
Scalable Score Computation for Learning Multinomial
Bayesian Networks over Distributed Data∗

Praveen Rao,† Anas Katib,† Kobus Barnard,� Charles Kamhoua,‡ Kevin Kwiat,‡ Laurent Njilla‡
† Department of Computer Science & Electrical Engineering, University of Missouri-Kansas City

� Department of Computer Science, University of Arizona
‡ Air Force Research Lab, Cyber Assurance Branch

raopr@umkc.edu, anaskatib@mail.umkc.edu, kobus@cs.arizona.edu, {charles.kamhoua.1,kevin.kwiat,laurent.njilla}@us.af.mil

Abstract

In this paper, we focus on the problem of learning a Bayesian
network over distributed data stored in a commodity cluster.
Specifically, we address the challenge of computing the scor-
ing function over distributed data in a scalable manner, which
is a fundamental task during learning. We propose a novel
approach designed to achieve: (a) scalable score computation
using the principle of gossiping; (b) lower resource consump-
tion via a probabilistic approach for maintaining scores using
the properties of a Markov chain; and (c) effective distribu-
tion of tasks during score computation (on large datasets) by
synergistically combining well-known hashing techniques.
Through theoretical analysis, we show that our approach is
superior to a MapReduce-style computation in terms of com-
munication bandwidth. Further, it is superior to the batch-
style processing of MapReduce for recomputing scores when
new data are available.

1 Introduction

Today, there is tremendous interest in designing new
methodologies for gaining insights over big data to enable
timely and effective decision making. It is reported that big
data analytics can strengthen national security and provide
resilience to cyber attacks.1 While statistical models pro-
vide an elegant framework to gain knowledge from data,
the volume and variety of big data demands a paradigm
shift–datasets are heterogeneous, massive, and distributed
in nature. Massive datasets are being stored and processed
in large-scale commodity clusters, and several new frame-
works have emerged for scalable machine learning (Low et
al. 2012; Li et al. 2014; MLlib 2015).

Among the different statistical models, Bayesian net-
works (BNs) provide a natural way for knowledge repre-
sentation and reasoning over heterogeneous data under un-
certainty (Pearl 2000). BNs have been successfully used

∗Approved for Public Release; Distribution Unlimited:
88ABW-2016-5881, dated 18 Nov 2016. The first author would
like to acknowledge the support of the U.S. Air Force Summer
Faculty Fellowship Program, National Research Council Research
Associateship Program, and University of Missouri Research
Board.
Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1www.whitehouse.gov/sites/default/files/docs/big data privacy
report 5.1.14 final print.pdf

in many areas including medical/fault diagnosis, bioinfor-
matics and computational biology, and others. They play a
key role in automated reasoning systems and in data clus-
tering (Grossman and Domingos 2004; Heller and Ghahra-
mani 2005). To learn a BN from the data, we need to learn
its structure and the parameters of the conditional proba-
bility distributions that best fit the observed data. As ex-
act structure learning of BNs is NP-complete (Chickering
1996), approximate structure learning techniques have been
developed over the years. We are particularly interested in
score-based learning algorithms, which use heuristic search
for approximate structure learning, wherein a search space
of possible structures is searched by applying a scoring func-
tion. However, for efficient structure learning on large-scale
distributed data, it is essential to first compute the scoring
function on the data in a scalable manner, which is the fo-
cus of this work.

We propose a novel approach called DiSC (Distributed
Score Computation) designed to achieve: (a) scalable score
computation using the principle of gossiping; (b) lower re-
source consumption via a probabilistic approach for main-
taining scores using the properties of a Markov chain; and
(c) effective distribution of tasks during score computa-
tion (on large datasets) by synergistically combining consis-
tent hashing and locality sensitive hashing (LSH). Through
theoretical analysis, we show that DiSC is superior to
MapReduce-style score computation in terms of communi-
cation bandwidth. We also show that DiSC is superior to
the batch-style processing of MapReduce for recomputing
scores when new data are available.

2 Background & Motivation

2.1 Score-Based Learning of BNs

A lot of advances have been made over the last few decades
in score-based learning algorithms (Koller and Friedman
2009). At each step in the search, the algorithm attempts
to improve the overall score of the BN by modifying the
DAG structure via local steps such as edge deletion, addi-
tion, reversal, etc., and computing a score difference of the
affected variables. Different search strategies (e.g., greedy
hill-climbing, simulated annealing) can be used, and when
the network score does not improve further, the algorithm
terminates. If the structure is known, parameter estimation

The AAAI-17 Workshop on
Distributed Machine Learning

WS-17-08

498

is done by computing sufficient statistics over the data in
one pass (e.g., parameters of a Dirichlet distribution for a
multinomial random variable).

Computing the scoring function is a fundamental task dur-
ing approximate structure learning. Let d denote the data
instances/records. Suppose Xi denotes a multinomial ran-
dom variable and V al(Xi) denotes the set of possible val-
ues of Xi. Let xj

i ∈ V al(Xi) denote a possible value of
Xi. Let PaGXi

denote the parents of Xi in a DAG G. Note
that Xi|PaGXi

is also called a family. Suppose V al(PaGXi
)

denotes all possible configurations of PaGXi
(i.e., assign-

ment of values to the parents). Let ui ∈ V al(PaGXi
) de-

note a particular configuration of Xi’s parents. For each
configuration, let M [ui] =

∑
xj
i∈V al(Xi)

M [xj
i , ui], and let

αXi|ui
=

∑
xj
i∈V al(Xi)

αxj
i |ui

denote the prior parameters of

the Dirichlet distribution. The tuple containing all M [xj
i , ui]

is referred to as the sufficient statistics (i.e., the number of
data instances where Xi = xj

i with parent configuration ui).
Assuming the Bayesian Dirichlet equivalence (BDe) scoring
function (Koller and Friedman 2009),

score(Xi|PaXi , d) =
∏

ui∈V al(PaG
Xi

)

Γ(αXi|ui
)

Γ(αXi|ui
+M [ui])

×

(∏
x
j
i∈V al(Xi)

Γ(α
x
j
i |ui

+M [xj
i , ui])

Γ(α
x
j
i |ui

)

)
. (1)

The total score of a DAG G for X1, . . . , Xn on d
is the product of the family scores, i.e., score(G, d) =∏n

i=1 score(Xi|PaXi
, d). (We can compute the logarithm

of the total score to replace products by sums.) During learn-
ing, we only need to compute the change in the score due to
the DAG operations. When data instances are distributed,
it is a serious challenge to compute the required sufficient
statistics for the family scores–the focus of our work.

2.2 Learning a BN in a Commodity Cluster

Recently, parallel methods for scalable BN learning and
reasoning using MapReduce were proposed for a shared-
nothing cluster (Basak et al. 2012; Chen et al. 2013; Fang
et al. 2013; Zhao, Xu, and Gao 2013; SMILE-WIDE 2014).
One may wonder if we can simply develop a parallel algo-
rithm to compute the family scores using the map and re-
duce operations in Apache Spark (Zaharia et al. 2010). This
can be done by identifying all possible families that may be
needed during structure learning and partial counts on in-
dividual data blocks (in the map phase) and computing the
required sufficient statistics for each family (in the reduce
phase). However, as shown later in Section 3.4, the com-
munication cost of this algorithm grows linearly with the
number of cluster nodes. Furthermore, the batch-oriented
nature of MapReduce requires complete re-execution when
new data instances are added.

2.3 Gossip Algorithms

Gossip algorithms were used by companies like Ama-
zon and Facebook to build global-scale computing plat-
forms (DeCandia et al. 2007; Lakshman and Malik 2009).
They are attractive in large-scale distributed systems due to
their simplicity, decentralized nature, high scalability, ability
to tolerate failures, and ability to provide probabilistic guar-
antees. The essence of these algorithms lies in the exchange
of information or aggregates between a pair of nodes, using
a probability transition matrix for the given network topol-
ogy. It has been shown that after a provably finite number of
rounds/time intervals and a provably finite number of mes-
sage exchanges, the information has reached all the nodes
or the aggregates have converged to the true value (Kempe,
Dobra, and Gehrke 2003; Boyd et al. 2005).

In this work, we draw inspiration from a state-of-the-art
gossip algorithm proposed by Mosk-Aoyama et al. (Mosk-
Aoyama and Shah 2008) to compute the sum of values
stored on n nodes. We call this algorithm SUM. Let P =
[Pij] denote a (doubly stochastic) probability transition ma-
trix, where Pij is the probability that node i contacts node
j during gossip. Each node has a local clock that ticks at
the times of rate 1 Poisson process. Let xi denote the value
at node i. Each node i maintains r independent exponen-
tial random variables with rate xi, say Eli where l = 1
to r. A node becomes active when its local clock ticks,
selects a neighbor with probability Pij , and then they ex-
change their current state. It computes for l = 1 to r,
ml = minni=1 Eli. Finally, it uses r∑r

l=1 ml
as the estimate

of
∑n

i=1 xi. Suppose TSUM (ε, δ, P) is the smallest time at
which each node has computed the sum such that it is within
δ of the true average with probability at least 1 − ε. (This
is called the convergence speed.) Then TSUM (ε, δ, P) =

O
(

log n + log ε−1 + log δ−1

δ2Φ(P)

)
, where Φ(P) denotes the con-

ductance of the communication topology.

2.4 Challenges and Motivation

There are several technical challenges that must be ad-
dressed to develop a scalable score computation approach
over large-scale distributed data. First, data blocks are dis-
tributed across nodes in a cluster. Therefore, it is pragmatic
to move computations to data (Dean and Ghemawat 2004).
Second, the score computation should be efficient, scalable,
tolerate failures and changes to the cluster topology, and
provide provable guarantees on the quality of the estimated
scores. This requires fast aggregate computation (e.g., sum)
over distributed data, effective load balancing of tasks, and
redundancy to cope with failures. While a straightforward
application of SUM sounds promising, unfortunately, it does
not yield a scalable solution for score computation of fam-
ilies. (We provide more details in Section 3.2.) Therefore,
we must design a new algorithm by adapting SUM. Third,
when new data are produced, efficient recomputation of fam-
ily scores over a large dataset is necessary for faster relearn-
ing than a batch-style approach.

499

3 Our Approach

In this section, we present DiSC and explain the key ideas
that underpin its design. We also present the theoretical anal-
ysis of DiSC w.r.t. its performance and scalability. DiSC
addresses two key issues during score computation: (a) dis-
tribution of families across cluster nodes for load balancing,
and (b) scalable score computation of families in a fault-
tolerant manner. DiSC can be viewed as a black box (by
different score-based BN learning algorithms) to provide an
estimate of a family score over large-scale distributed data.
DiSC can also be used to learn the parameters of a BN when
the structure is already known. (See Table 1 for frequently
used notations in the remainder of the paper.)

Notation Description
f =
X|PaX

A family f where X is a random variable
and PaX is the set of parents

Ni A node in the cluster
[sNi

, eNi
] The interval assigned to Ni in consistent

hashing address space
FNi

The family list of the cluster node Ni

L The hash function that combines LSH and
consistent hashing

k Number of hash values output by L

hj
f The jth hash value output by L

Φ Conductance of a network of cluster nodes
O, Pf , Qf Doubly stochastic transition matrices
πf =
[π1

f . . . π
n
f]

A row matrix denoting the stationary dis-
tribution of a Markov chain with n states
for family f

D Number of distinct families in the network
SSAf Sufficient statistics array of the family f
1− ε Desired confidence of an estimate via gos-

sip
1− δ Desired accuracy of an estimate via gossip
TSUM Convergence speed of SUM
TDiSC Convergence speed of DiSC

Table 1: Table of notations

3.1 Distribution of Families

Given a cluster with n nodes, we assume they are connected
by an overlay network, where any two nodes can commu-
nicate with each other in a finite number of hops (e.g., us-
ing a Distributed Hash Table (DHT) (Stoica et al. 2001)).
The decomposability property of the Bayesian scoring func-
tion (e.g., Equation 1) enables us to achieve distributed score
computation. There are two issues that arise. First, we must
distribute the task of computing the scores of families across
the cluster nodes in a scalable, load-balanced, and fault-
tolerant manner. This implies that when the learning algo-
rithm is running on a cluster node, the score of a family may
not be available locally and requires communication with
another cluster node. Thus, the second issue is to allow a
cluster node to manage similar families so that we can min-
imize the number of network lookups during BN learning.

(a) Initial assignment (b) Family list

Figure 1: Assignment of families to cluster nodes

We address the above issues by synergistically combining
consistent hashing (Stoica et al. 2001) and LSH (Indyk and
Motwani 1998). In consistent hashing, only a finite fraction
of the keys need to be redistributed when there is a change
in the size of the hash table (or cluster) allowing DHTs to
scale. Using LSH, data items that are more similar are more
likely to produce collisions. We can design LSH for sets us-
ing k × l random linear hash functions as follows (Haveli-
wala et al. 2002): For each linear hash function, apply it on
each item in a set and compute the minimum of the hash
values. Create k groups each with l minimum hash values;
concatenate l minimum values in each group and apply an-
other hash function (e.g., SHA-1) to produces a value in the
integer range [0,m]. Finally, produce a total of k values for a
set. Let {h1

S1
, . . . , hk

S1
} and {h1

S2
, . . . , hk

S2
} denote the out-

puts of LSH on sets S1 and S2, respectively. It is known that
if the similarity (i.e., Jaccard index) between S1 and S2 is p,
the probability that there exists at least one pair of identical
hash values is 1− (1− pl)k, i.e., hi

S1
= hi

S2
(1 ≤ i ≤ k).

Like in a DHT, let N0,..., Nn−1 denote the n cluster
nodes mapped to a 160-bit hash address space. We parti-
tion the address space [0, 2160 − 1] equally among the clus-
ter nodes. Let [sNi

, eNi
] denote the interval assigned to Ni.

(A similar way of assigning ranges is employed by Cassan-
dra (Lakshman and Malik 2009) and Dynamo (DeCandia
et al. 2007).) Let L denote LSH on a set that produces k
hash values in the range [0, 2160 − 1] using SHA-1. Given
a family f = X|PaX , we first represent it as a set of ran-
dom variables {X} ∪ PaX . Let {h1

f , . . . , h
k
f} denote the k

hash values output by L({X}∪PaX). We assign f to every
cluster node whose assigned interval contains any hj

f , where
1 ≤ j ≤ k. Essentially, through consistent hashing, we dis-
tribute the families almost evenly across nodes in a cluster.
Through LSH, we can ensure that two similar sets/families
are assigned to the same node with high probability. This
will be useful to a score-based learning algorithm when re-
trieving the scores of similar families. Due to k values output
by LSH, multiple cluster nodes will be assigned a family and
are responsible for computing the score of that family. Thus,
DiSC can cope with node failures for high availability.

Example 1 An example of assignment of families is shown
in Figure 1(a). Cluster nodes N0, . . . , N7 are assigned in-
tervals in the hash address space. Suppose there are four
families f1 = X1|PaX1

, f2 = X2|PaX2
, f3 = X3|PaX3

,

500

and f4 = X4|PaX4 . Let L produce k = 2 hash values.
Therefore, each family is assigned to two nodes in the clus-
ter. Suppose the set representations of {X1} ∪ PaX1

and
{X4} ∪ PaX4

have high similarity. As shown in the figure,
N0 is assigned both f1 and f4 due to the property of LSH.

Each node Nl stores the families assigned to it in its fam-
ily list FNl

. For each family f , an array of r × c counters
is maintained, where r = |V al(X)| and c = |V al(PaX)|.
We call this the sufficient statistics array (SSA) of f denoted
by SSAf . Algorithm 1 shows the overall steps. Figure 1(b)
shows an example of a family list.

Algorithm 1 AssignFamily(f)
1: Let f = X|PaX
2: {h1

f , . . . , h
k
f} ← L({X} ∪ PaX)

3: for j=1 to k do

4: Route f to a cluster node Nl such that hj
f ∈ [sNl

, eNl
]

5: Add f to the family list FNl
of Nl and initialize the

counters in SSAf to 0

3.2 Gossip-based Score Computation

The next challenge is to compute the scores of families in a
scalable manner on large distributed data. We need to com-
pute the sufficient statistics of each family. By straightfor-
ward application of SUM (Section 2.3), the counters can be
updated to obtain the desired sufficient statistics. Unfortu-
nately, a major drawback of this approach is that each node
will learn about more families each time it gossips and even-
tually track the sufficient statistics of all the families known
to the cluster nodes. This will defeat the purpose of gossip-
ing because of potentially very large number of unique fam-
ilies (e.g., when a dataset has large number of variables) to
consider during learning. As a result, each node may run
out of main memory due to a very large family list and
consume high network bandwidth during each message ex-
change. (Similar rationale was used in XGossip2 albeit for a
different problem and gossip algorithm.)

(a) A good assignment (b) The function P f
ij

Figure 2: DiSC

To overcome the above limitations, we develop a gossip
algorithm (inspired by SUM) to scalably compute the suffi-

2https://github.com/UMKC-BigDataLab/XGossip

cient statistics of families. Our algorithm employs a proba-
bilistic approach for guaranteeing a bound on the number of
families managed by each node. As shown in Figure 2(a),
we would like each node to manage only a finite fraction of
the families. This is achieved using a Markov chain and its
attractive properties. A Markov chain is modeled by t states,
s1, . . . , st, where the probability of transitioning from one
state to another is given by a transition matrix T. The sta-
tionary distribution of the Markov chain is denoted by a row
matrix π = [π1 . . . πt] s.t. π = πT. Over a long run, the
probability of being at a particular state si converges to the
stationary distribution πi independent of the starting state.

We model the n cluster nodes by a Markov chain with n
states. We define a few transition matrices. We define a dou-
bly stochastic transition matrix O where Oij = 1

n . For each
family f , we define another doubly stochastic transition ma-
trix Pf s.t. P f

ij =
∫ eNj

sNj
N(h1

f , σ
2) for i �= j. That is, for f ,

we define a normal distribution with mean h1
f and standard

deviation σ. An illustration of P f
ij is shown in Figure 2(b).

Finally, we define a doubly stochastic transition matrix Qf

s.t. Qf
ij = Oij × P f

ij for i �= j.
The steps involved during gossiping are listed in Algo-

rithms 2 and 3. Algorithm 2 shows the actions performed by
every cluster node. Consider node Ni. When its local clock
ticks, it becomes active during gossiping and does the fol-
lowing for each family f ∈ FNi : Pick a neighbor Nj with
probability Oij . Exchange the state with Nj for updating
sufficient statistics of f . Compute P f

ij using h1
f as the mean

and a preselected σ. With probability P f
ij , do the following:

Inform Nj to add f to its family list, and if Nj is not respon-
sible for f , remove f from FNi . This key idea of probabilis-
tically removing a family from the family list of a cluster
node, prevents the list from growing very large. (See Sec-
tion 3.4 for a bound on the size of the family list.)

Algorithm 3 lists the steps performed by every cluster
node when it is receives messages from other nodes dur-
ing gossiping. If the family under consideration is not in the
family list of the receiving node, then it initializes the SSA of
the family (using any local data blocks). The node uses the
sender’s state and updates the counters with new estimates.
It adds the family to its family list if instructed.

3.3 Retrieving Scores During Learning

DiSC can be viewed as a black box by (a serial or paral-
lel version of) a score-based learning algorithm, wherein it
has precomputed the sufficient statistics of families required
during learning. When the learning algorithm executes on a
cluster node and needs the sufficient statistics of a family, the
node’s family list is checked. If the family is present, then its
SSA is fetched without any network communication. Other-
wise, a cluster node storing the family should be contacted
(by applying L on the family) to fetch the SSA. Because of
LSH, it is more likely for the learning algorithm to retrieve
the SSAs of similar families from the same node, thereby
reducing the network latency during learning.

501

Algorithm 2 DiSC-Gossip()
1: Let Ni denote the cluster node executing this procedure
2: Let O denote the doubly stochastic transition matrix of

a Markov chain representing the n cluster nodes, s.t.
Oij =

1
n

3: Initialize rate 1 Poisson process at node Ni for gossiping
4: for each local clock tick do
5: Pick a neighbor Nj with probability Oij

6: for each family f ∈ FNi do
7: Send state to Nj and receive state from Nj to up-

date the sufficient statistics {We compute the min-
imum of exponential random variables like SUM}

8: Let Pf denote a doubly stochastic transition matrix
for f , where P f

ij =
∫ eNj

sNj
N(h1

f , σ
2) for i �= j

9: Compute Pij given h1
f and σ

10: if ∃j, 1 ≤ j ≤ k, s.t. hj
f ∈ [sNi

, eNi
] then

11: With prob. P f
ij , send message to Nj to store f

12: else
13: With prob. P f

ij , remove f from FNi
and send

message to Nj to store f

Algorithm 3 DiSC-Recv()
1: Let Nj denote the cluster node executing this procedure
2: while new message is received do
3: if the message contains state of family f then
4: if f /∈ FNj

then
5: Initialize the sufficient statistics of f using the

local data blocks if any
6: Update the sufficient statistics for f using the

sender’s state {We compute the minimum of ex-
ponential random variables like SUM}

7: Send local state of f to the sender
8: else if the message indicates adding f to FNj and f /∈

FNj
then

9: Add f and its sufficient statistics to FNj

3.4 Theoretical Analysis of DiSC
We present the theoretical analysis of DiSC by considering
the following metrics: (a) accuracy and confidence of the
estimated sufficient statistics of a family, (b) convergence
speed of the gossip algorithm, and (c) memory and network
bandwidth requirement during gossip. We state a theorem
on the convergence speed of DiSC to estimate the sufficient
statistics of a family.

Theorem 1 Suppose node Ni is responsible for comput-
ing the score of a family f . Let TDiSC(f, ε, δ) denote the
smallest time at which Ni can estimate the sufficient statis-
tics for f within a relative error of ε with a probability of
at least 1 − δ. Then TSUM (ε, δ,O) ≤ TDiSC(f, ε, δ) ≤
TSUM (ε, δ,Qf).

Proof. The dissemination speed of a gossip algorithm to
compute SSAf will depend on how fast the state of the
nodes are exchanged through the network. Suppose we use

SUM with the probability transition matrix O to estimate
SSAf . Then the convergence speed is Tsum(ε, δ,O). In
DiSC, we exchange the node states with probability Oij

(Line 7 in Algorithm 2). But we exchange a family only
with probability Qf

ij = Oij × P f
ij (Line 10 in Algorithm 2).

(Note that Qf
ij ≤ Oij for i �= j.) Therefore, the dissemina-

tion speed of DiSC cannot be faster than SUM with transi-
tion matrix O. Therefore, TSUM (ε, δ,O) ≤ TDiSC(f, ε, δ).
However, DiSC is at least as fast as SUM with transition
matrix Qf , because the node states are exchanged each
time a node i contacts j with probability Oij . Therefore,
TDiSC(f, ε, δ) ≤ TSUM (ε, δ,Qf).

The next theorem states the expected value of the number
of families tracked by each node. This key property enables
DiSC to scale with increasing number of families to con-
sider when learning a BN.
Theorem 2 For a family f , let πf = [π1

f . . . π
n
f] denote the

stationary distribution of the Markov chain with the transi-
tion matrix Qf containing n states. Let D denote the number
of distinct families and k denote the number of hash values
output by L. Then E(|FNi |) =

∑
f∈D

πi
f + kD

n .

Proof. Let us define a binary random variable Yf to indicate
the presence or absence of f in FNi

. Suppose Yf = 1 when
f ∈ FNi

and Yf = 0 otherwise. Let U denote a random
variable that denotes the number of families Ni is respon-
sible for via L. We define a random variable Z =

∑
f∈D

Yf

+ U , an unbiased estimator of |FNi |. Consistent hashing in
L ensures that the families are distributed evenly across the
nodes with high probability. Furthermore, L produces k hash
values per family. Thus, over a long run (i.e., clock ticks),
E(Z) =

∑
f∈D

E(Yf) + E(U) =
∑
f∈D

πi
f + kD

n .

The intuition for the above theorem is that the probability
of a family being stored in the family list of a node will con-
verge to the stationary distribution of the underlying Markov
chain. In addition, a node is also responsible for storing a
fraction of all the distinct families due to L.

Next, we discuss the memory and network bandwidth re-
quirement. The SSA of each family Xi|PaXi

contains ri ×
ci counters, where ri = |V al(Xi)| and ci = |V al(PaXi

)|.
Over a long run, the expected number of families stored by
a node is given by Theorem 2. According to Theorem 1, the
number of clock ticks required by DiSC for convergence of
the sufficient statistics of a family is given by TDiSC(f, ε, δ).
Suppose each node maintains r exponential random vari-
ables per counter in a family’s SSA. During each clock tick,
for a family Xi|PaXi

, two nodes exchange r × ri × ci ex-
ponential random variables to compute their minimum.

3.5 DiSC vs MapReduce

Suppose we develop a MapReduce program for computing
the scores of D distinct families. In the map phase, the par-
tial counts for each family f ∈ D on each block of data are
computed. During the reduce phase, the sufficient statistics

502

across all the data blocks for each family is obtained. On a
cluster of n nodes, the map phase will produce intermedi-
ate key-value data of size proportional to n× ∑

f∈D

(rf × cf)

words, assuming maximum parallelism. During the reduce
phase, the intermediate key-value data must be moved to
the reducers through the network. Hence, the communica-
tion cost is O(nDS), where S is the size of the largest SSA
in D. In DiSC, the number of time steps (involving commu-
nication) for estimating the sufficient statistics of a family
is O(log(n)), given a user-specified accuracy, LSH param-
eters, communication topology, and other user-defined pa-
rameters. For D families, the total communication cost is
O(log(n)DS). Hence, DiSC is superior to MapReduce in
terms of communication bandwidth.

3.6 Computing Family Scores on New Data

Because gossiping can be done continuously in the back-
ground, DiSC can efficiently compute the family scores as
new data are produced. As each node computes the mini-
mum of the exponential random variables (like in SUM), we
make the following observations: At time t0, let X0

i denote
the exponential random variable with rate x0

i maintained by
a node for a family. At time t1, let the sufficient statistics of
the family increase to x1

i due to new data instances. Let X1
i

denote the new exponential random variable with rate x1
i .

It is known that Pr(X0
i < X1

i) =
x0
i

x0
i+x1

i
. Therefore, with

probability x1
i

x0
i+x1

i
, the other cluster nodes learn about x1

i by
updating their minimum as they continue to gossip. As such,
only the nodes receiving new data instances must reinitialize
the exponential random variables for the affected sufficient
statistics. On the other hand, the batch-style processing of
MapReduce must process the entire dataset (with new data)
to obtain the new scores of families. As a result, DiSC is
superior to MapReduce for fast score recomputation.

4 Conclusions

In this paper, we presented DiSC, a novel approach for scal-
able score computation during learning of a multinomial BN
over big data stored in a cluster. DiSC is based on the prin-
ciple of gossipping, properties of Markov chains, and lever-
ages well-known hashing techniques. Through theoretical
analysis, we showed that DiSC is superior to a MapReduce-
style computation in terms of communication bandwidth. In
addition, DiSC is superior to batch-oriented MapReduce for
recomputation of scores when new data are available.

References

Basak, A.; Brinster, I.; Ma, X.; and Mengshoel, O. 2012.
Accelerating Bayesian Network Parameter Learning using
Hadoop and MapReduce. In Proc. of 2012 BigMine Work-
shop, 1–8.
Boyd, S. P.; Ghosh, A.; Prabhakar, B.; and Shah, D. 2005.
Gossip Algorithms: Design, Analysis and Applications. In
Proc. of INFOCOM 2005, 1653–1664.
Chen, W.; Wang, T.; Yang, D.; Lei, K.; and Liu, Y. 2013.
Massively Parallel Learning of Bayesian Networks with

MapReduce for Factor Relationship Analysis. In Proc. of
Intl. Joint Conf. on Neural Networks, 1–5.
Chickering, D. 1996. Learning from Data: Artificial Intelli-
gence and Statistics V. chapter Learning Bayesian Networks
is NP-Complete, 121–130.
Dean, J., and Ghemawat, S. 2004. MapReduce: Simplified
Data Processing on Large Clusters. In Proc. of the 6th OSDI
Conference, 137–150.
DeCandia, G.; Hastorun, D.; Jampani, M.; Kakulapati, G.;
Lakshman, A.; Pilchin, A.; Sivasubramanian, S.; Vosshall,
P.; and Vogels, W. 2007. Dynamo: Amazon’s Highly Avail-
able Key-Value Store. In Proc. of 21st Symp. on Operating
Systems Principles, 205–220.
Fang, Q.; Yue, K.; Fu, X.; Wu, H.; and Liu, W. 2013. A
MapReduce-based Method for Learning Bayesian Network
from Massive Data. In Proc. of 2013 APWeb Conference,
697–708.
Grossman, D., and Domingos, P. 2004. Learning Bayesian
Network Classifiers by Maximizing Conditional Likelihood.
In Proc. of the 21st International Conference on Machine
Learning, 46–54.
Haveliwala, T. H.; Gionis, A.; Klein, D.; and Indyk, P. 2002.
Evaluating Strategies for Similarity Search on the Web. In
Proc. of the 11th WWW Conference, 432–442.
Heller, K. A., and Ghahramani, Z. 2005. Bayesian Hierar-
chical Clustering. In Proc. of the 22nd International Con-
ference on Machine Learning, 297–304.
Indyk, P., and Motwani, R. 1998. Approximate Nearest
Neighbors: Towards Removing the Curse of Dimensionality.
In Proceedings of the 13th ACM Symposium on Theory of
Computing, 604–613.
Kempe, D.; Dobra, A.; and Gehrke, J. 2003. Gossip-Based
Computation of Aggregate Information. In Proc. of the
44th IEEE Symposium on Foundations of Computer Science,
482–491.
Koller, D., and Friedman, N. 2009. Probabilistic Graphical
Models: Principles and Techniques. The MIT Press.
Lakshman, A., and Malik, P. 2009. Cassandra: A Struc-
tured Storage System on a P2P network. In Proc. of the 21st
Symposium on Parallelism in Algorithms and Architectures,
47.
Li, M.; Andersen, D. G.; Park, J. W.; Smola, A. J.; Ahmed,
A.; Josifovski, V.; Long, J.; Shekita, E. J.; and Su, B.-Y.
2014. Scaling Distributed Machine Learning with the Pa-
rameter Server. In Proc. of the 11th OSDI Conference, 583–
598.
Low, Y.; Gonzalez, J.; Kyrola, A.; Bickson, D.; Guestrin,
C.; and Hellerstein, J. M. 2012. Distributed GraphLab: A
framework for machine learning in the cloud. In Proc. of
PVLDB Conference, 716–727.
MLlib. 2015. http://spark.apache.org/mllib.
Mosk-Aoyama, D., and Shah, D. 2008. Fast Distributed Al-
gorithms for Computing Separable Functions. IEEE Trans-
actions on Information Theory 54(7):2997–3007.

503

Pearl, J. 2000. Causality: Models, Reasoning, and Inference.
Cambridge University Press.
SMILE-WIDE. 2014. http://smilewide.github.io/main.
Stoica, I.; Morris, R.; Karger, D.; Kaashoek, M. F.; and Bal-
akrishnan, H. 2001. Chord: A Scalable Peer-to-peer Lookup
Service for Internet Applications. In Proc. of the 2001 ACM-
SIGCOMM Conference, 149–160.
Zaharia, M.; Chowdhury, M.; Franklin, M. J.; Shenker, S.;
and Stoica, I. 2010. Spark: Cluster Computing with Working
Sets. In Proc. of the 2nd USENIX Conference on Hot Topics
in Cloud Computing, 10–10.
Zhao, Y.; Xu, J.; and Gao, Y. 2013. A Parallel Algorithm
for Bayesian Network Parameter Learning Based on Factor
Graph. In Proc. of IEEE Intl. Conf. on Tools with Artificial
Intelligence, 506–511.

504

