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Abstract

We present an agent-based model of manipulating prices in
financial markets through spoofing: submitting spurious or-
ders to mislead other traders. Built around the standard limit-
order mechanism, our model captures a complex market en-
vironment with combined private and common values, the
latter represented by noisy observations of a fundamental
time series. We start with zero intelligence traders, who ig-
nore the order book, and introduce a version of heuristic be-
lief learning (HBL) strategy that exploits the order book to
predict price outcomes. By employing an empirical game-
theoretic analysis to derive approximate strategic equilibria,
we demonstrate the effectiveness of HBL and the usefulness
of order book information in a range of non-spoofing envi-
ronments. We further show that a market with HBL traders
is spoofable, in that a spoofer can qualitatively manipulate
prices towards its desired direction. After re-equilibrating
games with spoofing, we find spoofing generally hurts mar-
ket surplus and decreases the proportion of HBL. However,
HBL’s persistence in most environments with spoofing indi-
cates a consistently spoofable market. Our model provides a
way to quantify the effect of spoofing on trading behavior and
efficiency, and thus measures the profitability and cost of an
important form of market manipulation.

Introduction

Electronic markets have transformed the financial market
landscape, with automation of trading scaling of volume and
speed across geography and asset classes. Automated traders
have unprecedented ability to gather and exploit market in-
formation from a broad variety of sources, including trans-
actions and order book information exposed by many mar-
ket mechanisms. Whereas some of these developments may
contribute to improved price discovery and efficiency, they
may also introduce new possibilities of disruptive and ma-
nipulative practices in financial markets.

Recent years have witnessed several cases of fraud and
manipulation in the financial markets, where traders made
tremendous profits by deceiving investors or artificially af-
fecting market beliefs. On April 21, 2015, the U.S. De-
partment of Justice charged Navinder Singh Sarao with 22
criminal counts, including fraud and market manipulation
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(Brush, Schoenberg, and Ring 2015). Prior to the Flash
Crash,1 Sarao allegedly used an automated program to place
orders amounting to about $200 million worth of bets that
the market would fall, and later replaced or modified those
orders 19,000 times before cancellation. The U.S. Com-
modity Futures Trading Commission (CFTC) concluded that
Sarao’s manipulative practice was responsible for significant
order imbalances. Though recent analysis has cast doubt on
the causal role of Sarao on the Flash Crash (Aldrich, Grund-
fest, and Laughlin 2016), many agree that such manipulation
could increase the vulnerability of markets and exacerbate
market fluctuations.

The specific form of manipulation we examine in this pa-
per is spoofing. Spoofing refers to the practice of submit-
ting large spurious orders to buy or sell some security. The
orders are spurious in that the spoofer does not intend for
them to execute, but rather to mislead other traders by feign-
ing strong buy or sell interest in the market. Spoof orders
may lead other traders to believe that prices may soon rise
or fall, thus altering their own behavior in a way that will di-
rectly move the price. To profit on its feint, the spoofer can
submit a real order on the opposite side of the market and as
soon as the real order transacts, cancel all the spoof orders.

In 2010, the Dodd-Frank Wall Street Reform and Con-
sumer Protection Act was signed into federal law, outlawing
spoofing as a deceptive practice. In its allegations against
Sarao, the CFTC notes that “many market participants, rely-
ing on the information contained in the order book, consider
the total relative number of bid and ask offers in the order
book when making trading decisions”. In fact spoofing can
be effective only to the extent that traders actually use order
book information to make trading decisions. Though reg-
ulatory enforcement and detection efforts have been made,
spoofing is hard to eliminate due to its adversarial nature and
the difficulty of determining the manipulation intent behind
placement of orders. By reproducing spoofing in a compu-
tational model, the work reported here represents a first step
toward developing more robust measures to characterize and
prevent spoofing.

In this study, we propose a simple model that captures the

1The Flash Crash was a sudden trillion-dollar dip in U.S. stock
markets on May 6, 2010, during which stock indexes collapsed and
rebounded rapidly.
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practice of spoofing in a continuous double auction (CDA)
market with a single security traded. The CDA is a two-sided
mechanism adopted by most financial and commodity mar-
kets (Friedman 1993). Under this mechanism, traders can
submit orders at any time and whenever an incoming order
matches an existing one, they trade at the incumbent order’s
limit price. We adopt an agent-based modeling approach to
simulate the interactions among players with different strate-
gies. The market is populated with multiple background
traders and in selected treatments, one spoofer. Background
traders are further divided into agents using instances of the
zero intelligence (ZI) and heuristic belief learning (HBL)
strategy families. Background traders of either type observe
a noisy signal of the current fundamental value at the time
they arrive to trade. The HBL strategy further considers in-
formation about orders recently submitted to the order book.
The spoofer in our model maintains large buy spoof orders at
one tick behind the best bid, aiming to manipulate but does
not take actions to profit from the manipulation.

We first address the choice of background traders among
HBL and ZI strategies, through empirical game-theoretic
analysis. We demonstrate that in most non-spoofing envi-
ronments, HBL is adopted in equilibrium and benefits price
discovery and social welfare. By executing a spoofer against
the found equilibria, we show that spoofing can qualitatively
manipulate price given sufficient HBL traders in the mar-
ket. We finally re-equilibrate games with spoofing and find
HBL still exists in some equilibria but with smaller mixture
probability. Though the welfare benefits of HBL persist, the
presence of spoofing generally decreases market surplus.

Related Work and Contributions

Agent-Based Finance

Agent-based modeling (ABM) takes a simulation approach
to study complex domains with dynamically interacting de-
cision makers. ABM has been frequently applied to finan-
cial markets (LeBaron 2006), for example to study the Flash
Crash (Paddrik et al. 2012) or bubbles and crashes in the
abstract (LeBaron, Arthur, and Palmer 1999). Often the goal
of ABM is to reproduce stylized facts of the financial system
(Palit, Phelps, and Ng 2012). Researchers also use ABM to
investigate the effects of particular trading practices, such as
market making (Wah and Wellman 2015) and latency arbi-
trage (Li and Das 2016; Wah and Wellman to appear). ABM
advocates argue that simulation is particularly well-suited to
study financial markets (Bookstaber 2012), as analytic mod-
els in this domain typically require extreme stylization for
tractability, and pure data-driven approaches cannot answer
questions about changing market and agent designs.

Bidding Strategies

There is a substantial literature on autonomous bidding
strategies in CDA markets (Wellman 2011). The basic zero
intelligence (ZI) strategy (Gode and Sunder 1993) submits
offers at random offsets from valuation. Despite its sim-
plicity, ZI has been shown surprisingly effective in some
cases (Farmer, Patelli, and Zovko 2005). In this study, we
adopt an extended and parameterized version of ZI as our

representative class of trading strategies that ignore order
book information.

Researchers have also extended ZI with adaptive features
that exploit observations to tune themselves to market con-
ditions. For example, the zero intelligence plus (ZIP) strat-
egy outperforms ZI by adjusting an agent-specific profit
margin based on successful and failed trades (Cliff 1997;
2009). Adaptive Aggressiveness (AA) (Vytelingum, Cliff,
and Jennings 2008) adds another level of strategic adapta-
tion, allowing the agent to control its behavior with respect
to short and long time scales.

Gjerstad proposed a more direct approach to learning
from market observations, termed GD in its original ver-
sion (Gjerstad and Dickhaut 1998) and named heuristic be-
lief learning (HBL) in a subsequent generalized form (Gjer-
stad 2007). The HBL model estimates a heuristic belief
function based on market observations over a specific mem-
ory length. Variants of HBL (or GD) have featured promi-
nently in the trading agent literature. GDX calculates the
belief function in a similar manner, but uses dynamic pro-
gramming to decide on both the optimal price and time to
submit a bid or ask (Tesauro and Bredin 2002). Modified
GD further adapts the original GD to markets that support
persistent orders (Tesauro and Das 2001).

Our study extends the HBL approach to a more com-
plex financial market environment than addressed in previ-
ous studies. We adopt HBL as our representative class of
agent strategies that exploit order book information. The ex-
tended HBL strategy is well-suited for our study as it consid-
ers the full cycle of an order, including the times an order is
submitted, accepted, canceled, or rejected. Moreover, HBL
can be applied with relatively few tunable strategic parame-
ters, compared to other adaptive strategies in the literature.

Spoofing in Financial Markets

The literature on spoofing and its impact on financial mar-
kets is fairly limited. Some empirical research based on his-
torical financial market data has been conducted to under-
stand spoofing. Lee et al. (Lee, Eom, and Park 2013) em-
pirically examine spoofing by analyzing a custom data set,
which provides the complete intraday order and trade data
associated with identified individual accounts in the Ko-
rea Exchange. They found investors strategically spoof the
stock market by placing orders with little chance to trans-
act to add imbalance to the order book. They also dis-
covered that spoofing usually targets stocks with high re-
turn volatility but low market capitalization and managerial
transparency. Wang, similarly, investigates the strategic be-
havior of spoofing trading orders in the index futures mar-
ket in Taiwan, including their characteristics, profitability
and real-time impacts (Wang 2015). Martinez-Miranda et
al. (Martinez-Miranda, McBurney, and Howard 2016) pro-
pose a reinforcement learning framework to model spoofing
in the context of portfolio growth maximization.

Contributions

Our contributions are threefold. First, we adapt the origi-
nal GD strategy (Gjerstad and Dickhaut 1998) to a complex
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market environment that supports persistent orders, com-
bined private and fundamental values, noisy observations,
stochastic arrivals, and ability to trade multiple units with
buy or sell flexibility. Second, by employing an empiri-
cal game-theoretic analysis to derive approximate strategic
equilibria in a range of parametrically different market envi-
ronments, we demonstrate the effectiveness of the extended
HBL and the usefulness of order book information in the ab-
sence of spoofing. Third and most importantly, we provide
the first computational model of spoofing a dynamic finan-
cial market, and demonstrate the effectiveness of spoofing
against approximate-equilibrium traders in that model. Our
model provides a way to quantify the effect of spoofing on
trading behavior and efficiency, and thus measures the prof-
itability and cost of an important form of market manipula-
tion.

Market Model

Market Environment

The model employs a CDA mechanism with a single secu-
rity traded in the market. Prices are fine-grained and take dis-
crete values at integer multiples of the tick size. Time is also
fine-grained and discrete and a trading period has a finite
horizon T . Agents in the model submit limit orders, which
specify the maximum (minimum) price at which they would
be willing to buy (sell) together with the number of units to
trade.

The fundamental value r of the underlying security
changes throughout the trading period, according to a mean-
reverting stochastic process:

rt = max{0, κr̄ + (1− κ)rt−1 + ut}; r0 = r̄. (1)
Here rt denotes the fundamental value of the security at time
t ∈ [1, T ]. The parameter κ ∈ [0, 1] specifies the degree
to which the fundamental reverts back to r̄. The perturba-
tion in the fundamental at time t is normally distributed:
ut ∼ N(0, σ2

s). A mean-reverting time series of this sort
has been empirically observed in financial markets such
as foreign exchange and commodity markets and is wildly
adopted in related research to investigate the effect of mar-
ket making and latency arbitrage (Wah and Wellman 2015;
Chakraborty and Kearns 2011; Wah and Wellman to appear).

The CDA market maintains a limit order book of out-
standing orders, and provides information about the book to
traders with zero delay. The buy side of the order book starts
with BIDt, the highest-price buy order at time t, and extends
to lower prices. Similarly, the sell side starts with ASKt, the
lowest-price sell order at time t, and extends to higher prices.
When there is an order cancellation or a transaction, the mar-
ket removes the corresponding orders and updates the order
book. Agents may use order book information at their own
discretion.

The market is populated with multiple background
traders, and in selected treatments, a spoofer. Background
traders represent investors with preferences on holding long
or short positions in the underlying security. The spoofer
seeks trading profits through its price manipulation actions.

The preference of background trader i is defined by its
private value Θi, a vector of length 2qmax, where qmax is

the maximum number of units a trader can be long or short at
any time. Private values are subject to diminishing marginal
utility and element θqi in the vector specifies the incremental
private benefit foregone by selling one unit of the security
given a current net position of q.

Θi = (θ−qmax+1
i , . . . , θ0i , θ

1
i , . . . , θ

qmax

i )

Alternatively, θq+1
i can be understood as the marginal pri-

vate gain from buying an additional unit given current net
position q. To reflect diminishing marginal utility, that is
θq

′ ≤ θq for all q′ ≥ q, we generate Θi from a set of 2qmax

values drawn independently from N(0, σ2
PV ), sort elements

in descending order, and assign θqi to its respective value in
the sorted list.

The entries of a background trader follow a Poisson pro-
cess with an arrival rate λa. Upon each entry, a background
trader receives a buy or sell signal with equal probability
and observes an agent-and-time-specific noisy fundamen-
tal ot = rt + nt with the observation noise following
nt ∼ N(0, σ2

n). Given its incomplete information about the
fundamental, an agent can potentially benefit by consider-
ing market information, which is influenced by the aggre-
gate observations of other agents. On each arrival, a back-
ground trader withdraws its previous order (if untransacted)
and submits a new single-unit limit order. The bid or ask
price submitted by a background agent is jointly decided by
its valuation and trading strategy, as discussed in the next
section. The spoofing agent, if present, initially arrives at a
designated intermediate time Tsp ∈ [0, T ] and executes the
manipulation strategy.

Trading Strategies

Estimation of the Final Fundamental. As holdings of
the security are evaluated at the end of a trading period,
traders estimate the final fundamental value based on their
noisy observations. We assume the market environment pa-
rameters (mean reversion, shock variance, etc.) are common
knowledge for background agents.

Given a new noisy observation ot, an agent estimates the
current fundamental by updating its posterior mean r̃t and
variance σ̃2

t in a Bayesian manner. Let t′ denote the time of
a previous arrival. The updated estimates are given by:

r̃t =
σ2
n

σ2
n + σ̃2

t′
r̃t′ +

σ̃2
t′

σ2
n + σ̃2

t′
ot ; σ̃2

t =
σ2
nσ̃

2
t′

σ2
n + σ̃2

t′
.

Based on the posterior estimate of r̃t, the trader computes
r̂t, its estimate at time t of the terminal fundamental rT , by
adjusting for mean reversion:

r̂t =
(
1− (1− κ)T−t

)
r̄ + (1− κ)T−tr̃t. (2)

ZI as a Background Trading Strategy. ZI traders decide
limit-order prices solely based on fundamental observations
and private values. The ZI agent submits a bid shaded from
its valuation of the security by a random offset, which is
uniformly drawn from [Rmin, Rmax]. Specifically, a ZI trader
i arriving at time t with position q submits a single-unit limit
order at price
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pi(t) ∼
{
U [r̂t + θq+1

i −Rmax, r̂t + θq+1
i −Rmin] if buying

U [r̂t − θqi +Rmin, r̂t − θqi +Rmax] if selling.

Our version of ZI also takes into account the current
quoted price, as governed by a strategic threshold parame-
ter η ∈ [0, 1]. Before submitting a new limit order, if the
agent could achieve a fraction η of its requested surplus, it
would simply take that quote.

HBL as a Background Trading Strategy. HBL agents
go beyond their own observations and private values by also
considering order book information. The strategy is centered
on belief functions that traders form on the basis of observed
market data. Agents estimate the probability that orders at
various prices would be accepted in the market, and choose
a limit price maximizing its own expected surplus at its cur-
rent valuation estimate.

The HBL agent’s probability estimate is based on ob-
served frequencies of accepted and rejected bids and asks
during the last L trades, where L, the agent’s memory length,
is a strategic parameter. On arrival at time t, the HBL agent
builds a belief function ft(P), designed to represent the
probability that an order at price P will result in a transac-
tion. Specifically, the belief function is defined for encoun-
tered prices P by:

ft(P) =

⎧⎪⎨
⎪⎩

TBLt(P)+ALt(P)
TBLt(P)+ALt(P)+RBGt(P) if buying

TAGt(P)+BGt(P)
TAGt(P)+BGt(P)+RALt(P) if selling.

(3)

Here, T and R specify transacted and rejected orders re-
spectively; A and B represent asks and bids; L and G describe
orders with prices less than or equal to and greater than or
equal to price P correspondingly. For example, TBLt(P) is
the number of transacted bids found in memory with price
less than or equal to P up to time t. Agents compute the
statistics upon each arrival and update their memory when-
ever the market receives new order submissions, transac-
tions, or cancellations.

Since our market model supports order cancellations and
keeps active orders in the order book, the notion of a rejected
order is tricky to define. To solve this problem, we introduce
a grace period τgp and an alive period τal of an order. We
define the grace period τgp = 1/λa and the alive period τal of
an order as the time interval from submission to transaction
or withdrawal if it is inactive, or to the current time if active.
An order is considered as rejected only if its alive period
τal is longer than τgp, otherwise it is partially rejected by a
fraction of τal/τgp.

As the belief function (3) is defined only at encountered
prices, we extend it over the full domain by cubic spline in-
terpolation. To speed the computation, we pick knot points
and interpolate only between those points.

After formulating the belief function, agent i with an ar-
rival time t and current holdings q searches for the price
P∗i (t) that maximizes expected surplus:

P∗i (t) =
{
argmaxp(r̂t + θq+1

i − p)ft(p) if buying
argmaxp(p− θqi − r̂t)ft(p) if selling.

Under the special cases when there are fewer than L trans-
actions at the beginning of a trading period or when one side
of the order book is empty, HBL agents behave the same
as ZI agents until enough information is gathered to form
the belief function. As those cases are rare, the specific ZI
strategy that HBL agents adopt will not affect overall per-
formance.

Spoofing Strategy. We design a simple spoofing strategy
which maintains a large volume of buy orders at one tick be-
hind the best bid. Specifically, upon arrival at Tsp ∈ [0, T ],
the spoofing agent submits a buy order at price BIDTsp − 1
with volume Qsp � 1. Whenever there is an update on the
best bid, the spoofer cancels its original spoof order and sub-
mits a new one at price BIDt − 1 with the same volume.
As background traders submit only single-unit orders, they
cannot transact with the spoof order, which is shielded by
a higher order at BIDTsp . If that higher order gets executed,
the spoofer immediately cancels and replaces its spoof or-
ders before another background trader arrives. We assume
in effect that the spoofer can react infinitely fast, in which
case its spoof orders are guaranteed never to transact.

By continuously feigning buy interest in the market, this
spoofing strategy specifically aims to raise market beliefs.
Other spoofing strategies such as adding sell pressure or al-
ternating between buy and sell pressure can be easily con-
structed by extension from the current version.

Valuation Model

We calculate market surplus as the sum of agents’ surpluses
at the end of the trading period T . An agent’s total surplus is
the sum of cash paid or gained during trading period and the
final valuation of holdings. The market’s final valuation of
trader i with a long position L (L > 0) is rT ×L+

∑k=L
k=1 θki

and similarly, the valuation of a trader j with a short position
S (S < 0) is rT × S −∑k=0

k=S+1 θ
k
j .

Experiments and Results

Experiments are conducted by simulating the market model
described above. We generate data for different games, each
of which is comprised of a market environment and a strat-
egy profile specifying the number of background agents
playing each strategy. We sample sufficiently large num-
ber of runs for each game to account for stochastic effects
(market fundamental series, agent arrival patterns, valua-
tions, etc.). Given a specific market environment, we evalu-
ate background-trader performance and the impact of spoof-
ing in empirical Nash equilibrium, where agents have no in-
centive to deviate to other available strategies, given others’
choices.2

Market Environment Settings

Our simulations consider nine parametrically distinct en-
vironments that differ in market shock variances σ2

s ∈
2In all of our experiments, outcome features (including agent

payoff, surplus, and price discovery) are calculated as the average
of 20,000 simulations of games with strategy profiles sampled as
the specified equilibrium mixture.
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Table 1: Background trading strategies included in empirical game-theoretic analysis.

Strategy ZI1 ZI2 ZI3 ZI4 ZI5 ZI6 ZI7 HBL1 HBL2 HBL3 HBL4

L NA NA NA NA NA NA NA 2 3 5 8
Rmin 0 0 0 0 0 250 250 250 250 250 250
Rmax 250 500 1000 1000 2000 500 500 500 500 500 500
η 1 1 0.8 1 0.8 0.8 1 1 1 1 1

{105, 5 × 105, 106} and noisy observation variances σ2
n ∈{103, 106, 109}. A higher shock variance means larger in-

trinsic fluctuations in the fundamental time series, whereas
a higher observation variance implies agents receive less in-
formation of the true fundamental. Explorations regarding
the significance of different environment parameters sug-
gest market shock and observation noise are the most rel-
evant and sensitive ones to our study. We label the three low,
medium and high shock variances as {A,B,C} and noisy
observation variances as {1, 2, 3} respectively to describe
the nine environments. For example, A1 represents a mar-
ket with low shock σ2

s = 105, and low observation noise
σ2
n = 103.
In all environments, we further consider markets with

N ∈ {28, 65} background traders and in selected treat-
ments, a spoofer. The global fundamental time series is gen-
erated according to (1) with a fundamental mean r̄ = 105,
a mean-reverting parameter κ = 0.05 and a specific shock
variance σ2

s . Market has a minimum tick size of one and each
trading period lasts T = 10, 000 time steps. Background
traders arrive at the market according to a Poisson distribu-
tion with a rate λa = 0.005 and upon each arrival, the trader
observes a noisy fundamental ot. The maximum number of
units background traders can hold at any time is qmax = 10.
Private values are drawn from a Gaussian distribution with
zero mean and a variance of σ2

PV = 5 × 106. The spoofing
agent initially arrives at time Tsp = 1000, submits a large
buy order at price BIDTsp − 1 with volume Qsp = 200 and
later maintains spoofing orders at price BIDt − 1.

The background trading strategy set (Table 1) includes
seven versions of ZI and four versions of HBL.3 Agents
are allowed to choose from this restricted set of strategies
to maximize their payoffs.

EGTA Process

Each market game is defined by a market environment
and multiple players partitioned into two roles, background
traders and a spoofer. We are interested in agents’ strategic
choices in Nash equilibrium of a game. The payoff of a spe-
cific strategy is the average of payoffs of all agents playing
that strategy, and thus only depends on the number of agents
playing each strategy, not on individual mappings.

As game size grows exponentially in the number of play-
ers and strategies, it is computationally prohibitive to ana-
lyze games with this many traders. We therefore apply ag-

3We also considered ZI strategies with larger shading ranges
and HBL strategies with longer memory lengths, but they fail to
appear in equilibrium.

gregation to approximate the many-player games as games
with fewer players. The specific technique we employ,
called deviation-preserving reduction (DPR) (Wiedenbeck
and Wellman 2012), defines reduced-game payoffs in terms
of payoffs in the full game as follows. Consider an N -player
symmetric game, which we want to reduce to a k-player
game. The payoff for playing strategy s1 in the reduced
game, with other agents playing strategies (s2, . . . , sk), is
given by the payoff of playing s1 in the full N -player game
when the other N − 1 agents are evenly divided by among
strategies s2, . . . , sk. To facilitate DPR, we choose values
for N to ensure that the required aggregations come out as
integers. Specifically, in this study we reduce the market en-
vironments with 28 (65) background traders and a spoofer to
games with four (five) background traders and one spoofer.
With one background player deviating to a new strategy, we
can reduce the remaining 27 (64) players to three (four).

To find the Nash equilibrium of a game, we run simu-
lations to get payoffs for background strategies and con-
duct EGTA based on those payoffs. Exploration starts with
games where all players in a role adopt the same strategy,
and spreads to other strategies by single-agent deviations.
Equilibria found in each subgame are considered as candi-
dates of the full game. We can refute these candidates by
finding a beneficial deviation outside the subgame strategy
set, or confirm by examining all deviations without refuting.
We continue to refine the empirical subgame with additional
strategies and corresponding simulations until at least one
equilibrium is confirmed and all non-confirmed candidates
are refuted.

Games without Spoofing

Since spoofing targets the order book and can be effective
only to the extent traders exploit order book information, we
first investigate whether background agents adopt the HBL
strategy at equilibrium in games without spoofing. Apply-
ing EGTA to the eleven background strategies in Table 1,
we found at least one equilibrium for each market environ-
ment.4

As indicated in Figure 4, HBL is adopted with positive
probability by background traders in most non-spoofing en-
vironments. That is, in the absence of spoofing, investors
generally have incentives to make bidding decisions based
on order book information. We find that HBL is robust and
widely preferred in markets with more traders, low fun-

4Details of the HBL adoption rates and market surpluses of all
found equilibria in games with and without spoofing are available
in an online appendix at https://goo.gl/nRfF4L
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Figure 1: Comparisons of market surplus (Figures 1a and 1b) and price discovery (Figures 1c and 1d) for equilibrium in each
environment, with and without the HBL strategies available to background traders. Blue circles represent equilibrium outcomes
when agents can choose both HBL and ZI strategies; orange triangles represent equilibrium outcomes when agents are restricted
to ZI strategies. Overlapped markers are outcomes from the same equilibrium mixture, despite the availability of HBL.

damental shocks, and high observation noise. Intuitively, a
larger population size implies a thick order book with more
learnable aggregated data; low shocks in fundamental time
series increase the predictability of future price outcomes;
and high observation noise limits what an agent can glean
about the true fundamental from its own information. The
two exceptions (environments C1 and C2 with 28 back-
ground traders) where all agents choose ZI can be explained
by the environments’ small population size, large fundamen-
tal shocks, and relatively small observation noise.

We further conduct EGTA in games where background
traders are restricted to strategies in the ZI family (ZI1−ZI7
in Table 1). This is tantamount to disallowing learning from
order book information. To understand the effect of order
book disclosure on market performance, we compare equi-
librium outcomes for each environment, with and without
the HBL strategy set available to background traders, on two
measures: market surplus and price discovery (Figure 1).
Price discovery reflects how well transactions reveal the true
value of the security; it is defined as the root-mean-squared
deviation (RMSD) of the transaction price from the estimate
of the true fundamental (as calculated by (2)) over the trad-
ing period. Lower RMSD indicates better price discovery.

Overall in our experiments, background traders achieve
higher surplus (Figures 1a and 1b) and better price discov-
ery (Figures 1c and 1d) when the market provides order book
information and the HBL strategy option. When the equilib-
rium includes HBL, we find transactions reveal fundamental
estimates well, especially in markets with lower shock and
observation variances (as in Figures 1c and 1d, where blue
circles at lower left have low RMSDs). We also notice small
exceptions in scenarios with high observation variance and
more background traders (environment A3 and C3 with 65
players) where ZI-only equilibria exhibit higher surplus than
equilibria combining HBL and ZI.

Games with Spoofing

Spoofing the HBLs. To examine the effectiveness of the
designed spoofing strategy, we play a spoofer against each
equilibrium found in games without spoofing and perform
controlled experiments upon a pair of games with and with-
out spoofing. In the paired games, background agents are

guaranteed to arrive at the same time, receive identical
private values, and observe the same fundamental values.
Therefore, any change in HBL’s bidding behavior is caused
by the spoof orders. For every paired games, we run 20,000
simulations for each and compare their transaction price dif-
ferences (Figure 2), and surplus differences attained by HBL
and ZI traders respectively (Figure 3). Transaction price dif-
ference at a specific time is defined as the most recent trans-
action price of a game with spoofing minus that of the paired
game without spoofing. Similarly, surplus difference of HBL
or ZI is the aggregated surplus obtained in a game with
spoofing minus that of the paired game without spoofing.

Figure 2 shows consistent positive changes in transaction
prices since the arrival of a spoofing agent at t = 1000 across
all environments.5 This suggests HBL traders are tricked by
the spoof buy orders: they believe the underlying security
should be worth more and therefore submit or accept limit
orders at higher prices. Though ZI agents do not change their
bidding behavior directly, they may be passively affected
and make transactions at higher prices.

Several other interesting findings are revealed by the
transaction price difference series (Figure 2). First, the aver-
age price rise caused by spoofing in market with 28 back-
ground traders is higher than that of the 65-background-
trader market. This indicates markets with less background
traders are generally more susceptible to spoofing, possi-
bly due to the limited pricing information a thin market
could aggregate. Second, for markets populated with more
HBLs than ZIs, the transaction price differences increase
throughout the trading period. This exacerbated spoofing ef-
fect can be explained by HBLs consistently submitting or-
ders at higher prices and confirming each other’s spoofed
belief. However, for markets with more ZIs, the spoofing
effect diminishes as ZIs who do not change their limit-order
pricing can partly correct HBLs’ illusions. Third, throughout
the trading horizon, differences in transaction prices first in-
crease and then stabilize or decrease as time approaches the
end of a trading period. This suggests as time approaches
T = 10, 000, HBL agents may better estimate the termi-

5As spoofing has no impact on pure ZI populations, we display
transaction price differences only for equilibria with HBL.
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Figure 2: Transaction price differences throughout the trad-
ing horizon with and without a spoofer against each HBL-
and-ZI equilibrium. Multiple lines of the same environment
represent different equilibria.
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Figure 3: Background trader surplus differences in markets
with and without a spoofer against each HBL-and-ZI equi-
librium. Repetitions of the same market environment repre-
sent outcomes of multiple equilibria.

nal value from observations given the mean-reverting adjust-
ment and thus are less spoofed.

Figure 3 demonstrates a redistribution of surplus between
HBL and ZI agents when we include a spoofer: HBL’s ag-
gregated surplus decreases, while ZI’s total surplus increases
compared to those of the non-spoofing games. This implies
that ZI can take advantages of HBL’s spoofed beliefs to
profit more. Since the decreases in HBL’s surplus are con-
sistently larger than the increases of ZI’s, the overall mar-
ket surplus decreases. However, we leave the discussion of
spoofing’s impact on market surplus to the next section,
where background traders can choose other strategies to ad-
just to spoofing. We also find that markets with a spoofer
against background traders at equilibrium have statistically
significantly higher RMSDs, which affirms the notion that
spoofing, as a deceptive practice, hurts price discovery.

To examine the potential to profit from a successful price
manipulation, we extend the spoofing agent with an ex-
ploitation strategy: buying, then (optionally) spoofing to
raise the price, then selling. It starts by buying when it finds a
limit sell order with price less than the fundamental mean. It
then optionally runs the spoofing trick, or alternatively waits,
for 1000 time steps. Finally, the exploiter sells when it finds
a limit buy order with price more than fundamental mean.
Note that even without the spoof, this exploitation strategy
is profitable in expectation due to the mean reversion, and
the reliable arrival of background traders willing to sell at
prices better than the fundamental.

In controlled experiments, we find that exploitation profits
are consistently increased when the spoof is also deployed.
Specifically, across 28-trader market environments, the ex-
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Figure 4: HBL adoption rates at equilibria in games with
and without spoofing. Each blue (orange) marker specifies
the HBL proportion at one equilibrium found in a specific
game environment without (with) spoofing.
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Figure 5: Total surplus achieved at equilibria in games with
and without spoofing. Each blue (orange) marker specifies
the surplus at one equilibrium found in a specific game envi-
ronment without (with) spoofing. Surplus achieved at equi-
librium combining HBL and ZI and equilibria with pure ZI
are indicated by markers with and without fills respectively.

ploiter makes an average profit of 206.1 and 201.8 with
and without spoofing, and the increases in profit range from
1.2 to 11.5. For the 65-trader market, the average profits of
this exploitation strategy with and without spoofing are 50.5
and 46.3 respectively, with the increases in profit varying
from 1.7 to 9.4 across environments.6

Re-equilibrating Games with Spoofing. To understand
how spoofing affects background-trader interactions, we
conduct EGTA again to find Nash equilibrium in games with
spoofing, where background traders can choose any strategy
in Table 1. As indicated in Figure 4, after re-equilibrating
games with spoofing, HBL is generally adopted by a smaller
fraction of traders, but may still persist at equilibrium
in most market environments. HBL’s existence after re-
equilibration indicates a consistently spoofable market: the
designed spoofing tactic fails to eliminate HBL agents and
in turn, the persistence of HBL may incentivize a spoofer to
continue effectively manipulating the market.

Finally, we investigate the effect of spoofing on market
surplus. Figure 5 compares the total surplus achieved by
background traders in equilibrium with and without spoof-
ing. It reveals several interesting findings. First, given the
presence of HBL traders, spoofing generally decreases total

6Statistical tests show all increases in profit are significantly
larger than zero. Regardless of spoofing, the exploitation strategy
profits more in the thinner market due to the greater variance in
transaction prices.

373



surplus (as in Figure 5, most filled orange triangles are below
the filled blue circles). However, spoofing has ambiguous
effect in the thicker market with large observation variance
(environment A3 and C3 with 65 background agents). This
may be because noise and spoofing simultaneously hurt the
prediction accuracy of the HBL agents and therefore shift
agents to other competitive ZI strategies with higher pay-
offs. Second, we find the welfare effects of HBL strategies
persist regardless of spoofing’s presence: markets populated
with HBL agents in equilibrium generally achieve higher to-
tal surplus than those markets without HBL (as in Figure 5,
the hollow markers are below the filled markers).

Conclusion

We constructed a computational model of spoofing market
prices by targeting the order book. To do so, we design an
HBL strategy that uses order book information to make pric-
ing decisions. Since HBL traders use the order book, they are
spoofable, which we confirmed in simulation analysis. We
demonstrate that in the absence of spoofing, HBL is gener-
ally adopted in equilibrium and benefits price discovery and
social welfare. Though the presence of spoofing decreases
the HBL proportion in background traders, HBL’s persis-
tence in equilibrium indicates a robustly spoofable mar-
ket. By comparing equilibrium outcomes with and without
spoofing, we find spoofing tends to decrease market surplus.
Comparisons across parametrically different environments
reveal factors that may influence the adoption of HBL and
the impact of spoofing. Our agent-based model aims to cap-
ture the complex essence of real-world financial markets and
the strategic interactions among investors.

We acknowledge several factors that limit the accuracy of
our equilibrium analysis in individual game instances; these
include sampling error, reduced-game approximation, and
restricted strategy coverage. Despite such limitations (inher-
ent in any complex modeling effort), we believe the model
offers a constructive basis for other researchers, regulators,
and policymakers to better evaluate spoofing and understand
its interplay with other trading strategies.
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