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Abstract

In this paper, we study inexact damped Newton method im-
plemented in a distributed environment. We are motivated
by the original DiSCO algorithm [Communication-Efficient
Distributed Optimization of Self-Concordant Empirical Loss,
Yuchen Zhang and Lin Xiao, 2015]. We show that this algo-
rithm may not scale well and propose algorithmic modifica-
tions which lead to fewer communications and better load-
balancing between nodes. Those modifications lead to a more
efficient algorithm with better scaling. This was made possi-
bly by introducing our new pre-conditioner which is specially
designed so that the preconditioning step can be solved ex-
actly and efficiently. Numerical experiments for minimization
of regularized empirical loss with a 273GB instance shows
the efficiency of proposed algorithm.

Introduction

As the size of the datasets becomes larger and larger, dis-
tributed optimization methods for machine learning have be-
come increasingly important (Dekel et al. 2012; Shamir and
Srebro 2014). Existing methods often require a significant
amount of communication between computing nodes (Ma et
al. 2015; Yang et al. 2013), which is typically several mag-
nitudes slower than reading data from their memory (Mare-
cek, Richtárik, and Takáč 2014). Thus, distributed machine
learning suffers from the communication bottleneck in real
world applications.

In this paper we focus on the regularized empirical risk
minimization problem

minw∈Rdf(w) := 1
n

∑n
i=1φi(w, xi) +

λ
2 ‖w‖22, (P)

where {xi, yi}ni=1 are our training samples with (xi, yi) ∈
R

d × R. We will denote by X the data matrix, i.e. X :=
[x1, ..., xn] ∈ R

d×n. We assume that each φi(·, xi) is
L-smooth1 loss function which typically depends on yi.
The second part of objective function (P) is �2 regularizer
(λ > 0) which helps to prevent over-fitting of the data.
There has been an enormous interest in large-scale machine
learning problems and many parallel (Bradley et al. 2011;
Recht et al. 2011) or distributed (Agarwal and Duchi 2011;
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1Function φ is L-smooth, if∇φ(·) is L-Lipschitz continuous.

Richtárik and Takáč 2013; Shamir, Srebro, and Zhang 2013)
algorithms have been proposed.

From optimization point of view some researches try to
minimize (P) directly, which includes SGD (Shalev-Shwartz
et al. 2011), SVRG and S2GD (Johnson and Zhang 2013;
Konečný et al. 2014) and SAG/SAGA (Schmidt, Roux, and
Bach 2013; Defazio, Bach, and Lacoste-Julien 2014). On the
other side, some researchers prefer to optimize its dual prob-
lem (Hsieh et al. 2008)
maxα∈RnD(α) := − 1

n

∑n
i=1φ

∗
i (−αi)− λ

2 ‖ 1
λnXα‖2, (D)

where φ∗
i is a convex conjugate function of φi. This has

been done successfully in multicore or distributed settings
(Takáč et al. 2013; Jaggi et al. 2014; Ma et al. 2015;
Takáč, Richtárik, and Srebro 2015; Qu, Richtárik, and Zhang
2015).

The Challenge In Distributed Computing. We can iden-
tify few challenges when we deal with high-performance
distributed environment.

1. Load-Balancing. Assume that we have m computational
nodes available for use. In order to have an algorithm,
which is scalable, the algorithm should make each node
”equally” busy. Amdahl’s law (Rodgers 1985) implies
that if the parallel/distributed algorithm runs e.g. 50% of
the time only on one of the nodes (usually the master
node), then the possible speed-up (on the nodes used) of
the algorithm is bounded by 1

0.5+0.5/m

m→∞−→ 2. Hence,
any algorithm which is targeted for a very large scale
problems has to be designed in such a way, that the se-
quential portion of the algorithm is negligible.

2. Communication efficiency. As it was stressed in the in-
troduction, in a distributed setting the communication be-
tween nodes should be avoided or minimized (if possible).
Hence, another –and critical– challenge is to balance the
time the nodes are doing some computation and the time
they spent in the communication.
In this paper, we modify the design of promising DiSCO

algorithm (Zhang and Xiao 2015). We completely redesign
the algorithm (partitioning of the data, preconditioning,
communication patterns) to get a new algorithm which

1. has almost linear scaling – the serial portion of the pro-
posed algorithm is almost negligible,
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2. balances work-load across nodes perfectly – all nodes
are working all the time, no special job for master node,

3. small amount of communication – our algorithm –in
some regimes– send a smaller amount of data over the
network than in the original DiSCO algorithm.

Related Work

As stressed in the previous section, one of the main bottle-
necks in distributed computing is communication. This chal-
lenge was handled by many researchers differently. In the
ideal case, one would like never to communicate or maybe
communicate only once at the end to form a result. How-
ever, such a procedure which could communicate only max
once and would be able to achieve an arbitrary good solu-
tion (when no node can have access to all the data) is more
fantasy than reality.

Hence, to somehow ”synchronize” work on different
computing nodes, researchers use a various standard tech-
nique from optimization. Few of them based their algo-
rithms on ADMM type methods (Boyd et al. 2011; Deng
and Yin 2012), another used block-coordinate type algo-
rithms (Yang 2013; Jaggi et al. 2014; Ma et al. 2015),
where they solved on each node some local sub-problems
which together formed an upper-bound on the optimization
problem. The balancing of computation and communica-
tion was achieved by varying the accuracy of the solutions
of the local sub-problems, which turns out to be more ef-
ficient than some previous approaches (Takáč et al. 2013;
Takáč, Richtárik, and Srebro 2015)). The very recent DANE
(Shamir, Srebro, and Zhang 2013) and DiSCO (Zhang and
Lin 2015) algorithm are Newton-type methods, where in
each iteration the step is solved inexactly using Precondi-
tioned Conjugate Gradient (PCG) method.

Contributions

In this section, we summarize the main contributions of this
paper (not in order of significance).

1. Preconditioning is solved in closed form and effi-
ciently. The PCG method needs to solve the precondi-
tioned system of linear equations (Step 7 in Algorithm
2). In DiSCO algorithm, the authors suggested using
SAG/SAGA algorithm which has a linear rate of conver-
gence. However, such algorithm is run only on the master
node, while all other workers are being idle, and unfortu-
nately, the time to solve the preconditioned system is not
at all negligible. In our experiments, we observed that for
same dataset the percentage of time spent in solving PCG
was more than 50% of the total running time. This implies
that DiSCO algorithm would scale very poorly.
Another problem is, even though it takes such a long time
to solve the preconditioning step, exact solutions are still
not obtained. Therefore, original DiSCO algorithm uses
approximated PCG in which in each iteration different
matrix P is used (hence it loses the nice property of PCG),
which may lead to slow convergence of PCG in practice.
Let us note that the theory in (Zhang and Lin 2015) as-
sumes that PCG step is solved exactly.

To overcome that issue, we propose a new precondition-
ing matrix P , which can be viewed as an approximated
or stochastic Hessian. By exploring the structure of the
new preconditioning matrix P , the linear system can be
solved much more efficiently. Because, the matrix P is
constructed only based on τ � n samples, the time
needed to solve the preconditioning system is negligible.
Moreover, by applying Woodbury Formula to solve such
a linear system with the new P , the solution is guaranteed
to be exact, which fixes the problem on inexact solutions
in original DiSCO. By applying these approaches, we pro-
posed a variant of DiSCO algorithm called DiSCO-S. Our
practical experiments not only confirms that this precon-
ditioning is superior to the preconditioning suggested in
original DiSCO algorithm, but also demonstrate that a
small τ would give a good performance.

2. Data Partitioned by Features. In our setting, we assume
that the dataset is large enough that it cannot be stored
entirely on any single node and hence the dataset has to
be partitioned.
Both DiSCO and DiSCO-S algorithms are based on par-
titioning dataset by samples. By considering another way
of making partitions, i.e., partitioning by features, we pro-
posed a new DiSCO-F algorithm. In this new setting, the
number of communications is reduced by half compared
to the original DiSCO. In the DiSCO-F algorithm, all ma-
chines will do the same work, and the computation will
be distributed more properly. Hence it can be possible to
obtain almost linear speed-up.

Assumptions

We assume that the loss function φi is convex and self-
concordant (Zhang and Xiao 2015):
Assumption 1. For all i ∈ [n] := {1, 2, . . . , n} the con-
vex function φ is self-concordant with parameter M i.e. the
following inequality holds:

|uT (f ′′′(w)[u])u| ≤M(uT f ′′(w)u)
3
2 (1)

for any u ∈ R
d and w ∈ dom(f), where f ′′′(w)[u] :=

limt→0
1
t (f

′′(w + tu)− f ′′(w)).
Table 1 lists some examples of loss functions which sat-

isfy the Assumption 1 with corresponding constant M .

Table 1: Loss functions satisfying Assumption 1 and the pa-
rameter M .

φi(w, xi) M
quadratic loss (yi − wTxi)

2 0
squared hinge loss (max{0, yi − wTxi})2 0

logistic loss log(1 + exp(−yiwTxi)) 1

We further assume that the function f is both L-smooth
and λ-strongly convex.
Assumption 2. The function f : Rd → R is trice contin-
uously differentiable, and there exist constants L ≥ λ > 0
such that ∀w ∈ R

d λI 	 f ′′(w) 	 LI, where f ′′(w) de-
notes the Hessian of f at w, and I is the d×d identity matrix.
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Algorithm 1 High-level DiSCO algorithm
1: Input: parameters ρ, μ ≥ 0, number of iterations K
2: Initializing w0.
3: for k = 0,1,2,...,K do
4: Option 1: Given wk, run DiSCO-S PCG Algorithm 2,

get vk and δk
5: Option 2: Given wk, run DiSCO-F PCG Algorithm 3,

get vk and δk
6: Update wk+1 = wk − 1

1+δk
vk

7: end for
8: Output: wK+1

The Algorithm

We assume that we have m machines (computing nodes)
available which can communicate with each other over the
network. We assume that space needed to store the data ma-
trix X exceeds the memory of every single node. Thus we
have to split the data (matrix X) over the m nodes. The nat-
ural question is: How to split the data into m parts? There
are many possible ways, but two obvious ones:

1. split the data matrix X by rows (i.e. create m blocks by
rows); Because rows of X corresponds to features, we de-
note the algorithm which is using this type of partitioning
as DiSCO-F;

2. split the data matrix X by columns; Let us note that
columns of X corresponds to samples we denote the algo-
rithm which is using this type of partitioning as DiSCO-S;

Notice that the DiSCO-S is the same as DiSCO proposed
and analyzed in (Zhang and Xiao 2015). In each iteration
of Algorithm 1, wee need to compute an inexact Newton
step vk such that ‖f ′′(wk)vk − ∇f ′(wk)‖2 ≤ εk, which is
an approximate solution to the Newton system f ′′(wk)vk =
∇f(wk). The discussion about how to choose εk and K and
a convergence guarantees for Algorithm 1 can be found in
(Zhang and Xiao 2015). And the main convergence result
still applies here: If Algorithm 2 or 3 is run starting with w0

then after

T ∼ O
(
(f(w0)− f(w∗) + log(1/ε))

√
1 + 2μ/λ

)

communication rounds (iterations) the algorithm will pro-
duce a solution ŵ satisfying f(ŵ)− f(w∗) < ε, where μ is
defined later after (3).

The primary goal of this work is to analyze the algorith-
mic modifications to DiSCO-S when the partitioning type is
changed. It turns out that partitioning on features (DiSCO-F)
can lead to an algorithm which uses fewer communications
(depending on the relations between d and n, see Table 2).

DiSCO-S Algorithm. If the dataset is partitioned by
samples, such that j–th node will only store Xj =
[xj,1, ..., xj,nj ] ∈ R

d×nj , which is a part of X , then each
machine can evaluate a local empirical loss function

fj(w) :=
1
nj

∑nj

i=1φ(w, xj,i) +
λ
2 ‖w‖22. (2)

Because {Xj} is a partition of X we have
∑m

j=1 nj = n,
our goal now becomes to minimize the function f(w) =

Algorithm 2 Distributed DiSCO-S: PCG algorithm – data
partitioned by samples

1: Input: wk ∈ R
d, and μ ≥ 0. Compute ∇fi(wk) across

all nodes.
2: Initialization: Let P be computed as (3). v0 = 0,

s0 = P−1r0, r0 = ∇f(wk), u0 = s0.
3: for t = 0, 1, 2, ... do
4: Compute Hut using all nodes
5: Compute αt =

〈rt,st〉
〈ut,Hut〉

6: Update v(t+1) = vt+αtut,Hv(t+1) = Hvt+αtHut,
rt+1 = rt − αtHut.

7: Update Ps(t+1) = r(t+1).

8: Compute βt =
〈r(t+1),s(t+1)〉

〈rt,st〉
9: Update u(t+1) = s(t+1) + βtut.

10: until: ‖r(r+1)‖2 ≤ εk
11: end for

12: Return: vk = vt+1, δk =
√
vT(t+1)Hvt + αtvT(t+1)Hut

1
m

∑m
h=1 fj(w). Let H denote the Hessian f ′′(wk). For sim-

plicity in this section we present it only for square loss (and
hence in this case f ′′(wk) is constant – independent on wk).
However, it naturally extends to any smooth loss.

In Algorithm 2, each machine will use its local data to
compute the local gradient and local Hessian and then ag-
gregate them together. We also have to choose one machine
as the master, which computes all the vector operations of
PCG loops (Preconditioned Conjugate Gradient), i.e., step
5-9 in Algorithm 2.

The preconditioning matrix for PCG is defined only on
master node and consists of the local Hessian approximated
by a subset of data available on master node with size τ , i.e.

P = 1
τ

∑τ
j=1φ

′′
(w, x1,j) + (λ+ μ)I. (3)

Here μ is a small regularization parameter satisfying
‖ 1
τ

∑τ
j=1φ

′′
(w, x1,j) + λI − H‖ ≤ μ (Zhang and Xiao

2015), where H is the true Hessian of objective function
f(·). Algorithm 2 presents the distributed PCG mathod for
solving the linear system

Hvk = ∇f(wk). (4)

Notice that in Algorithm 2, there is another linear system
s = P−1r to be solved, which has the same dimension as
(4). However, because we only apply a subset of data to
compute the preconditioning matrix P , this can be solved
by Woodbury formula (Press et al. 2007), which will be de-
scribed detail in the next section.

DiSCO-F Algorithm. If the dataset is partitioned by fea-
tures, then j-th machine will store Xj = [a

[j]
1 , ..., a

[j]
n ] ∈

R
dj×n, which contains all the samples, but only with a sub-

set of features. In this case, each machine will only store
w

[j]
k ∈ R

dj and thus is responsible for the computation and
updates of Rdj vectors only. By doing so, we only need one
communicate (using MPI Allreduce) on a vector of length
n, in addition to two MPI Allreduce on scalars numbers.
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Algorithm 3 Distributed DiSCO-F: PCG algorithm – data
partitioned by features

1: Input: w
[j]
k ∈ R

dj for j = 1, 2, ...,m, and μ ≥ 0.
2: Initialization: Let P be computed as (3). v[j]0 = 0,

s
[j]
0 = (P−1)

[j]
r
[j]
0 , r[j]0 = f ′(w[j]

k ), u[j]
0 = s

[j]
0 .

3: while ‖rr+1‖2 ≤ εk do

4: Compute (Hut)
[j] by communication

5: Compute αt =
∑m

j=1〈r[j]t ,s
[j]
t 〉

∑m
j=1〈u[j]

t ,(Hut)[j]〉
by communication

6: Update v
[j]
t+1 = v

[j]
t + αtu

[j]
t , (Hvt+1)

[j] =

(Hvt)
[j] + αt(Hut)

[j], r
[j]
t+1 = r

[j]
t − αt(Hut)

[j].
7: Update P [j]s

[j]
t+1 = r

[j]
t+1.

8: Compute βt =
∑m

j=1〈r[j]t+1,s
[j]
t+1〉

∑m
j=1〈r[j]t ,s

[j]
t 〉 by communication

9: Update u
[j]
t+1 = s

[j]
t+1 + βtu

[j]
t .

10: end while

11: Compute δ
[j]
k =

√
v
[j]
t+1

T
(Hvt)[j] + αtv

[j]
t+1

T
(Hut)[j].

12: Integration: vk = [v
[1]
t+1, ..., v

[m]
t+1],δk = [δ

[1]
t+1, ..., δ

[m]
t+1]

13: Return: vk, δk

Table 2: Comparison of computation between different algo-
rithms. For DiSCO-S, there exist large differences of com-
putation between the master node and another node. How-
ever, for DiSCO-F, each node does the same amount of com-
putation.

Operation DiSCO-S DiSCO-F

master

y = Mx 1(Rd×d · Rd) 1(Rd1×d1 · Rd1)
Mx = y 1 (Rd) 1 (Rd1)
x+ y 4 (Rd) 4 (Rd1 )
xT y 4 (Rd) 4 (Rd1 )

nodes

y = Mx 1 (Rd×d · Rd) 1(Rd1×di · Rdi)
Mx = y 0 1 (Rdi)
x+ y 0 4 (Rdi)
xT y 0 4 (Rdi)

Comparison of a Communication and a Computational
Cost. In Table 2 we compare the communication cost for
the two approaches DiSCO-S/DiSCO-F. As it is evident
from the table, DiSCO-F requires only one MPI Allreduce
of a vector of length n, whereas the DiSCO-S needs one
MPI Allreduce of a vector of length d and one broadcast
(MPI Bcast) of a vector of size d. So roughly speaking,
when n < d then DiSCO-F needs less communication.
However, very interestingly, the advantage of DiSCO-F is
the fact that it utilizes CPUs more efficiently. It also requires
a less total amount of work to be performed on each node,
leading to more balanced and efficient utilization of nodes
(see Figure 1 for illustration. DiSCO-F utilizes resources
more efficiently — Table 3 for shows the size of commu-
nication required in each PCG step).

Woodbury Formula for solving Ps = r
In each iteration of Algorithms 2 and 3, we need to solve a
linear system in the form of Ps = r, where P ∈ R

d×d in Al-

Table 3: Comparison of communication between different
algorithms.

DiSCO-S DiSCO-F DANE CoCoA+
2× R

d 1× R
n, 2× R 2× R

d 1× R
d

Process 0

Process 3

Process 2

Process 1

Iteration 1 Iteration 2

Process 0

Process 3

Process 2

Process 1

Iteration 1 Iteration 2 Iteration 3

Figure 1: Flow diagrams of few iterations of DiSCO-S (top)
and DiSCO-F (bottom). DiSCO-F uses less time for one
iteration, due to the more efficient and balanced computa-
tion. Green boxes represent the processes are busy, while red
boxes represent idle nodes. Yellow boxes show the status of
communicating between all processes. Double arrows stand
for MPI Allreduce operations. The thin red arrows represent
a communication of few scalars only.

gorithm 2 and P ∈ R
di×di for i = 1, 2, ...,m in Algorithm

3, which is usually very expensive. To solve it more effi-
ciently, we can apply Woodbury Formula (Press et al. 2007).

Notice that if we use P defined in (3), P can be consid-
ered as sum of τ rank-1 updates on a diagonal matrix. For
example, if φ(·) is Quadratic Loss function, then

P = D + 1
τ

∑τ
i=1xix

T
i . (5)

If φ(·) is Logistic Loss, then

P = D + 1
τ

∑τ
i=1

exp(−wT
k xi)

(exp(−wT
k xi)+1)2

xix
T
i . (6)

In both cases, D is the diagonal matrix with Dii = λ+μ for
i = 1, ...,m. Then we can follow the procedure (Algorithm
4 to get the solution s. Note that v ∈ R

τ and τ � d (in our

Algorithm 4 Woodbury Formula to solve Ps = r

1: Compute zi =
1

λ+μxi for i = 1, ..., τ

2: Let Z = [z1, ..., zτ ], X = [x1, ..., xτ ]
3: Compute y = 1

λ+μr

4: Solve the linear system (I +XTZ)v = XT y
5: Return: s = y −Xv

experiments, τ = 100 usually works very well). Therefore
step 4 in Algorithm 4 can be done efficiently by any solver.
In the numerical experiment section, we study the impact of
τ on the performance of the final algorithm.
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Figure 2: Norm of gradient vs. the round of communica-
tion, as well as norm of gradient vs. running time [s] for two
datasets: news20 (top, λ = 1e− 3), splice-site.test (bottom,
λ = 1e− 6).

Numerical Experiments

We present experiments on four real-world datasets (two of
them are large) distributed across multiple machines, run-
ning on the Amazon EC2 cluster. We show that DiSCO-
F with a small τ converges to the optimal solution faster
concerning the total rounds of communications compared to
original DiSCO, DANE, and CoCoA+ in most cases. Also,
for the dataset with d > n, DiSCO-F will also dominate
others in wall-clock time.

We implement DiSCO and all other algorithms for com-
parison in C++, and run them on Amazon cluster using four
m3.large EC2 instances. We apply all methods on Quadratic
Loss and Logistic Loss for solving (P). A summary of the
datasets used is shown in Table 4.

Comparison of different algorithms.

We compare the DiSCO-S, DiSCO-F, DiSCO, DANE and
CoCOA+ directly using two datasets (new20 and splice-
site.test) for Logistic Loss. In DiSCO-S and DiSCO-F, we
set τ = 100. In DiSCO and DANE, we apply Stochastic
Average Gradient(SAG) (Schmidt, Roux, and Bach 2013)
to solve the linear system Ps = r or subproblems, respec-
tively. Also, μ was set to 1e−2 for both of them. In CoCoA+,
SDCA was used as the solver for local subproblem.

Figure 2 shows the evolution of the norm of the gradient
of the objective function as a function of number of commu-
nications and wall clock time respectively. In all the cases,
DiSCO-F uses only half of the rounds of communications

Table 4: Datasets used for numerical experiments.
Dataset n d size

a1a 1,605 119 112KB
covtype 581,012 54 70MB
news20 19,996 1,355,191 130MB

splice-site.test 4,627,840 11,725,480 273.4GB
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Figure 3: The effect of the choice of sample size when con-
struction preconditioner matrix P . The y-axis shows the
error= ‖Hvk −∇f(wk)‖2 for the linear system solving by
Algorithm 3. The black lines represent the preconditioner
proposed by (Zhang and Xiao 2015) and applying SAG. The
other three lines stand for P in (5) and using Algorithm 4.

compared to DiSCO-S. Also, DiSCO-S often uses similar
rounds of communications with the original DiSCO, which
demonstrates the advantage of using a preconditioning ma-
trix based on only a small subset of the samples. Finally,
DANE and CoCoA+ will decrease the norm of gradient very
fast at the first few iterations, but the decreasing become
much weaker afterward.

For the news20 (d � n) and splice-site.test (d ∼ n)
dataset, the DiSCO-F converges to the optimal solution with
fewer iterations than all the other methods. The elapsed time
for DiSCO-F is only 10% of DiSCO-S for the news20 case.
The explanation is that the size of vectors which has to be
communicated is much smaller.

Impact of the Parameter τ .

In this section, we compare the performance of DiSCO-F al-
gorithm under different preconditioners P . If we apply the
method described in Algorithm 4, the parameter τ would de-
termine how well the preconditioning matrix P can approx-
imate the true Hessian H . In an extreme case, if we only use
one machine and τ = n, then ‖P − H‖2 = 0 and each it-
eration of Algorithm 1 will only use one iteration of PCG
algorithm. However, too large τ will cause computation in
Algorithm 4 to be expensive, thus resulting in long running
time. Here we set τ ∈ {10, 100, 1000} and compare them
to the preconditioner (very large τ ) used in (Zhang and Xiao
2015) with SAG as the solver to solve the system Ps = r.

As shown in Figure 3, the larger τ we use, the less total
number of communications the algorithm takes to reach an
approximate solution. However, τ = 10 or 100 always leads
to much shorter time to convergence on these two datasets.

We also explore how different values of τ will affect
the distribution of eigenvalues of the preconditioned Hes-
sian matrix P−1H . Figure 4 indicates that as τ becomes
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Figure 4: Sorted eigenvalues (from large ones to small ones)
of preconditioned Hessian for different values of τ . The pink
plot (when τ = 0) shows the eigenvalues of the original Hes-
sian. For all τ 
= 0, the condition number of preconditioned
Hessian has been reduced significantly.

larger, the condition number of P−1H will decrease to 1.
Even if we use only 10% of data samples to construct P , the
eigenvalues of P−1H are better concentrated, which leads
to faster convergence when applying PCG.

Conclusion

We study inexact damped Newton method implemented in a
distributed way based on DiSCO algorithm (Zhang and Xiao
2015). We found that partitioning the dataset by features
leads to a decrease in the number of communications. Our
algorithmic modifications lead to more balanced and better-
performing algorithm. Also, the size of samples to gener-
ate the preconditioning matrix has been shrink from n

m to
τ ≈ 100, which greatly improves the efficiency of solving
the linear system using PCG. Our experimental results show
significant speedups over previous methods, including the
original DiSCO algorithm as well as other state-of-the-art
methods.
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Takáč, M. 2015. Adding vs. averaging in distributed primal-
dual optimization. In ICML 2015 - Proceedings of the 32th
International Conference on Machine Learning, volume 37,
1973–1982. JMLR.
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