , I,A〉, where U = (1, . . . , n)

.
= [n] is the set

of users, I = (1, . . . , p)
.
= [p] is the set of items available

in the system, and A = (1, . . . , q)
.
= [q] is the set of ac-

tions the user can take over items (e.g., a binary value such

as click, add to cart (ATC), buy, or a number as in the case
of a rating).1 In the following we use u, i, and a to index
the elements in the sets U , I, and A respectively. Each feed-
back is a scalar value ruia ∈ R, which denotes the feedback
provided by user u on item i through action a. For instance,
ruia may be the rating provided by user u to the feature a
of a restaurant i. Once organized along the sets U , I, A, all
the possible feedback take the form of a tensor (i.e., a multi-
dimensional array) R of dimension n × p × q. Nonetheless,
only a limited number of feedback is available to the system.
We denote by D ⊆ U × I × A the set of triples (user, item,
action) for which a feedback is available. Starting from the
feedback available for the tuples in D, the objective of a RS
is to complete the tensor R with all missing entries and pro-
pose the best recommendations for each user. While in the
case of one single action, for any user u the RS simply rec-
ommends the item i with largest value rui, when multiple
actions are available, the RS should combine different val-
ues riua to find a global index of preference. For instance, a
RS can choose to recommended the restaurant with the best
average rating over all features (i.e., average of ratings for
service, food, and decoration) or one can introduce a filter-
ing on the rating of different actions (e.g., filter out restau-
rants with decoration rated less than 7/10) and then pick the
one according to a chosen feature (e.g., the one with the best
rated food).

Tensor notation. In the following we use bold upper case
letters, such as X, to denote tensors, whereas matrices are de-
noted by upper case letters such as X . The pseudo-inverse of
a matrix is denoted by X∗. The entry of a third-order tensor
is written with a lower case (e.g., xi1,i2,i3 ) where first, sec-
ond and third indices represents respectively row, column
and depth (similar for matrices, Xi1,i2 denotes the element
in row i1 and column i2). In the general n-order tensor we
may use fiber instead of row, column and depth, to denote
one dimensional part of the tensor, which can not find equiv-
alent when n is greater than 3. A particular fiber is called
mode-i. For instance, for a third-order tensor the column
correspond to mode-1. Moreover a two dimensional part of
the tensor is called a slice. In the special case of matrices, we
denote the uth row of X by Xu. We recall some basic def-
initions and operations on tensors. Let X ∈ R

I1×···×IN be
a N -dimensional tensor, we define the n-mode product of
tensor X by a matrix U ∈ R

Jn×In , denoted X ×n U , as the
tensor of dimension (I1×· · ·×In−1×Jn×In+1×· · ·×IN )
obtained as

[
X ×n U

]
i1···in−1jnin+1···iN =

In∑
in=1

Xi1···in···iNUjn,in .

The mode-n product is commutative when applied in dis-
tinct modes, i.e. for m �= n,

(X ×n A) ×m B = (X ×m B) ×n A.

1In the following, we only consider only one action dimension,
but in general other dimensions could be available. For instance,
we could consider the rating attributed by a user to the food (i.e.,
the action) of a restaurant in a specific season (i.e., an additional
dimension of interest).
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Another important operation is the matrix unfolding of the
tensor. There are N different ways to unfold a N -order ten-
sor into a matrix called 1-mode, 2-mode,. . . , N -mode matrix
unfolding. For instance for N = 3, one can stack the row,
the column, or the depth as shown in Figure 1 for one mode.
In general, the d-mode matrix unfolding results in a matrix
X(d) ∈ R

Id×I1···Id−1Id+1···IN .
Tensor factorization. Unlike matrix factorization, tensor

decomposition does not have a unique formulation and many
different methods exist to recover a tensor as a combina-
tion of multiple factors (see e.g., (Kolda and Bader 2009)).
The two principals tensor decomposition formulation are
the CANDECOMP-PARAFAC (CP for short) decomposi-
tion and the Tucker decomposition. The CP decomposition
decomposes a n-order tensor into a sum of rank-one tensor.
More precisely, a three-order tensor X ∈ R

N×M×P is de-
composed as

X = [A,B,C] =

K∑
k=1

A:,k ⊗ B:,k ⊗ C:,k,

where A ∈ R
N×K , B ∈ R

M×K , C ∈ R
P×K , K is an

arbitrarily chosen dimension, and ⊗ denotes the outer prod-
uct. As a result, the entries of the tensor can be computed as
Xijp =

∑K
k=1 Ai,kBj,kCp,k. The minimal value of K for

which a decomposition exists defines the rank of the tensor.
On the contrary, the Tucker decomposition assumes that the
tensor X can be factorized as

X = W ×1 U
(1) ×2 U

(2) ×3 U
(3)

where U (d) contain orthonormal vectors called the d-mode
singular values and W is the core tensor. In general, for any
d ∈ {1, 2, 3} the matrices are U (d) ∈ R

Id×kd and the core
tensor is W ∈ R

k1×k2×k3 , where k1, k2, and k3 are dimen-
sions arbitrarily chosen.

In general, computing the CP and the Tucker decom-
positions is a computationally challenging problem. In the
next section we present an efficient parallel algorithm, called
higher order alternating least-squares (HOALS), to perform
the general tensor factorisation. In the following section we
compare HOALS to other state of the art methods.

Higher Order Alternating Least Squares

HOALS is an algorithm for tensor completion through the
factorization of the tensor into either a Tucker or CP decom-
position. For sake of clarity, we detail the algotihm for the
Tucker decomposition and we postpone the CP decomposi-
tion case in the appendix. Besides, while the algorithm ap-
plies for any n-order tensor, we describe it for n = 3 for
the sake of simplicity. The main idea of HOALS is that the
decomposition of an n-order tensor can be parallelized over
each of its modes independently, thus reducing it to a series
of matrix decomposition operations. Furthermore, each ma-
trix decomposition can be further parallelized across each
component. The resulting process can be easily split over
multiple machines, whose jobs are completely independent
and whose results are merged only at the last step.

A RS is provided with a tensor R which is only partially
filled with the feedback in D (i.e., feedback for triples (user,

Algorithm 1 Direct-HOALS for Tucker factorization.
Input: dataset D, desired ranks {kd}3d=1
Construct the initial (sparse) 3-order tensor R from D
Initialize W, I and A with small random numbers
while Not at convergence do

Fix W, I , A and update U
Fix W, U , A and update I
Fix W, U , I and update A
Compute W

.
= R ×1 U

∗ ×2 I
∗ ×3 A

∗
end while
Return full tensor R̂

.
= W ×1 U ×2 I ×3 A

item, action)) and the objective is to construct a full tensor
R̂ with entries that are as close as possible to the ”true” ones
(i.e., the feedback a user would give to an item for a spe-
cific action). Similar to the case of matrix completion, this
problem is ill-posed (i.e., all tensors R̂ with the same entries
as R in D are equivalent) unless constraints on the structure
of the tensor R̂ are introduced. In particular, we introduce
rank-constraints in the decomposition of R̂ either following
Tucker or CP.

Following the definition of Tucker decomposition, we
work on tensors R̂ that can be decomposed as

R̂
.
= W ×1 U ×2 I ×3 A,

With this decomposition we have the flexibility of choosing
the ranks kU , kI , and kA of each of the latent factors in-
dependently. This is particularly important in RSs where the
set of users, items, and actions have different complexity and
require different degrees of freedom in their description. The
objective is to find the tensor R̂ that minimizes the squared
loss with a penalty term related to the latent factors weighted
by the number of observed interactions. We thus want to find
the components latent factors U , I , and A and the core ten-
sor W the minimize the following loss function

L(W,U, I, A) =
∑

u,i,a∈D

(
Ruia − R̂uia

)2

+ (1)

λ

(
n∑

u=1

nUu ||Uu||2 +
p∑

i=1

nIi ||Ii||2 +
q∑

a=1

nAa ||Aa||2
)
,

where nUu (resp. nIi , nAa ) is the number of known entries
for user u (resp. item i, a) in D and λ is a regularization
parameter.

Direct-HOALS. The loss function in Eq. 1 can be min-
imized with an alternating scheme similar to ALS-WR for
MF (see Alg. 1). In this case, instead of repeating an alter-
nate update on users and items only, also the action mode is
updated while keeping the other two modes fixed. While a
simple and smooth generalization of ALS to tensor factor-
ization, this algorithm, called Direct-HOALS, increases the
complexity of the original ALS-WR by adding an update
over the action mode. This process may be computationally
expensive and prevent from scaling this algorithm to tensors
of higher modes.
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Algorithm 2 Parallel-HOALS for Tucker factorization.
Input: dataset D, desired ranks {kd}3d=1
Construct the initial (sparse) 3-order tensor R from D
Compute the three matrices unfolding R(1), R(2), R(3)

In parallel apply 2

ALS-WR on R(1), R̂(1) = M1V 1� and set U = M1

ALS-WR on R(2), R̂(2) = M2V 2� and set I = M2

ALS-WR on R(3), R̂(3) = M3V 3� and set A = M3

Compute W
.
= R ×1 U

∗ ×2 I
∗ ×3 A

∗

Return full tensor R̂
.
= W ×1 U ×2 I ×3 A

Parallel-HOALS. Instead of running ALS over all modes
iteratively, we design an alternative algorithm, called Paral-
lel-HOALS, which runs ALS separately on each mode and
collecting its result to obtain the final tensor decomposition.
The idea is to first construct the three modes R(1), R(2), and
R(3) and perform ALS-WR on each of them to find a suit-
able factorization of the corresponding matrix. The first fac-
tors of each of these decompositions can be then collected to
construct the factorization of the initial tensor. The resulting
algorithm is illustrated in Alg. 2. Despite its difference with
the sequential implementation of the ALS idea of Direct-
HOALS, the following theorem shows that (the proof is re-
ported in the appendix), Parallel-HOALS returns exactly the
same tensor at the end.

Theorem 1 Solving U (resp. I , A) with alternating least
square and kU (resp. kI , kA) latent factor on the tensor R̂
is equivalent to applying alternating least square on R(1)

(resp. R(2), R(3)) with kU (resp. kI , kA) latent factor and
identify U (resp. I , A) as the left side matrix in the matrix
factorization.

Notice that since this result applies separately for each
mode it can be extended to an arbitrary number of modes
and it applies to both Tucker and CP decompositions. The
biggest advantage of this version of HOALS is that the three
applications of ALS-WR on R(1), R(2), and R(3) can be
computed in parallel. Furthermore, since ALS itself is highly
parallelizable (Zhou et al. 2008), each instance of ALS-WR
associated to any mode can be further parallelized, thus mak-
ing HOALS very efficient without suffering any major over-
head from the number of modes and elements in each mode.
The update complexity for each event (i.e., update of the la-
tent factor for one user, one item, or one action) for matrix
R(d) is O (

fd
2nd

s + fd
3
)
, where nd

s is the number of non-
zero elements on row R(d),s and fd is the rank constraint.
Since in HOALS we can parallelize the computation of each
matrix and within each matrix, the complexity of one update
is due to the largest latent dimension over the three dimen-

sions, i.e., O
(

max
d∈{1,2,3},s

(fd
2nd

s + fd
3)

)
.

Additional advantages. Finally, we would like to empha-
size some features that make the specific tensor decomposi-
tion in HOALS particularly suitable for RS, unlike other TF
methods. First, our method use Tikhonov regularization with
different weight on each mode that regularized appropriately

each dimensions and is crucial for such application since the
number of action provided by each user can be highly het-
erogeneous. Second, tensor decomposition may appears dif-
ficult in practice because of memory issues that can arise
from the additional modes. However thanks to its appropri-
ate treatment of missing values and the low rank decomposi-
tion, memory is not an issue in practice since HOALS never
requires to store the full tensor.

Experiments

We tested both the accuracy and the scalability of our
method on different types of datasets:
• rather small datasets for recommendation problem but

still large for common machine learning problem. This
datasets allowed us to make a lot of experiments on a sub-
stantial number of algorithms and tuning them quite ef-
fectively. These datasets also emphasize the benefit from
using tensor decomposition instead of matrix decompo-
sition. For the sake of space, we present the results on a
e-commerce dataset in the main paper and on Last.fm in
the appendix.

• a big dataset to test the scalability performance as a func-
tion of the dataset size and the number of machines used.

Testing accuracy

We report an empirical comparison of a number of matrix
and tensor decomposition methods. The objective is two-
fold: 1) investigate whether tensor completion enables an
effective transfer across different actions that improves over
matrix completion where each action is treated separately,
2) compare HOALS to state-of-the-art methods.
E-commerce dataset (authors 2015): this dataset contains
historical interactions (click, add to cart, buy) from a real
e-commerce website of 1290 users and 390 items, resulting
in around 120k (user, item, action, value) quadruplets. The
value is the number of times the user performed the action
on the item.
Algorithms. Beside HOALS, we tested four other state-of-
the-art algorithms, two with different initialization
• MI-SVD: multiple independent SVD applied to each slice

of the tensor,
• HOSVD v0/vMean: as proposed by (Symeonidis,

Nanopoulos, and Manolopoulos 2008), filling missing
values with either 0 or the mean of the modes,

• MI-ALS: the classic ALS-WR applied to each slice of the
tensor, that is three independent ALS-WR,

• CP-ALS-R v0/vMean (aka PARAFAC-ALS) as in Alg.1
of (Hu et al. 2013), filling missing values with 0 or the
mean of the modes. We used the cp als python code from
the sktensor package,

• tucker/CP-HOALS, our parallel algorithm described in
Alg. 2. The implementation is available at (authors 2015).

The vMean versions had only been tested on the E-
commerce dataset because filling with non zero values re-
quire much more memory, since sparse representations of
the structures cannot be used any more. A modification of
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the ALS-WR more suitable for implicit feedback datasets,
like the Last.fm dataset, is proposed in (Hu, Koren, and
Volinsky 2008). The algorithm is very similar to the clas-
sic ALS-WR but it penalizes each user-item affinity error
by a weight depending on the true user-item value. In the
following, we use exactly the same approach to obtain an
implicit version of HOALS. Experiments test both classic
and implicit methods for ALS-WR and HOALS, which are
referred to MI-ALS and HOALS for the classic version and
imp-MI-ALS and imp-HOALS for the implicit counterparts.
Finally, we also tried the algorithms proposed by (Romera-
Paredes and Pontil 2013) and (Acar et al. 2010) but their
solutions could not scale to the size of our datasets.
Experimental protocol. We first executed a preprocessing
step.

1. We filtered out items seen by less than 5 users,

2. We define a maximum threshold for each action used to
cap all the values (i.e., ruai = min{ruai, thresholda}).
This prevents from having outliers that tend to degrade
the performance. The click threshold was set to 50, the
ATC to 20 and buy to 10.

3. We scaled all values between 0 and 10 in order to have
comparable slices. This is needed since click, ATC, and
buy actions are at very different scales.

For this experiment we performed 5-cross validation. We
first randomly split the users into five groups and at each
round we selected four groups to form the training users
and the remaining one as testing users. Then, we selected
all the data belonging to a train user plus 70% at random
from the test users to form the train set. The 30% of data
left from the test users form the actual test set. Notice that
this selection protocol for the test user is needed in order to
have some feedback for each user, otherwise no prediction
can be made for completely unknown users. For evaluating
the recommendation performance, we use the rank-measure
error introduced by Hu, Koren, and Volinsky (2008), which
is more suitable for implicit feedback datasets. The rank-
measure error is computed as

ρa =

∑
u,i ru,i,aρu,i,a∑

u,i ru,i,a
, (2)

where ρu,i,a denotes the percentile-ranking of the item i
among all items previously seen by user u for action a or-
dered by decreasing value of ru,i,a. For instance, if item i
is predicted to be the most (resp. the least) suitable for user
u, then ρu,i = 0% (resp. ρu,i = 100%). If the predictions
are made at random, the expected rank-measure is 50%. Low
values of ρ indicate that most of highly seen items have been
predicted to be the most suitable and thus corresponds to a
good recommendation.
Results. The results are reported in Table 1. For Tucker
models we tried 10, 50, 100 and 200 number of latent vec-
tors for each possible tuning combination for the user and
item slice, and 2 latent vectors for the action slice, since
the depth of the tensor is always 3 in our cases. For CP de-
compositions, given that the rank has to be the same for all
modes, we tried 2, 3, 4, 5 and 10 latent vectors for all modes.

model dim 1 dim 2 action ρa
imp Tucker-HOALS 10 200 click 28.79

Tucker-HOALS 200 200 click 30.34
CP-HOALS 5 - click 31.92

imp CP-HOALS 2 - click 32.01
CP-ALS-R 2 - click 32.20

MI-ALS 50 - click 35.89
HOSVD v0 10 200 click 36.39

HOSVD vMean 10 100 click 36.42
imp MI-ALS 100 - click 36.66

MI-SVD 10 - click 37.11
imp Tucker-HOALS 10 200 atc 28.58

Tucker-HOALS 200 200 atc 31.63
imp CP-HOALS 2 - atc 31.70

CP-HOALS 5 - atc 31.91
CP-ALS-R 2 - atc 32.11

HOSVD vMean 10 200 atc 34.94
HOSVD v0 10 200 atc 35.08

MI-SVD 10 - atc 36.25
MI-ALS 10 - atc 36.63

imp MI-ALS 100 - atc 43.14
imp Tucker-HOALS 10 200 buy 28.13

CP-ALS-R 4 - buy 31.19
imp CP-HOALS 2 - buy 31.45

CP-HOALS 5 - buy 31.74
Tucker-HOALS 10 200 buy 32.38
HOSVD vMean 10 100 buy 34.56

HOSVD v0 10 50 buy 34.88
MI-SVD 10 - buy 35.49
MI-ALS 10 - buy 36.79

imp MI-ALS 50 - buy 41.96

Table 1: ρa measure (rank-measure) on the E-commerce
dataset ordered by decreasing performance. For MF and CP,
dim1 refers to the common latent space. For TF, dim1 and
dim2 refers to the number of latent vectors for the user and
item space respectively and dim3 is always equal to 2.

We were not able to test higher number of latent vectors be-
cause of memory issue when trying to factorize the third un-
folding matrix of size (q × np), which illustrates one of the
drawbacks of CP decompositions. Furthermore, notice that
increasing the number of latent vectors for the CP decom-
position is not really meaningful since the action mode only
contains three different actions. Finally for matrix decom-
position we tried 10, 50, 100 and 200 number of latent vec-
tors for each slice. For the sake of space we do not provide
the parameters tuning results for each combination (several
hundreds) and only report the performance for each model
in their best configuration for each action.
In e-commerce applications, recommendations are usually
performed using only the click action because of the spar-
sity of the buy action. For instance, in this dataset the spar-
sity level for click, ATC, and buy are respectively 85%,
94% and 98%. However, the results in Table 1 show that
Tucker HOALS (implicit or not) outperformed every other
model obtaining a ρ measure around 28% for the implicit
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version, even for the buy action, while other models are at
around 35%. The implicit Tucker HOALS improves the clas-
sic Tucker HOALS performance by more than two points,
which illustrates the benefit of such of modelisation. Even
the CP models outperformed the other factorization meth-
ods with a ρ measure around 32%. This indicates that
the HOALS is able to perform better recommendation for
the optimization of the purchase and is more suitable than
the other tensor factorization methods thanks to its abil-
ity to deal with missing values. Furthermore, tensor fac-
torization methods achieve better results than their matrix
factorization counterparts (HOALS vs ALS and HOSVD
vs SVD), which shows the advantage of transferring in-
formation across actions within this dataset. However, the
HOSVD improvement over MI-SVD is relatively small,
about 1 point, whereas the tucker HOALS improvement over
MI-ALS is around 5 points for the classic algorithm and 12
points for the implicit one. These results show the effective-
ness of HOALS in overcoming the sparsity issue by sharing
knowledge across the different actions. Finally, we see no
real improvement in the initialisation of missing values with
0 or with mean values.

Testing scalability

For this experiment we used a real world dataset referred as
big E-commerce dataset (authors 2015). The full dataset is
composed of 100k users, around 25k items and 4 actions
(view the product, click on the product, add it to cart or
buy it) resulting in around 53M (user, item, action, value)
quadruplets. The view action is a passive action, a user is
exposed to an item by the website but cannot directly decide
to see it or not. Thus this action is not really interesting to
predict but can be very informative. Indeed a user may be
more likely to click, add to her cart or buy a product if she
sees it a lot. It is then a valuable context information that can
be easily taken into account using tensor decomposition.

To test the scalability we measured the execution time
when varying the size of the dataset and number of ma-
chines. For the size of the dataset we selected either 1k, 2k
or 3k users and all the items (since the files are split every
1k users), knowing that 1k users result in a dataset of around
9Mo and 530k lines, i.e., quadruplets. We performed our ex-
periments on Google Cloud on the n1-standard-2 machine,
which is standard 2-CPU machine with 2 virtual CPUs and
7.5 GB of memory. When running the three decompositions
in three independent cluster, the execution time depends on
the execution time of the longest decomposition. We then
report here the execution time of the longest decomposition
for dataset size. The code is available at (authors 2015) for
reproducibility.

Results. Fig. 2 compares Direct and Parallel-HOALS.
We see that the execution times decreases linearly as the
number of workers increases. Doubling the number of work-
ers does not divide the execution time by a factor of 2 (for
instance 2 workers, 1k users need 1200 seconds and with
4 workers it need 780 seconds) because of the set up and
the communication time. Adding 1CPU decreases the run-
ning time in average of 200 (resp. 300 and 400) seconds for
1k users (resp. 2k and 3k). Thus adding users affect mainly

1000

2000
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4000

2 4 6
number of workers

tim
e 

(s
)

number of users (dataset size)

1k (8.7Mo)

2k (17.7Mo)

3k (27.5Mo)

method

Direct HOALS

parallel HOALS

Figure 2: Result of the scalability test of parallel HOALS
ran with the implicit version with rank constraints of 200 for
users and items and 2 for actions. Each workers has 2CPUs.

the set up and communication time but the parallelisation
is more and more effective. We thus see that the HOALS
algorithm scale easily for big dataset thanks to its high par-
allelisation power. Furthermore, this improvement would be
greatly amplified as the number of modes increases. For in-
stance, the performance of RS in e-commerce can be sig-
nificantly improved by adding new contexts such as the day
of the week and the season of the year, thus resulting in a
5-order tensor completion problem.

Conclusion

In this paper we introduced a parallel tensor factorization
algorithm for RSs built on an extension of alternating least
squares. For e-commerce, the buy action is the most prefer-
able action to predict but also the most difficult for matrix
factorization given its high sparsity. However, our HOALS
model proved to be effective to predict any action by lever-
aging knowledge from the other actions and thus make it an
efficient transfer learning algorithm for RSs. An important
advantage of HOALS over state-of-the-art methods such as
CP-ALS-R and HOSVD is its high ability to be parallelized,
and thus it is feasible for large RSs dealing with millions of
users and items. For instance, for a n-order tensor, since CP-
ALS-R computes matrices one after the other, HOALS is
n times more parallelizable. We also extended the implicit
feedback strategy introduced in Hu, Koren, and Volinsky
(2008) to tensor factorization, making our algorithm a very
effective approach to solve efficiently RSs with implicit and
multiple feedbacks.
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Proof of Theorem 1

Tucker Decomposition For sake of space, we use the fol-
lowing short summation notation

kU ,kI ,kA∑
m,l,s=1

.
=

kU∑
m=1

kI∑
l=1

kA∑
s=1

.

Computing the partial derivative of L in Eq.1 w.r.t. Uu0,k0 ,
we get:

1

2

∂L
∂Uu0,k0

=
∑

(i,a)∈Iu0

(kU ,kI ,kA∑
m,l,s=1

Wm,l,sUu0,mIi,lAa,s − Ru0,i,a

)

×
kI ,kA∑
l,s=1

Wk0,l,sIi,lAa,s + λnU
u0
Uu0,k0 , (3)

where Iu0 denotes the items and actions seen by user u0.
Let us denote

Vi,a
m =

kI∑
l=1

kA∑
s=1

Wm,l,sIi,lAa,s (4)

and equalize the derivative above to 0, then we get the equa-
tion ∑

(i,a)∈Iu0

( kU∑
m=1

Uu0,mVi,a
m Vi,a

k0

)
+ λnUu0

Uu0,k0 (5)

=
∑

(i,a)∈Iu0

Vi,a
k0

Ru0,i,a

We introduce the mapping g1 function:

g1 : [p] × [q] → {1, · · · , pq}
(i, a) 	→ 1-mode unfolding

corresponding column index

which maps item and action indices to a common index used
to refer to the column of the 1-mode unfolding of the tensor.
We can use this function to re-index R1 ∈ R

n,pq such that
R1

u,g1(i,a)
= ru,i,a and V1 ∈ R

pq,kU such that V1
g1(i,a),m

=

Vi,a
m . Let Gu0

= {g : 1 ≤ g ≤ pq,R1
u0,g �= 0} we can then

rewrite the left side (LS) of Eq. 5 and obtain ∀u0, ∀k0:

(LS) =

kU∑
m=1

∑
g∈Gu0

V1
g,k0

V1
g,mUu0,m + λnUu0

Ek0
U�u0

=

kU∑
m=1

[V1�
Gu0

V1
Gu0

]k0,mUu0,m + λnUu0
Ek0,:U

�
u0

= [V1�
Gu0

V1
Gu0

]k0U
�
u0

+ λnVu0
Ek0U

�
u0

Similarly for the right side

(RS) =
∑

g∈Gu0

R1
u0,gV1

g,k0
= V1

Gu0 ,k0

�
R1

u0,Gu0

�
.
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Thus ∀u0, Eq. 5 becomes(
V1
Gu0

�V1
Gu0

+ λnUu0
E
)
U�u0

= V1
Gu0

�
R1

u0,Gu0

�

And finally,

U�u0
=

(
V1
Gu0

�V1
Gu0

+ λnUu0
E
)−1

V1
Gu0

�
R1

u0,Gu0

�
, (6)

which is exactly the classic ALS-WR formula for matrix
factorization applied to the 1-mode matrix unfolding (11),
which concludes the proof. �

CP Decomposition Computing the partial derivative of L
in Eq.1 w.r.t. Uu0,k0

, we get:

1

2

∂L
∂Uu0,k0

=
∑

(i,a)∈Iu0

( K∑
k=1

Uu0,kIi,kAa,k − Ru0,i,a

)
× Ii,kAa,k + λnUu0

Uu0,k, (7)

where Iu0 denotes the items and actions seen by user u0. AS
previously, let us denote

Vi,a
k = Ii,kAa,k (8)

and set the derivative above to 0, then we get the equation

∑
(i,a)∈Iu0

( K∑
k=1

Uu0,kVi,a
k Vi,a

k0

)
+ λnUu0

Uu0,k0
(9)

=
∑

(i,a)∈Iu0

Vi,a
k0

Ru0,i,a

We use again the function g1 to re-index R1 ∈ R
n,pq

such that R1
u,g1(i,a)

= ru,i,a and V1 ∈ R
pq,K such that

V1
g1(i,a),k

= Vi,a
k . Let Gu0

= {g : 1 ≤ g ≤ pq,R1
u0,g �= 0},

we rewrite the left side (LS) of Eq. 9 and obtain ∀u0, ∀k0

(LS) =

K∑
k=1

∑
g∈Gu0

V1
g,k0

V1
g,kUu0,k + λnUu0

Ek0U
�
u0

=

kU∑
m=1

[V1�
Gu0

V1
Gu0

]k0,kUu0,k + λnUu0
Ek0,:U

�
u0

= [V1�
Gu0

V1
Gu0

]k0
U�u0

+ λnVu0
Ek0

U�u0

Similarly for the right side

(RS) =
∑

g∈Gu0

R1
u0,gV1

g,k0
= V1

Gu0
,k0

�
R1

u0,Gu0

�
.

We can then conclude as previously. �

Related Work

In this section we give a detailed comparison between
HOALS and state-of-the-art methods for RSs based on ma-
trix factorization, tensor factorization and transfer learning.
Some of the following methods are also compared in the ex-
periments.

Matrix factorization. As illustrated in the previous sec-
tion, ALS-WR is a matrix factorization method that com-
putes a low-rank approximation of the feedback matrix
R ∈ R

n×p for each action separately. Under the assump-
tion that R can be factorized in two matrices U ∈ R

k×n and
V ∈ R

k×p, matrix completion is performed by minimizing
the loss

L(U, V ) =
∑

(u,i)∈D

(
ru,i − UuV

�
i

)2
+ (10)

λ
(∑

u

nUu ||Uu||2 +
∑
i

nIi ||Vi||2
)
,

where nUu (resp. nIi ) is the number of known entries for user
u (resp. item i). At each iteration, given a fixed V , the matrix
U is updated for user u as

Uu
� =

(
V �Gu

VGu + λnUuE
)−1

V �Gu
Ru,Gu

� (11)

where Gu denotes the indices of the known entries for user
u, and E is the identity matrix in R

k. The item update rule
is obtained by inverting the role of U and V . Those updates
can be perform in parallel for each user or each item thus
allowing a good scalability to a large number of users and
items.

PARAFAC decomposition.
In (Hu et al. 2013), the problem of finding a CP decom-

position of a generic tensor X is restated as a least-squares
problem, i.e., finding the factors A, B, C that minimize the
loss

f(A,B,C) =
1

2
||X − [A,B,C]||2F+

λA

2
||A||2F +

λB

2
||B||2F +

λC

2
||C||2F .

Computing the derivative and setting it to zero yields to
a closed-form expression for each matrix, based on the
pseudo-inverse property of Khatri-Rao product. One can
then alternately learn each of the matrices until convergence.
The resulting algorithm called CP-ALS-R has the advan-
tage to be simple and easily implemented. However, this ap-
proach suffers from major limitations. First, the definition
of the least-squares problem does not deal with missing val-
ues and the tensor is assumed to be full. In RS, this means
that the initial sparse tensor is usually filled with zeros or
the mean over each mode. Furthermore, CP-ALS-R directly
inherits one of the major drawbacks of the CP decomposi-
tion: each rank constraint must be the same for each mode.
When the dimension of the tensor are highly unbalanced, as
in the case of e-commerce, where we may have millions of
users, thousand of products but only few actions, the rank
constraint is either too high for the action dimensions or too
low for the other modes.

Tucker decomposition. One of the most popular ap-
proaches to perform Tucker decomposition is the generaliza-
tion of SVD to n-order tensors, called HOSVD (Lathauwer,
Moor, and Vandewalle 2000). We recall that the SVD of a
matrix is the product of three matrices U , S and V , where U
and V are orthonormal matrices of the left and right singu-
lars values and S is the diagonal matrix of (ordered) singular
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Algorithm 3 HOSVD for tensor factorization.
Input: dataset D, desired rank {kd}3d=1
Construct the initial (sparse) 3-order tensor X from D
for d ∈ {1, 2, 3} (modes) do

Compute the matrix unfolding X(d)

Apply SVD on X(d) and select the kd largest singular
values

X̂(d) = U (d)S̃dV
�
d

end for

Compute W
.
= X ×1 U

(1)� ×2 U
(2)� ×3 U

(3)�

Return full tensor X̂
.
= W ×1 U

(1) ×2 U
(2) ×3 U

(3)

values of X such that X = USV �. In RS, we preserve only
the k largest singular value to get an approximation of X

defined as X̂
.
= US̃V �, where S̃ is the truncated value of

S where we replaced the k + 1, · · · ,min(n, p) largest sin-
gular value by 0. In order to compute the Tucker decompo-
sition, (Symeonidis, Nanopoulos, and Manolopoulos 2008)
proposed to apply SVD on unfolded versions of the tensor as
illustrated in Alg. 3. Similar to SVD for MF, this approach
suffers from the fact that the missing values are implicitly
translated into 0 entries or other arbitrary values. In many
RS, this may significantly bias the result and return poor pre-
diction performance.

Dealing with missing values. Both previous TF algo-
rithms can be adapted to take into consideration missing val-
ues. Let P a binary 3-order tensor defined as (see (Acar et al.
2010), (Tomasi and Bro 2005))

Pijk =

{
1, if (i, j, k) ∈ D
0, else

Using P, (Acar et al. 2010) adapts the objective function of
the CP decomposition as

fP(A,B,C) =

I,J,K∑
i,j,k=1

(
Pijk

(
Xijk −

R∑
r=1

AirBjrCkr

))2

= ||Y − Z||2

with Y = P ∗ X and Z = P ∗ [A,B,C] , where ∗ represent
the element by element multiplication. They propose to use
nonlinear conjugate gradient method after having vectorized
the two tensors (by concatenating all the modes into a long
vector). The resulting algorithm, called CP-WOPT, has the
advantage to use a simple first-order optimization method.
Nevertheless it suffers from different drawbacks. First, this
approach can be really memory greedy since for each step of
the algorithm we need to store very long vectors with all the
known values while HOALS store only the values related
to a particular user, or item, or action, and thus fail in large
recommender systems. Indeed, they show experiments on a
64×4392×28 tensor that is very small compared to state-of-
the-art RSs like Amazon or Netflix. Second, the algorithm
proceeds sequentially and it can not be parallelized. This is
also a major drawback in RSs that deal with millions of user
and entries that cannot be managed by a unique non-parallel
method.

A similar approach can be followed for the Tucker de-
composition by defining the objective

fP(W, U, I, A) =
1

2
||P ∗ (X − W ×1 U ×2 I ×3 A)||2F

In order to learn the parameters, (Filipović and Jukić 2013)
used nonlinear conjugate gradient with HOSVD initializa-
tion. The gradients of the objective function are (similar for
I and A)

∇UfP = [P ∗ (W ×1 U ×2 I ×3 A− X)](1)·
[(W ×2 I ×3 A)(1)]

�

∇WfP = {P ∗ (W ×1 U ×2 I ×3 U − X)}×1

U�×2 I
�×3 A

�

Although interesting, this method has several limitations
when applied to RSs. First, it does not include any regular-
ization in the objective function and this may lead to overfit-
ting data. Second, as for the CP models, the algorithm can-
not be parallelized and this hinders its applicability to large
scale RSs.

Finally, when dealing with multi-relational data, the prob-
lem can be seen as a tensor completion problem where each
slice is a squared matrix. (Nickel, Tresp, and Kriegel 2011)
studied this specific problem by leveraging this particularity
of the tensor in their RESCAL algorithm but we could not
compare to them because of the squared matrix constraint
that make no sense in our case.

Additional experiment

Dataset. For this second experiment to test the accuracy of
our model, we use a real-world dataset:
Last.fm Dataset - 1K users (Celma 2009): it is formed of
around 20M lines representing the track of an artist that a
user is listening to at a given timestamp. We transformed the
dataset in order to get the quadruplets (user, artist, moment,
value), where the moment represents the time of day clus-
tered into three periods: morning from 6 a.m. to 2 p.m., af-
ternoon from 2 p.m. to 10 p.m., and night from 10 p.m. to 6
a.m. The value counts the number of times the user listened
to that artist in that period. The final dataset is composed of
510k quadruplets.
Results. The results are reported in Table 2. For this dataset
(Table 2), tucker HOALS (implicit or not) obtains the best
results with a ρ measure around 25%, two points better than
HOSVD which is the next best model. Surprisingly, it is not
the implicit version that achieve the best performance but the
classic one, although both methods have really close perfor-
mance (less than 0.6 point). Our CP method achieves rela-
tively bad performance with a ρ measure around 32%. We
think this can come from three reasons. The first one is due
to the constraint of CP decomposition that imposes to have
the same number of latent factors for each mode, which is
a strong drawback for very imbalance tensor’s dimension,
as it is the case here. The second one is the low number of
features for the users and items modes that we could not
increase because of computational issues. Both these expla-
nations are common to CP-ALS-R and CP-HOALS. Finally,

526



model dim 1 dim 2 action ρa
Tucker-HOALS 200 200 morning 23.65

HOSVD 200 200 morning 24.58
imp Tucker-HOALS 200 200 morning 26.54

imp MI-ALS 50 - morning 31.62
imp Tucker-HOALS 10 10 morning 30.40

CP-ALS-R 10 - morning 31.76
imp CP-HOALS 10 - morning 34.42

CP-HOALS 4 - morning 36.98
MI-SVD 50 - morning 34.72
MI-ALS 10 - morning 40.53

Tucker-HOALS 200 200 afternoon 23.62

imp tucker-HOALS 200 200 afternoon 25.61
HOSVD 100 100 afternoon 27.26

imp Tucker-HOALS 10 10 afternoon 29.47
imp MI-ALS 50 - afternoon 30.14
CP-ALS-R 10 - afternoon 30.85

imp CP-HOALS 4 - afternoon 32.57
CP-HOALS 5 - afternoon 37.25

MI-SVD 50 afternoon 34.00
MI-ALS 10 - afternoon 39.25

Tucker-HOALS 200 200 night 24.81

imp Tucker-HOALS 200 200 night 25.28
HOSVD 100 100 night 27.61

imp Tucker-HOALS 10 10 night 29.97
imp MI-ALS 50 - night 31.49
CP-ALS-R 10 - night 31.85

imp CP-HOALS 4 - night 32.92
CP-HOALS 3 - night 37.05

MI-SVD 10 - night 35.17
MI-ALS 10 - night 40.30

Table 2: ρa measure (rank-measure) on the Last.fm dataset
ordered by decreasing performance. For MF and CP, dim1
refers to the common latent space. For TF, dim1 and dim2
refers to the number of latent vectors for the user and item
space respectively. Due to memory limitations, we were not
able to perform a CP-ALS-R in dimension greater than 10,
we thus compare to HOALS in dimension 10 as well.

given the good performance of the HOSVD decomposition,
we conjecture that treating missing values as 0 as done by
the SVD composition models is not completely unreason-
able in this case, since a user never listens to an artist if
he/she never heard about or do not like her. The combination
of the two precedents reasons and this observation explains
the bad performance of CP-HOALS on this dataset that has
difficulty to learn good user and item representation in a very
low dimension with only the known entries. However, once
again the good performance of the tensor factorization mod-
els prove the effectiveness of transfer learning in this con-
text. Indeed the gain between best ALS and the best tucker
HOALS is around 7 points.
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