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Abstract

Symmetry-breaking is a technique for efficiently solving SAT
instances that contain high degrees of symmetry among the
variables of the instance. When satisfiability problems are
represented as a relational schema, symmetries between ob-
jects in the domain can be detected directly from evidence,
that is, variables known to have a particular setting prior to
solving. These symmetries between domain objects are called
term symmetries. In this work, we present two novel exten-
sions to the technique of term equivalent symmetry breaking
which allow the detection and exploitation of conditional or
hidden symmetries, those relationships between domain ob-
jects that are obscured until the instance is partially solved.
We give promising preliminary experimental results for this
technique, and discuss how the techniques could be extended
for use in probabilistic domains.

Introduction

Symmetry-breaking is an approach to speeding up satis-
fiability testing by adding constraints, called symmetry-
breaking predicates (SBPs), to a theory (Crawford et al.
1996; Aloul, Markov, and Sakallah 2003; Katebi, Sakallah,
and Markov 2010). Symmetries in the theory define a par-
titioning over the space of truth assignments, where the as-
signments in a partition either all satisfy or all fail to satisfy
the theory. The added SBPs rule out some but not all of the
truth assignments in the partitions, thus reducing the size of
the search space while preserving satisfiability.

When a SAT instance is specified as a relational theory,
a set of predicate logic formulas relating elements in a finite
domain, symmetries between the domain objects (terms) can
be detected and exploited in much the same way (Kopp,
Singla, and Kautz 2015). These symmetries are called term
equivalent symmetries, and represent a subset of symme-
tries that can be efficiently detected and broken. While these
two approaches to symmetry-breaking differ in the level at
which symmetries are detected, they are similar insofar as
they are both analyze the given instance as is, no variable
assignments are computed during the preprocessing proce-
dure. This feature of term symmetry breaking prevents the
system from detecting hidden symmetries, those symmetries
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which only hold when a subset of variables are assigned in
a particular way.

We introduce two new extensions to term equivalent sym-
metry breaking which perform a dynamic analysis of the
SAT instance, and therefore exploit hidden symmetries. The
first extends the preprocessing procedure to perform analy-
ses on versions of the instance with one or more variables
assigned. The SBPs added to the formula are called condi-
tional SBPs, since the symmetries they break depend upon
the variables that have been assigned. The second exten-
sion detects symmetries online, rather than as a preprocess-
ing procedure, and adds conditional SBPs to the formula in
much the same way as conflict clauses are learned. We pro-
vide some preliminary experimental results that suggest that
it may be worthwhile to exploit these symmetries in SAT
solving.

Related Work

Our work has connections to research in in both the machine
learning and constraint-satisfaction research communities.
Developments include lifted versions of variable elimination
(Poole 2003; de Salvo Braz, Amir, and Roth 2005), belief
propagation (Singla and Domingos 2008; Singla, Nath, and
Domingos 2014), and DPLL (Gogate and Domingos 2011).
The approach of defining symmetries using group theory
and detecting them by graph isomorphism is shared by Bui
et al.’s work on lifted variational inference (Bui, Huynh,
and Riedel 2013). Niepert gives a group-theoretic formal-
ism of symmetries at the level of constants (Niepert 2012;
2013), applying them to MCMC methods. Kopp et. al. de-
fine the class of symmetries we exploit in this work (Kopp,
Singla, and Kautz 2015). Bui notes that symmetry groups
can be defined on the basis of unobserved constants in the
domain, while the symmetries we exploit can be explicitly
found in the evidence. Two lines of work in SRL make use
of problem transformations. First-order knowledge compi-
lation (Van den Broeck 2013; den Broeck, Meert, and Dar-
wiche 2014) transforms a relational problem into a form for
which MPE, marginal, and MAP inference is tractable. Re-
cent work on MAP inference in Markov Logic has identified
special cases where a relational formula can be transformed
by replacing a quantified formula with a single grounding of
the formula (Mittal et al. 2014).

The literature surrounding the use of symmetries in con-
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straint satisfaction and model counting is quite extensive.
Here we give just a few examples of key developments
in the field. Symmetry detection has been based either on
graph isomorphism on propositional theories as in the orig-
inal work by by Crawford et. al (Crawford et al. 1996); by
interchangeability of row and/or columns in CSPs specified
in matrix form (Meseguer and Torras 2001); by checking
for other special cases of geometric symmetries (Sellmann
and Hentenryck 2005), or by determining that domain el-
ements for a variable are exchangeable (Audemard, Ben-
hamou, and Henocque 2006). Researchers have suggested
symmetry-aware modifications to backtracking CSP solvers
for variable selection, branch pruning, and no-good learn-
ing (Meseguer and Torras 2001; Flener et al. 2009). A re-
cent survey of symmetry breaking for CSP (Walsh 2012)
described alternatives to the lex-leader formulation of SBPs,
including one based on Gray codes. The notion of a hidden
or conditional symmetry is closely related to the contextual
symmetries exploited in (Anand et al. 2016).

Symmetries over terms

In this section we provide the background necessary to un-
derstand the types of symmetries we will exploit in the sub-
sequent sections. Symmetry-breaking for satisfiability test-
ing, introduced by Crawford et. al.(Crawford et al. 1996),
is based on concepts from group theory. A permutation θ
is a mapping from a set L to itself. A permutation group is
a set of permutations that is closed under composition and
contains the identity and a unique inverse for every element.
A literal is an atom or its negation. A clause is a disjunc-
tion over literals. A CNF theory T is a set (conjunction) of
clauses. Let L be the set of literals of T . We consider only
permutations that respect negation, that is θ(¬l) = ¬θ(l)
(l ∈ L). The action of a permutation on a theory, written
θ(T ), is the CNF formula created by applying θ to each lit-
eral in T . We say θ is a symmetry of T if it results in the same
theory i.e. θ(T ) = T . For example, the rotation permutation
θ = {x1 → x2, x2 → x3, x3 → x1} is a symmetry of the
following theory:

¬x1 ∨ x3

¬x2 ∨ x1

¬x3 ∨ x2

A model M is a truth assignment to the atoms of a theory.
The action of θ on M , written θ(M), is the model where
θ(M)(T ) = M(θ(T )). The key property of θ being a sym-
metry of T is that M |= T iff θ(M) |= T . The orbit of
a model M under a symmetry group Θ is the set of mod-
els that can be obtained by applying any of the symmetries
θ ∈ θ to M . A symmetry group divides the space of mod-
els into disjoint sets, where the models in an orbit either all
satisfy or all do not satisfy the theory.

In this work, we will consider symmetries over the terms
(constants) of a relational theory. A relational theory is a tu-
ple T = (F, E), where F is a set of predicate logic formulas
and E is a set of evidence. We restrict the formulas in F to
be built from predicates, variables, quantifiers, and logical

connectives, but no constants or function symbols. E is a set
of ground literals; that is, literals built from predicates and
constant symbols. Universal and existential quantification is
over the set of the theory’s constants D (i.e. the constants
that appear in its evidence). Quantification occurs over a fi-
nite domain, therefore universal quantifiers ground to a con-
junction of clauses, and existential quantifiers ground to a
disjunction of literals.

In (Kopp, Singla, and Kautz 2015), two classes of symme-
tries over terms of relational theories were formalized, and
methods to exploit the symmetries were given. Both classes
of symmetries can be detected over the evidence of a theory.
The first was the set of term symmetries. A term symmetry is
a permutation θ of the terms in the theory such that θ(T ) =
T . Note that a permutation of terms over a ground theory in-
duces a permutation of atoms of the theory. That is, given a
literal l = P (x1, . . . , xk) and a permutation θ, the action of
the permutation on the literal θ(l) = P (θ(x1), . . . , θ(xk)).
A term symmetry can be broken with a symmetry breaking
predicate, a set of clauses added to the theory which reduces
the search space while preserving satisfiability. The SBP to
break a single term symmetry is:

SBP (θ) =
∧

1≤i≤n

( ∧
1≤j<i

Gj ⇔ θ(Gj)
)
⇒ Gi ⇒ θ(Gi)

(1)
where the Gi are the ground atoms of the theory.

The second class of symmetries over terms is a special
case of the former called term equivalent symmetries. A term
equivalent symmetry is a partitioningZ = {Zi} of the terms
in the theory such that if two terms C1 and C2 appear in the
same term equivalent class Zi, they can be permuted without
changing the theory. In other words, they define equivalence
classes of terms. Place an ordering on the terms of the the-
ory, so that the members of the equivalence classes can be
sorted. In order to break all of the symmetries that respect
Z , we need only explicitly break the symmetries that swap
adjacent elements in term equivalent sets with respect to this
ordering. Thus, the term equivalent SBP below, which ex-
plicitly breaks only a linear number of symmetries, implic-
itly breaks all symmetries that respect Z . Let θij,k be the
symmetry that swaps the jth and kth element in Zi.

TESBP (Z) =

|Z|∧
i=1

|Zi|−1∧
j=1

SBP (θij,j+1) (2)

Consider a relational theory that models allocation of
computational resources to distributed computing tasks that
has types for CPUs in a cluster, cores on a CPU, and compu-
tational tasks, as well as predicates that describe properties
of the computational resources and tasks. In this domain,
all of the cores that belong to the same CPU belong to the
same term equivalent symmetry group. Furthermore, if two
CPUs have the same number and types of cores, then there
are term symmetries that permute the CPUs while also per-
muting their respective cores.

In the next section, we formally define hidden or condi-
tional symmetries, and give a detailed example of a domain
with a high degree of hidden symmetry.
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Symmetries over terms

In this section we provide the background necessary to un-
derstand the types of symmetries we will exploit in the sub-
sequent sections. Symmetry-breaking for satisfiability test-
ing, introduced by Crawford et. al.(Crawford et al. 1996),
is based on concepts from group theory. A permutation θ
is a mapping from a set L to itself. A permutation group is
a set of permutations that is closed under composition and
contains the identity and a unique inverse for every element.
A literal is an atom or its negation. A clause is a disjunc-
tion over literals. A CNF theory T is a set (conjunction) of
clauses. Let L be the set of literals of T . We consider only
permutations that respect negation, that is θ(¬l) = ¬θ(l)
(l ∈ L). The action of a permutation on a theory, written
θ(T ), is the CNF formula created by applying θ to each lit-
eral in T . We say θ is a symmetry of T if it results in the same
theory i.e. θ(T ) = T . For example, the rotation permutation
θ = {x1 → x2, x2 → x3, x3 → x1} is a symmetry of the
following theory:

¬x1 ∨ x3

¬x2 ∨ x1

¬x3 ∨ x2

A model M is a truth assignment to the atoms of a theory.
The action of θ on M , written θ(M), is the model where
θ(M)(T ) = M(θ(T )). The key property of θ being a sym-
metry of T is that M |= T iff θ(M) |= T . The orbit of
a model M under a symmetry group Θ is the set of mod-
els that can be obtained by applying any of the symmetries
θ ∈ θ to M . A symmetry group divides the space of mod-
els into disjoint sets, where the models in an orbit either all
satisfy or all do not satisfy the theory.

In this work, we will consider symmetries over the terms
(constants) of a relational theory. A relational theory is a tu-
ple T = (F, E), where F is a set of predicate logic formulas
and E is a set of evidence. We restrict the formulas in F to
be built from predicates, variables, quantifiers, and logical
connectives, but no constants or function symbols. E is a set
of ground literals; that is, literals built from predicates and
constant symbols. Universal and existential quantification is
over the set of the theory’s constants D (i.e. the constants
that appear in its evidence). Quantification occurs over a fi-
nite domain, therefore universal quantifiers ground to a con-
junction of clauses, and existential quantifiers ground to a
disjunction of literals.

In (Kopp, Singla, and Kautz 2015), two classes of symme-
tries over terms of relational theories were formalized, and
methods to exploit the symmetries were given. Both classes
of symmetries can be detected over the evidence of a theory.
The first was the set of term symmetries. A term symmetry is
a permutation θ of the terms in the theory such that θ(T ) =
T . Note that a permutation of terms over a ground theory in-
duces a permutation of atoms of the theory. That is, given a
literal l = P (x1, . . . , xk) and a permutation θ, the action of
the permutation on the literal θ(l) = P (θ(x1), . . . , θ(xk)).
A term symmetry can be broken with a symmetry breaking
predicate, a set of clauses added to the theory which reduces

the search space while preserving satisfiability. The SBP to
break a single term symmetry is:

SBP (θ) =
∧

1≤i≤n

( ∧
1≤j<i

Gj ⇔ θ(Gj)
)
⇒ Gi ⇒ θ(Gi)

(3)
where the Gi are the ground atoms of the theory.

The second class of symmetries over terms is a special
case of the former called term equivalent symmetries. A term
equivalent symmetry is a partitioningZ = {Zi} of the terms
in the theory such that if two terms C1 and C2 appear in the
same term equivalent class Zi, they can be permuted without
changing the theory. In other words, they define equivalence
classes of terms. Place an ordering on the terms of the the-
ory, so that the members of the equivalence classes can be
sorted. In order to break all of the symmetries that respect
Z , we need only explicitly break the symmetries that swap
adjacent elements in term equivalent sets with respect to this
ordering. Thus, the term equivalent SBP below, which ex-
plicitly breaks only a linear number of symmetries, implic-
itly breaks all symmetries that respect Z . Let θij,k be the
symmetry that swaps the jth and kth element in Zi.

TESBP (Z) =

|Z|∧
i=1

|Zi|−1∧
j=1

SBP (θij,j+1) (4)

Consider a relational theory that models allocation of
computational resources to distributed computing tasks that
has types for CPUs in a cluster, cores on a CPU, and compu-
tational tasks, as well as predicates that describe properties
of the computational resources and tasks. In this domain,
all of the cores that belong to the same CPU belong to the
same term equivalent symmetry group. Furthermore, if two
CPUs have the same number and types of cores, then there
are term symmetries that permute the CPUs while also per-
muting their respective cores.

In the next section, we formally define hidden or condi-
tional symmetries, and give a detailed example of a domain
with a high degree of hidden symmetry.

Conditional symmetries

The methods in the previous section analyze the formula as
given, without assigning any variables, in order to detect
symmetries. As a result, all of the symmetries that are de-
tected are valid permutations for the formula irrespective of
the (partial) assignment, and are therefore valid during the
entirety of solving. However, there are hidden term equiva-
lent symmetries that cannot be detected or broken directly by
these methods. We formally define these symmetries below,
and then demonstrate what they are by way of an example.

Definition 1. A hidden or conditional term symmetry θL is
a permutation of the constants of a theory T such that, for a
set L of consistent literals, θL is a symmetry of all models of
T that are consistent with the literals in L.

Conditional term symmetries are related to the contextual
symmetries exploited in (Anand et al. 2016). One can think
of conditional term symmetries as the relational version of
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contextual symmetries. Whereas contextual symmetries op-
erate on the level of logical atoms, conditional symmetries
operate on the level of domain objects.

Consider a domain that expresses an unsatisfiable pigeon-
hole problem (PHP) with n pigeons and n − 1 holes. There
is an existential statement that states that every pigeon in the
domain must be in a hole:

∀p∃h In(p, h)

which grounds to n disjunctions each with n − 1 disjuncts.
There is also a constraint that states that for every pair of
pigeons Pi and Pj , i 	= j, at least one of those pigeons is not
in H , i.e. no two pigeons can be in the same hole:

∀h, pi, pj , i 	= j, ¬In(pi, h) ∨ ¬In(pj , h)
This is a standard domain used to illustrate symmetries; all
of the pigeon objects are in the same term equivalent class,
all of the hole objects are in another, and these classes can
be detected prior to solving and exploited with SBPs.

Now let us consider a slightly modified version of this
problem which contains conditional symmetries. Let us call
this domain the hidden pigeon hole problem (HPHP). We
add another predicate, Roost(P ), that is true when pigeon
P requires a hole in which to roost. We then modify the
problem so that only those pigeons that roost must be in a
hole:

∀p Roost(P )⇒
(
∃h In(P,Hi)

)

Now we expand the domain so that there are n holes and
n + k pigeons. The predicate Roost is partially observed,
that is, there are some pigeons that are known to roost, some
that are known not to roost, and some for which it is not
known.

To humans, it is clear that if there are at least n+1 pigeons
known to roost, then the instance is unsatisfiable, and other-
wise it is satisfiable. The term equivalent symmetry detec-
tion procedure of (Kopp, Singla, and Kautz 2015) would not
be able to exploit this knowledge. It would correctly group
the pigeons into three classes, and therefore be able to recog-
nize that is needs to solve pigeon hole problems with varying
numbers of roosting pigeons, rather than solve pigeon hole
problems for every combination of pigeon roosting patterns.
This represents an exponential reduction in the number of in-
dividual pigeon hole problems to be solved. However, each
individual pigeon hole problem would be solved somewhat
naively.

When roosting patterns are assigned to pigeons, new sym-
metries are revealed. In particular, a pigeon who is assigned
to roost is now in the same term equivalent class as all other
roosting pigeons. If these symmetries could be detected and
exploited, then it would be possible to solve each pigeon
hole problem embedded in this modified problem as effi-
ciently as current term equivalent symmetry breaking tech-
niques solve the simpler version of the pigeon hole problem.

Conditional SBPs

We can potentially detect symmetries of this kind in a sim-
ple manner. Recall that symmetries are detected in evidence.
We simply choose a set of literals L = {li} to assert, add

those literals to the evidence, and perform term symmetry
analysis as normal. However, we cannot merely add SBPs
to the formula as before. The detected symmetries are only
valid when the asserted literals are valid. Therefore, we add
a slightly modified SBP, which we call a conditional symme-
try breaking predicate, which is valid only when the current
assignment is consistent with the asserted literals:

CSBP (θL) =

∧
1≤i≤n

[( ∧
l∈L

l
)
⇒

( ∧
1≤j<i

Gj ⇔ θ(Gj)

)
⇒ Gi ⇒ θ(Gi)

]

(5)

In this formulation, the conjunction of the literals in L,
called the precondition, must all be satisfied by the partial
assignment before the constraint is enforced. The CSBP can
be simplified where the precondition causes a conjunct to be
trivial or redundant. For example, suppose ¬G1 ∈ L. Then
the first conjunct would be ¬G1 ⇒ G1 ⇒ θ(G1), which is
trivially satisfied.

Term equivalent symmetries are detected in a similar
manner: add the set of literals to be asserted to the evidence,
and run term equivalent symmetry analysis as normal. When
adding TESBPs, use Equation 4, substituting calls to CSBP
in Equation 5 for the calls to SBP in Equation 3. Note that
this technique is a generalization of the work in (Kopp,
Singla, and Kautz 2015). SBPs added using those techniques
are equivalent to CSBPs with L = ∅.

In both cases, we can optimize by tracking the minimum
set of literals that need to be asserted in order to create a
symmetry. Suppose symmetry θ is detected when only the
evidence, and no extra literals, are asserted. If we then assert
some nonempty set of literals L and detect θ, we need not
add CSBP (θL), as it is strictly weaker than an CSBP (θ∅).

Conditional symmetry detection requires us to make as-
signments to (usually a small number of) the variables in
the theory as part of preprocessing, allowing the detection
of hidden symmetries at the cost of more expensive prepro-
cessing. Choosing how many and which variables to assign
is a topic for future exploration. An obvious heuristic for
choosing variables to assign during processing is to choose
those variables of partially-observed predicates, since hid-
den symmetries are revealed when those variables are as-
signed. However, if domains are large, the number of partial
assignments that could be found with this heuristic may still
be very large. In the next section, we give a further extension
of conditional symmetry breaking that builds upon the work
in this section and attempts to overcome this problem.

Online conditional symmetry detection

In this section, we give a method for detecting conditional
term equivalent symmetries online, that is, during solving,
rather than as a preprocessing step. Naively, this can be done
in a straightforward manner: after each variable is assigned,
perform symmetry analysis, and add CSBPs as appropriate.
However, this naive approach is simply too expensive. Term
equivalent symmetry detection takes time O(nM logM)
where n is the number of constants and M is the size of
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the partial assignment. To perform this computation at each
point in an exhaustive combinatorial search is not practical,
particular in the lower parts of the search tree where M is
larger. In order to make online conditional term equivalent
symmetry detection more practical, we give a method to per-
form full symmetry analysis once, and update that analysis
inexpensively during solving.

Recall from (Kopp, Singla, and Kautz 2015) that term
equivalent symmetry analysis places two constants in the
same term equivalent class if and only if they have the same
context. A context is a set of partial atoms that represents the
atoms in which a constant appears in the partial assignment.
For example, if the partial assignment is {P (A), Q(A,B)},
then the context of A is {P (∗), Q(∗, B)} and the context of
B is {Q(A, ∗)}. We introduce a hash table H whose keys
are contexts, and whose values are terms, and we keep a
lookup table L which maps terms to contexts (stored, e.g. as
a balanced tree). Suppose that H and L contain the infor-
mation to represent the partial assignment E at a particular
point in the search, including evidence known prior to the
search. Note that if we are at the beginning of the search, E
is merely the evidence.

We have H and L which represent E , and we want to as-
sign an atom A to continue the search. We iterate over the
arguments of the atom, and for each term C that appears as
an argument, we:

1. Look up context(C) in L. O(1).

2. Remove C from H[context(C)]. O(1).

3. Insert the new context from A into context(C) in L.
O(log(|atoms|)).

4. Insert the updated context(C) from L into H , using C as
the value. O(|atoms|).

The complexity of step 2 assumes we store the values of H
as a set data structure. If a simple list, then it’s O(|D|), and
in practice likely much smaller. The complexity of step 3 is
because it takes logarithmic time to insert an item into a bal-
anced tree, and the tree is bounded in size by the number of
atoms. Similarly for step 4, we must iterate over the context
list to hash it.

It is not always the case that we assign truth values to
atoms one after the other. The inference procedure is run to
take advantage of pure literals and unit propagation. It may
be the case that after assigning a single truth value, we have
to update using a set of atoms. The simplest way to handle
this is to perform the updates serially. However, we can get
an efficiency gain by copying the old values in L, updating
L incrementally for each new atom, and then performing the
hash table updates only once per term. Since this is the most
expensive step, it is good to perform it once per chosen as-
signment, rather than once per atom assigned or inferred.

One problem with this method as stated is that each up-
date can potentially take very long. Early in the search space,
the size of the context lists will be small, and it should not
matter. However, later in the search, when many or most of
the atoms are assigned, the context lists will be very large.
One way to deal with this problem is to provide a depth cut-
off. The data structures would simply stop updating after k

atoms have been assigned in the search. It is expected that
this method will be impractical without this modification.
Another strategy that can be used complementarily with the
first is to only perform the update periodically, every j atom
assignments for example. This lets us perform symmetry de-
tection at lower levels of the tree less expensively.

In general, it may be the case that not every atom in
the partial assignment needs to appear on the LHS of the
CSBP in order for it to be valid. Suppose the partial as-
signment is {P (A), P (B),¬P (C)}, which induces the term
equivalent partition {{A,B}, {C}, {D,E, . . . }}. It should
be clear that only the literals P (A) and P (B) contribute to
differentiating A and B from the other term equivalent sets.
Therefore, ¬P (C) need not be included in the precondition
in the CSBP that breaks the symmetry between A and B.
In general, we need only include those atoms that contain
at least one term that appears in the term equivalent set that
we are breaking. This optimization can be done online while
generating the SBP, each time the procedure would add a lit-
eral to the LHS, it performs a check and does so only if the
literal contains one of the necessary terms.

By virtue of their preconditions, the clauses learned
through this procedure are valid at every point in the search
space. Furthermore, if unneeded literals are pruned from the
precondition, then the clauses are potentially useful at every
point in the search space, since that subset of the partial as-
signment could be asserted in the same manner on a different
subtree of the search space, or after a restart. However, just
as it is typically impractical to retain learned conflict clauses
for the entire duration of the search, it would be impractical
to retain the CSBPs for the whole search. Any of the tradi-
tional strategies for managing deletion of learned clauses in
traditional CDCL SAT solvers can be used to delete SBPs.

Experimental results
The extended preprocessing procedure for conditional term
equivalent symmetry breaking was implemented as an ex-
tension to the work of (Kopp, Singla, and Kautz 2015). The
system was evaluated on varying sizes of the HPHP domain
outlined in above with evidence that forced unsatisfiability,
i.e. with n+ 1 pigeons p for which Roost(p) appears in the
evidence.

All SAT evaluation was performed with the latest version
of Minisat (Eén and Sörensson 2003). The conditional term
equivalent term symmetry preprocessing system (cond), was
compared against a run of Minisat with no preprocessing,
(vanilla), the term and term equivalent symmetry breaking
systems from (Kopp, Singla, and Kautz 2015) (term and
tequiv, respectively), and the Shatter (Aloul, Markov, and
Sakallah 2003) SBP preprocessor (shatter), which works at
the propositional rather than constant level.

Table 1 gives the results of running these systems on the
HPHP domain for various sizes, where the size is the num-
ber of holes in the domain n, the number of pigeons in the
domain is �1.5n
 + 1, and there are n + 1 pigeons P for
which Roost(P ) appears in the evidence. The columns are
given as x + y, where x is the runtime of the preprocess-
ing procedure, and y is the runtime of Minisat on the for-
mula with the SBPs. The vanilla column is omitted, as
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Minisat with no preprocessing is unable to solve instances
greater than size 10 within the 30-minute timeout. Shatter
was unable to handle instances larger than size 40. All trials
were given a 30-minute timeout. All runtimes are given in
seconds.

Table 1: Conditional Symmetries on the HPHP Domain
Size shatter tequiv term cond

5 0.03 + 0.0 0.01 + 0.0 0.02 + 0.0 0.01 + 0.0
10 0.4 + 0.0 0.09 + 0.01 0.13 + 0.0 0.1 + 0.0
30 191 + 0.03 3.5 + 0.03 5.4 + 0.03 5.1 + 0.05
40 1026 + 0.05 9.8 + 0.07 16 + 0.07 14 + 0.13
60 N/A 45 + 0.24 79 + 0.3 66 + 0.5
70 N/A 79 + 0.9 139 + 0.8 113 + 0.7
80 N/A 129 + 1.4 231 + 1.9 170 + 1.0
90 N/A 207 + 5.7 372 + 6.8 247 + 1.6

100 N/A 310 + 12 563 + 10 374 + 2.0
110 N/A 440 + 10 811 + 12 540 + 6

We see that as the problem scales, the conditional sym-
metry breaking system performs strictly better than Shat-
ter and the term symmetry breaking system. Furthermore,
it generates SBPs that outperform those of the term equiv-
alent symmetry breaking system in solving time, though
the increased preprocessing time outweighs these benefits.
This does, however, give empirical evidence that hidden
symmetries exist and can be exploited in the manner de-
scribed, which means that a well-engineered online condi-
tional symmetry breaking system could potentially realize
performance gains over other symmetry-breaking systems.

Future work

This is preliminary work shows that SAT solving perfor-
mance can be improved by exploiting the class of symme-
tries defined. What remains to be shown is whether or not
the performance gains in solving times can overcome the in-
creased overhead required to exploit the symmetries.

Toward this end, there are two main directions in which
to focus. The first is to study possible heuristics for deter-
mining which literals to assign in the preprocessing proce-
dure, how many partial assignments on which the system
should perform symmetry analysis, and to explore options
for optimizing the performance of the preprocessing proce-
dure on the whole. With better heuristics and more engineer-
ing work, it may be possible for a preprocessing system to
exploit conditional symmetries in a manner which improves
overall performance.

The second direction is to implement the online condi-
tional symmetry breaking algorithm. The empirical results
suggest that exploiting the class of conditional symmetries
can increase solving performance, and the proposed online
system has the potential to exploit these symmetries in a
more efficient manner than the preprocessing system. In this
work, as in the preprocessing system, there is work to be
done on heuristics for variable choice, depth, and frequency.

While the empirical results show that conditional symme-
tries exist in theory, it is unknown to what extent they exist
in real-world applications. Intuitively, they will exist in any

situation in which some partially-observed property of a do-
main object determines how that object is matched to other
objects. For example, partially-observed properties of com-
puters in a networked cluster may influence how compute
jobs are distributed across the nodes. Finding real-world ap-
plications that exhibit this class of symmetries in high degree
would make the class more worthy of future study.

Finally, the scope of this work was limited to satisfia-
bility problems. However, the principles should be readily
applicable to maxSAT, the optimization version of satisfia-
bility, with and without weights. The problem of MPE in-
ference in statistical relation AI systems such as Markov
logic networks (Richardson and Domingos 2006) reduces to
weighted maxSAT, meaning these techniques could poten-
tially be used with inference problems in those models.

Conclusion

In this work, we have formalized the notion of conditional
term and term equivalent symmetries in the context of SAT
problems specified by relational theories. We have given
both a preprocessing and online method for exploiting these
symmetries for satisfiability, and given empirical evidence
that exploiting these symmetries can improve the runtime of
SAT solving.
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