
Data Driven Resource Allocation for Distributed Learning

Travis Dick
Carnegie Mellon University

tdick@cs.cmu.edu

Mu Li
Carnegie Mellon University

muli@cs.cmu.edu

Venkata Krishna Pillutla
University of Washington

pillutla@cs.washington.edu

Colin White
Carnegie Mellon University

crwhite@cs.cmu.edu

Maria Florina Balcan
Carnegie Mellon University

ninamf@cs.cmu.edu

Alex Smola
Carnegie Mellon University

and AWS Deep Learning
alex@smola.org

Abstract

In distributed machine learning, data is dispatched to multi-
ple machines for processing. Motivated by the fact that sim-
ilar data points often belong to the same or similar classes,
and more generally, classification rules of high accuracy tend
to be “locally simple but globally complex” (Vapnik and Bot-
tou 1993), we propose data dependent dispatching that takes
advantage of such structure. We present an in-depth analysis
of this model, providing new algorithms with provable worst-
case guarantees, analysis proving existing scalable heuristics
perform well in natural non worst-case conditions, and tech-
niques for extending a dispatching rule from a small sam-
ple to the entire distribution. We overcome novel technical
challenges to satisfy important conditions for accurate dis-
tributed learning, including fault tolerance and balancedness.
We empirically compare our approach with baselines based
on random partitioning, balanced partition trees, and local-
ity sensitive hashing, showing that we achieve significantly
higher accuracy on both synthetic and real world image and
advertising datasets. We also demonstrate that our technique
strongly scales with the available computing power.

Introduction

Motivation and Overview: We consider distributed learn-
ing settings where massive amounts of data are collected
centrally, and for space and efficiency reasons this data must
be dispatched to distributed machines in order to perform the
processing needed (Li et al. 2014; Zhang, Duchi, and Wain-
wright 2012). The simplest approach and what past work
(both theoretical and empirical) has focused on is to per-
form the dispatching randomly (Zhang, Duchi, and Wain-
wright 2012; Zhang et al. 2013). Random dispatching has
the advantage that dispatching is easy, and because each ma-
chine receives data from the same distribution, it is rather
clean to analyze theoretically. However, since the distribu-
tions of the data on each machine are identical, such tech-
niques could lead to sub-optimal results in practice in terms
of the accuracy of the resulting learning rule. Motivated by
the fact that in practice, similar data points tend to have the
same or similar classification, and more generally, classifi-
cation rules of high accuracy tend to be “locally simple but
globally complex” (Vapnik and Bottou 1993), we propose

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

a new paradigm for performing data-dependent dispatching
that takes advantage of such structure by sending similar dat-
apoints to the same machines. For example, a globally ac-
curate classification rule may be complicated, but each ma-
chine can accurately classify its local region with a simple
classifier.

We introduce and analyze dispatching techniques that par-
tition a set of points such that similar examples end up on
the same machine/worker, while satisfying key constraints
present in a real world distributed system including bal-
ancedness and fault-tolerance. Such techniques can then be
used within a simple, but highly efficient distributed sys-
tem that first partitions a small initial segment of data into a
number of sets equal to the number of machines. Then each
machine locally and independently applies a learning algo-
rithm, with no communication between the workers during
training. In other words, the learning is embarrassingly par-
allel. At prediction time, we use a super-fast sublinear algo-
rithm for directing new data points to the most appropriate
machine.
Our Contributions: We propose a novel scheme for par-
titioning data which leads to better accuracy in distributed
machine learning tasks, and we give a theoretical and ex-
perimental analysis of this approach. We present new algo-
rithms with provable worst-case guarantees, analysis prov-
ing existing scalable heuristics perform well in natural non
worst-case conditions, techniques for extending a dispatch-
ing rule from a small sample to the entire distribution, and
an experimental evaluation of our proposed algorithms and
several baselines on both synthetic and real-world image and
advertising datasets. We empirically show that our method
strongly scales and that we achieve significantly higher ac-
curacy over baselines based on random partitioning, bal-
anced partition trees, and locality-sensitive hashing.

In our framework, a central machine starts by cluster-
ing a small sample of data into roughly equal-sized clus-
ters, where the number of clusters is equal to the number
of available machines. Next, we extend this clustering into
an efficient dispatch rule that can be applied to new points.
This dispatch rule is used to send the remaining training
data to the appropriate machines and to direct new points
at prediction time. In this way, similar datapoints wind up
on the same machine. Finally, each machine independently
learns a classifier using its own data (in an embarrassingly

The AAAI-17 Workshop on
Distributed Machine Learning

WS-17-08

478

parallel manner). To perform the initial clustering used for
dispatch, we use classic clustering objectives (k-means, k-
median, and k-center). However, we need to add novel con-
straints to ensure that the clusters give a data partition that
respects the constraints of real distributed learning systems:

Balancedness: We need to ensure our dispatching proce-
dure balances the data across the different machines. If a
machine receives much more data than other machines, then
it will be the bottleneck of the algorithm. If any machine re-
ceives very little data, then its processing power is wasted.
Thus, enforcing upper and lower bound constraints on the
cluster sizes leads to a faster, more efficient setup.

Fault-Tolerance: In order to ensure that our system is ro-
bust to machine failures, we assign each point to multiple
distinct clusters. This way, even if a machine fails, the data
on that machine is still present on other machines. Moreover,
this has the added benefit that our algorithms behave well on
points near the boundaries of the clusters. We say a cluster-
ing algorithm satisfies p-replication if each point is assigned
to p distinct clusters.

When designing clustering algorithms, adding balanced-
ness and fault tolerance makes the task significantly harder.
Prior work has considered upper bounds on the cluster sizes
(Li 2014b; Byrka et al. 2015) and lower bounds (Ahmadian
and Swamy 2016), but no prior work has shown provable
guarantees with upper and lower bounds on the cluster sizes
simultaneously. With upper bounds, the objective functions
are nondecreasing as the number of clusters k increases, but
with lower bounds we show the objective function can oscil-
late arbitrarily with respect to k. This makes the problem es-
pecially challenging from a combinatorial optimization per-
spective. Existing capacitated clustering algorithms work by
rounding a fractional linear program solution, but the erratic
nature of the objective function makes this task more diffi-
cult for us.

The balance constraints also introduce challenges when
extending a clustering-based partitioning from a small sam-
ple to unseen data. The simple rule that assigns a new point
to the cluster with the nearest center provides the best ob-
jective value on new data, but it can severely violate the
balance constraints. Therefore, any balanced extension rule
must take into account the distribution of data.

We overcome these challenges, presenting a variety of
complementary results, which together provide strong jus-
tification for our distributed learning framework. We sum-
marize each of our main results below.
• Balanced fault-tolerant clustering: We provide the first
clustering algorithms with provable guarantees that simulta-
neously handle upper and lower bounds on the cluster sizes,
as well as fault tolerance. Clustering is NP-hard and adding
more constraints makes it significantly harder, as we discuss
in Section . For this reason, we first devise approximation al-
gorithms with strong worst-case guarantees, demonstrating
this problem is tractable. Specifically, in Section we provide
an algorithm that produces a fault-tolerant clustering that
approximately optimizes the k-means objective while also
roughly satisfying the given upper and lower bound con-
straints. The full version of the paper includes algorithms
for the k-median, and k-center objectives. At a high level,

our algorithm proceeds by first solving a linear program, fol-
lowed by a careful balance and replication aware rounding
scheme. We use a novel min-cost flow technique to finish off
rounding the LP solution into a valid clustering solution.
• k-means++ under stability: We give complementary re-
sults showing that for ‘typical’ problem instances, it is pos-
sible to achieve better guarantees with simpler, more scal-
able algorithms. Specifically, in Section we show the popu-
lar k-means++ algorithm outputs a balanced clustering with
stronger theoretical guarantees, provided the data satisfies
a natural notion of stability. We make nontrivial extensions
of previous work to ensure the upper and lower size con-
straints on the clusters are satisfied. No previous work gives
provable guarantees while satisfying both upper and lower
bounds on the cluster sizes, and Sections and may be of
independent interest beyond distributed learning.
• Efficient clustering by subsampling: For datasets large
enough to require distributed processing, clustering the en-
tire dataset is prohibitively expensive. A natural way to avoid
this cost is to only cluster a small subset of the data and
then efficiently extend this clustering to the entire dataset. In
Section we show that assigning a new example to the same
p clusters as its nearest neighbor in the clustered subsam-
ple approximately preserves both the objective value and all
constraints. We also use this technique at prediction time to
send new examples to the most appropriate machines.
• Experimental results: Section presents experiments eval-
uating both our LP rounding algorithms and k-means++ to-
gether with our nearest neighbor extension. We show that
our technique strongly scales and that it achieves signif-
icantly higher accuracy than baselines based on random
partitioning, balanced partition trees, and locality sensitive
hashing on several synthetic and real-world datasets.

For the full version of this paper, please refer to (Dick et
al. 2015).
Related Work: Currently, the most popular method of dis-
patch in distributed learning is random dispatch (Zhang et
al. 2013; Zhang, Duchi, and Wainwright 2012). Other pa-
pers have studied partitioning data in distributed machine
learning, but without formal guarantees on balancing data
or the quality of the clusters produced (Cooper et al. 2008;
Wei et al. 2015; You et al. 2015).

Fault Tolerant Balanced Clustering

In this section, we give an algorithm to cluster a small ini-
tial sample of data to create a dispatch rule that sends sim-
ilar points to the same machine. We measure the similarity
of points in the same cluster using the k-means objective,
and in the full version, we also consider the k-median and
k-center objectives. We impose upper and lower bounds on
the cluster sizes and replication constraints. This is the first
algorithm with provable guarantees to simultaneously han-
dle both upper and lower bounds on the cluster sizes.

A clustering instance consists of a set V of n points, and
a distance metric d. Given two points i and j in V , denote
the distance between i and j by d(i, j). The task is to find
a set of k centers C = {c1, . . . , ck} and assignments of
each point to p of the centers f : V →

(
C
p

)
, where

(
C
p

)

479

represents the subset of Cp with no duplicates, to minimize∑
i∈V

∑
c∈f(i) d(i, c)

2.
We add size constraints 0 < � ≤ L < 1, also known

as capacity constraints, so each cluster must have a size be-
tween n� and nL. For simplicity, we assume these values are
integral (or replace them by �n�� and �nL� respectively).
Before we present our approximation algorithm, we discuss
the challenges introduced by these size constraints.
Structure of Balanced Clustering: It is well-known that
exactly minimizing the k-means objective is NP-hard (even
without the capacity and fault tolerance generalizations)
(Jain et al. 2003). In uncapacitated clustering and clustering
with upper bounds only, the cost of the optimal solution is
nonincreasing as k increases, because we can pick any point
and make it a center, so the new center is now distance 0
from a center. However, when there are lower bounds on the
cluster sizes, we prove that the value of the optimal solution
(for k-means, k-median, or k-center) can oscillate arbitrar-
ily many times as k increases. The proof requires an intricate
clustering construction, which we include in the full version.
Approximation Algorithm: In light of these difficulties,
one might ask whether any approximation algorithm ex-
ists for this problem. We answer affirmatively, by extend-
ing previous work (Li 2014a) to fit our more challenging
constrained optimization problem. Our algorithm returns a
clustering whose cost is at most a constant factor multiple of
the optimal solution, while violating the capacity and repli-
cation constraints by a small constant factor.

1. Find a solution to the following linear program:

min
x,y

∑

i,j∈V

xijd(i, j)
2 s.t.

(a) ∀j ∈ V :
∑

i∈V

xij = p; (b)
∑

i∈V

yi ≤ k;

(c) ∀i ∈ V : �yi ≤
∑

j∈V

xij

n
≤ Lyi;

(d) ∀i, j ∈ V : 0 ≤ xij ≤ yi ≤ 1.

2. Greedily place points into a set M from lowest
Cj :=

∑
i xijd(i, j)

2 to highest (called “monar-
chs”), adding point j to M if it is not within dis-
tance 4Cj of any point already in M. Partition the
points into coarse clusters (called “empires”) using
the Voronoi partitioning of the monarchs.

3. For each empire Eu with total fractional opening
Yu :=

∑
i∈Eu

yi, give opening Yu/�Yu� to the �Yu�
closest points to u and all other points opening 0.

4. Round the xij’s by constructing a minimum cost
flow problem on a bipartite graph of centers and
points, setting up demands and capacities to handle
the bounds on cluster sizes.

Algorithm 1: Balanced clustering with fault tolerance

Theorem 1. Algorithm 1 returns a constant factor approxi-
mate solution for balanced k-means with p-replication prob-
lem for p > 1, where the upper capacity constraints are vi-
olated by at most a factor of p+2

p , and each point can be
assigned to each center at most twice.

Proof sketch. The first step is to solve the linear program
in Algorithm 1 to obtain a fractional solution to the cluster-
ing problem. For each point i, the value yi is the fraction
to which this point is opened as a center (which we refer
to as the ‘opening’ of i). Next, we perform a coarse parti-
tioning of the points into ‘empires’, such that each empire
has total opening ≥ 1, and each point is at most 4Ci from
the monarch of its empire. Then we aggregate all fractional
openings to the center of their respective empires. The key
insight is that p-replication helps to mitigate the capacity vi-
olation, so we end up with ≤ k centers total, and the cost of
the aggregation procedure can be bounded using the triangle
inequality. Finally, we use a novel min-cost flow technique
to round the center assignment variables while simultane-
ously handling the upper and lower bounds on the cluster
sizes.

In the full version of this paper, we show a more in-
volved algorithm specifically for k-center which achieves a
6-approximation with no violation to the capacity or repli-
cation constraints.

Balanced Clustering Under Stability

In the previous section, we showed an LP-based algorithm
which provides theoretical guarantees even on adversari-
ally chosen data. Often real-world data has inherent struc-
ture that allows us to use more scalable algorithms and
achieve even better clusters (Balcan, Blum, and Gupta 2013;
Ostrovsky et al. 2006). In our distributed ML framework,
this translates to being able to use a larger initial sample
for the same computational power (Section analyzes the ef-
fect of sample size). In this section, we prove the popular
k-means++ algorithm outputs clusters very close to the op-
timal solution, provided the data satisfies a natural notion
of stability called approximation stability (Balcan, Blum,
and Gupta 2013; Gupta, Roughgarden, and Seshadhri 2014;
Balcan, Haghtalab, and White 2016).

Specifically, we show that given a balanced clustering
instance in which clusterings close in value to OPT are
also close in terms of the clusters themselves, assuming
L ∈ O(�), then k-means++ with a simple pruning step (Os-
trovsky et al. 2006) outputs a solution close to optimal. We
overcome key challenges that arise when we add upper and
lower bounds to the cluster sizes. We summarize the result
below, and include the details in the full version.
Approximation Stability: Given a clustering instance
(S, d) and inputs � and L, and let OPT denote the cost of
the optimal balanced clustering. Two clusterings C and C′
are ε-close, if only an ε-fraction of the input points are clus-
tered differently in the two clusterings, i.e., minσ

∑k
i=1 |Ci \

C′
σ(i)| ≤ εn, where σ is a permutation of [k].

480

Definition 1 (Balcan, Blum, and Gupta (2013)). A cluster-
ing instance (S, d) satisfies (1 +α, ε)-approximation stabil-
ity with respect to balanced clustering if all clusterings C
with cost(C) ≤ (1 + α) · OPT are ε-close to C.

We show that sampling k log k centers using k-means++,
followed by a greedy center-pruning step, (introduced by
Ostrovsky et al. (2006)) is sufficient to cluster well with
high probability, assuming (1+α, ε)-approximation stability
for balanced clustering. Our results improve over Agarwal,
Jaiswal, and Pal (2015), who showed this algorithm outputs
a good clustering with probability Ω(1k) for standard (unbal-
anced) clustering under approximation stability. Formally,
our result is the following.

Theorem 2. Given ε·k
α < ρ < 1, k-means++ seeding with

a greedy pruning step outputs a solution that is 1
1−ρ close to

the optimal solution with probability > 1 − O(ρ), for clus-
tering instances satisfying (1+α, ε)-approximation stability
for the balanced k-means objective, with L

� ∈ O(1).

Proof sketch. Intuitively, (1 + α, ε)-approximation stability
forces the clusters to become “spread out”, i.e., the radius
of any cluster is much smaller than the inter-cluster dis-
tances. This allows us to show for 2-means clustering, the
k-means++ seeding procedure will pick one point from each
cluster with high probability. However, if we induct on the
number of clusters, the probability of success becomes ex-
ponentially small in k. We circumvent this issue in a manner
similar to Ostrovsky et al. (2006), by sampling k log k cen-
ters, and carefully deleting centers greedily, until we are left
with one center per cluster with high probability.

Efficient Clustering by Subsampling

For datasets large enough to require a distributed learning
system, it is expensive to apply a clustering algorithm to the
entire dataset. In this section, we show that we can first clus-
ter a small subsample of data and then efficiently extend this
clustering to the remaining data. In our technique, each point
in the dataset is assigned to the same p clusters as its nearest
neighbor in the clustered subsample. In fact, this technique
can be used to dispatch any point from the space X contain-
ing the data. We show that the clustering induced over X
approximately inherits all of the desirable properties of the
clustered subsample: good objective value, balanced clus-
ters, and replication.

We measure the quality of a clustering of X as follows:
given a data distribution μ over X , our goal is to find a clus-
tering with centers C = {c1, . . . , ck} and an assignment
function f : X →

(
C
p

)
for the entire space that minimizes

Q(f, C) = Ex∼μ[
∑

c∈f(x) d(x, c)
2] subject to the balance

constraints Px∼μ(cj ∈ f(x)) ∈ [�, L] for all j.
The simplest approach to extend a clustering of small sub-

sample is to assign a new example x to the p clusters with the
closest centers. This strategy incurs the lowest cost for new
examples, but it may severely violate the balance constraints
if the distribution is concentrated near one center.

Instead, given a clustering of the subsample S, our tech-
nique assigns a new example x to the same p clusters as its

nearest neighbor in S, denoted by NNS(x). Some points
in S represent more probability mass of μ than others, so
we use a second independent sample S′ to estimate weights
for each point in S that are used in a weighted version of
the objective and balance constraints. Pseudocode is given
in Algorithm 2. We obtain the following guarantee:
Theorem 3. For any ε, δ > 0, let (ḡS , CS) be the output of
Algorithm 2 with parameters k, p, �, L and second sample
size n′ = O

(
1
ε2 (n+ log 1

δ)
)
. Let (f∗, C∗) be any clustering

of X and (g∗S , C
∗
S) be an optimal clustering of S under QS

satisfying the weighted balance constraints (�, L). Suppose
that QS(gS , CS) ≤ r · QS(g

∗
S , C

∗
S) + s. Then w.p. ≥ 1 −

δ over the second sample, the output (ḡS , CS) satisfies the
balance constraints with �′ = �− ε and L′ = L+ ε and

Q(ḡS , CS) ≤ 4r ·Q(f∗, C∗) + 2s+ 4(r + 1)pD2ε

+ 2p(2r + 1)α(S) + 4rβ(S, �+ ε, L− ε),

where D is the diameter of X , the quantity α(S) =
Ex∼μ[d(x,NNS(x))

2] measures how well μ is approx-
imated by S, and β(S, �, L) = minh,C

{
Q(h̄, C) −

Q(f∗, c∗)} measures the loss incurred by restricting to clus-
terings that are constant over the Voronoi tiles of S.

Proof sketch. The second sample size n′ is large enough that
weights ŵi are good estimates of the true probability mass
represented by each point xi ∈ S. This implies that the
extended clustering will approximately satisfy the capacity
constraints. The term α(S) is the expected distance from a
new point to its nearest neighbor, and this can be used to
bound the difference between QS(gS , CS) and Q(gS , Cs).
Finally, β is used to bound the excess cost of outputting a
cluster assignment constant on the Voronoi tiles of S.

The terms α(S) and β(S) can be bounded under natural
conditions on the distribution μ. For example, when the dis-
tribution has doubling dimension d0 and the optimal cluster-
ing of X is φ-probabilistically Lipschitz (Urner, Wulff, and
Ben-David 2013) then for n = Õ((1

εφ−1(ε))
d0d0) we have

α(S) < D2ε and β(S) < pD2ε with high probability. See
the full version of the paper for details.

Experiments

In this section, we present an empirical study of the accuracy
and scalability of our technique using both the LP rounding
algorithms and k-means++ together with the nearest neigh-
bor extension. We compare against three baselines: random
partitioning, balanced partition trees, and locality sensitive
hashing (LSH) on both synthetic and real world image and
advertising datasets. Our findings are summarized below:
• In the full version of the paper we show that for our
datasets, both k-means++ and our LP rounding algorithms
produce high-quality balanced clusterings. These results
complement the results of Section , showing that k-means++
produces high-quality balanced clusterings for ‘typical’
data. Based on this, our further empirical studies use k-
means++.
• We compare the accuracy of our technique (using k-
means++ and the nearest neighbor extension) to the three

481

Input: Dataset S = {x1, . . . , xn}, cluster parameters
(k, p, �, L), second sample size n′.
1. Draw second sample S′ of size n′ iid from μ.
2. For each point xi, set ŵi = |S′

i|/n′, where S′
i =

{x′ ∈ S′ : NNS(x
′) = xi}

3. Let CS = (c1, . . . , ck) and gS : S →
(
C
p

)
be a

clustering of S obtained by minimizing

QS(g, C) =

n∑

i=1

ŵi

∑

cj∈g(x)

d(xi, cj)
2

subject to
∑

i:cj∈gn(xi)

ŵi ∈ [�, L] for all j = 1, . . . , k.

4. Return ḡS(x) = gS(NNS(x)) and centers CS .

Algorithm 2: Nearest neighbor clustering extension.

baselines for a wide range of values of k in large-scale learn-
ing tasks where each machine learns a local SVM classifier.
For all values of k and all datasets, our algorithm achieves
higher accuracy than all our baselines.
• We show that our framework exhibits strong scaling,
meaning that if we double the available computing power,
the total running time reduces by a constant fraction.
Experimental Setup: In each run of our experiment, one
of the partitioning algorithms produces a dispatch rule from
10, 000 randomly sampled training points. This dispatch rule
is then used to distribute the training data among the avail-
able worker machines. If the parameter k exceeds the num-
ber of machines, we allow each machine to process multiple
partitions independently. Next we train a one-vs-all linear
separator for each partition in parallel by minimizing the
L2-regularized L2-loss SVM objective. The regularization
parameter is chosen via 5-fold cross validation. To predict
the label of a new example, we use the dispatch rule to send
it to the machine with the most appropriate model. All re-
sults are averaged over 10 independent runs.
Details for our technique: We run our method with k-
means++ and the nearest neighbor dispatch. We use the fol-
lowing heuristics to ensure balancedness: while any clus-
ter is smaller than �n points, merge it with the cluster with
nearest center. Next, randomly partition each cluster larger
than Ln points into evenly sized subsets. This guarantees
every cluster satisfies the capacity constraints, but the num-
ber of output clusters may differ from k. We use the random
partition tree algorithm of Dasgupta and Sinha (2015) for
efficient nearest neighbor search. We set � = 1/(2k) and
L = 2/k and p = 1, since our baselines do not support
replication.
Baselines: We compare against the following baselines:1

• Random Partitioning: Points are dispatched uniformly at

1Since our framework does not communicate during training,
we do not compare against algorithms that do, e.g. boosting (Bal-
can et al. 2012).

random. This baseline produces balanced partitions but does
not send similar examples to the same machine.
• Balanced Partition Trees: Similarly to a kd-tree, this par-
titioning rule recursively divides the dataset by splitting it
at the median point along a randomly chosen dimension.
This baseline produces balanced partitions and improves
over random partitioning because each machine learns a lo-
cal model for a different subset of the space.
• LSH Partitioning: Our LSH baseline chooses a random
hash h : Rd → Z (the concatenation of 10 random projec-
tions followed by binning (Datar et al. 2004)) and assigns
point x to cluster h(x) mod k. This baseline sends simi-
lar examples to the same machine, but produces unbalanced
partitions.
Datasets: We use the following datasets:
• Synthetic: A synthetic 128 GB dataset with 30 classes and
20 features. The data distribution is a mixture of 200 Gaus-
sians with uniformly random centers in [0, 1]20 with covari-
ance 0.09I . Labels are assigned so that nearby Gaussians
have the same label.
• MNIST-8M: The MNIST-8M dataset (Loosli, Canu, and
Bottou 2007), which has 8M examples and 784 features.
• CIFAR-10: The CIFAR-10 dataset (Krizhevsky 2009) is an
image classification task with 10 classes. We include 50 ran-
domly rotated and cropped copies of each training example
to get 2.5 million training examples. We extract the features
from the Google Inception network (Szegedy et al. 2015) by
using the output of layers in3c and in4d.
• CTR: The CTR dataset contains ad impressions from a
commercial search engine where the label indicates whether
the ad was clicked. It has 860K examples with 232 features.
Results: Our empirical results are shown in Figure 3. We do
not report accuracies when the partitioning is imbalanced,
specifically when the largest k/2 clusters contain more than
98% of the data. For all values of k and all datasets, our
method has higher accuracy than all three baselines. For all
datasets except CTR, the accuracy of our method increases
as a function of k, until each cluster is data starved.

Our method combines the good aspects of both the bal-
anced partition tree and LSH baselines by simultaneously
sending similar examples to the same machines and ensur-
ing that every machine gets roughly the same amount of
data. In contrast, the balanced partition tree baseline both
produce balanced clusters, but do not send similar examples
to the same machines, and the LSH baseline sends similar
examples to the same machine, but makes no attempt at bal-
ancing the partitions. The fact that we get higher accuracy
than the LSH baseline demonstrates that it is not enough to
send similar examples to the same machines without balanc-
ing, and that we get higher accuracy than balanced partition
trees shows that simply balancing the cluster sizes is not suf-
ficient.

Figure 3(f) shows the speedup obtained when running our
system using 16, 32, or 64 workers compared to using 8. We
clock the time taken for the entire experiment: the time for
clustering a subsample, dispatch, training and testing. In all
cases, doubling the number of workers reduces the total time
by a constant factor, showing that our framework strongly
scales and can be applied to very large datasets.

482

0.65

0.7

0.75

0.8

0.85

0.9

A
c
c
u

ra
c
y

 2
8

 2
9

2
10

2
11

2
12

2
13

of clusters (k)

ours
random
bpt

(a) Accuracy on Synthetic Dataset

0.75

0.8

0.85

0.9

0.95

1

A
c
c
u

ra
c
y

 2
2

 2
3

 2
4

 2
5

 2
6

 2
7

 2
8

 2
9

2
10

of clusters (k)

ours
random
bpt

(b) Accuracy on MNIST-8M

0.67

0.68

0.69

0.7

0.71

0.72

0.73

A
c
c
u

ra
c
y

 2
1

 2
2

 2
3

 2
4

 2
5

 2
6

 2
7

 2
8

 2
9

2
10

of clusters (k)

ours
random
bpt
lsh

(c) Accuracy on CTR Dataset

0.58

0.59

0.6

0.61

0.62

0.63

0.64

A
c
c
u

ra
c
y

2
2

2
3

2
4

2
5

2
6

2
7

2
8

of clusters (k)

ours
random
bpt
lsh

(d) Accuracy on CIFAR-10 (in3c)

0.77

0.775

0.78

0.785

0.79

0.795

0.8

A
c
c
u

ra
c
y

2
2

2
3

2
4

2
5

2
6

2
7

2
8

of clusters (k)

ours
random
bpt
lsh

(e) Accuracy on CIFAR-10 (in4d)

8 16 32 64
1

2

4

8

S
p

e
e

d
u

p
 o

v
e

r
8

 w
o

rk
e

rs

of workers

MNIST-8m
CIFAR10-early
CIFAR10-late
CTRS
Synthetic

(f) Strong Scaling

Figure 3: Figures (a) through (e) show the effect of k on the classification accuracy. Figure (f) shows the speedup factor as we increase the
number of workers from 8 to 64 for each dataset.

Conclusion

In this work, we propose and analyze a new framework for
distributed learning. Given that similar points tend to have
similar classes, we partition the data so that similar examples
go to the same machine. We cast the dispatching step as a
clustering problem combined with novel fault tolerance and
balance constraints necessary for distributed systems. We
show the added constraints make the objective highly non-
trivial, yet we provide LP rounding algorithms with prov-
able guarantees. This is complemented by our results show-
ing that the k-means++ algorithm is competitive on ‘typical’
datasets. These are the first algorithms with provable guar-
antees under both upper and lower capacity constraints, and
may be of interest beyond distributed learning. We show that
it is sufficient to cluster a small subsample of data and use a
nearest neighbor extension technique to efficiently dispatch
the remaining data. Finally, we conduct experiments for all
our algorithms that show that our framework outperforms
several baselines and strongly scales.

Acknowledgements

This work was supported in part by NSF grants CCF-
1451177, CCF-1422910, CCF-1535967, IIS-1618714, IIS-
1409802, a Sloan Research Fellowship, a Microsoft Re-
search Faculty Fellowship, a Google Research Award, Intel
Research, Microsoft Research, and a National Defense Sci-
ence & Engineering Graduate (NDSEG) fellowship.

References

Agarwal, M.; Jaiswal, R.; and Pal, A. 2015. k-means++ un-
der approximation stability. Theoretical Computer Science
588:37–51.

Ahmadian, S., and Swamy, C. 2016. Approximation algo-
rithms for clustering problems with lower bounds and out-
liers. In Proceedings of the 43rd annual International Col-
loquium on Automata, Languages, and Programming.

Balcan, M.-F.; Blum, A.; Fine, S.; and Mansour, Y. 2012.
Distributed learning, communication complexity and pri-
vacy. arXiv preprint arXiv:1204.3514.

Balcan, M.-F.; Blum, A.; and Gupta, A. 2013. Clustering
under approximation stability. J. ACM 60(2):8:1–8:34.

Balcan, M.-F.; Haghtalab, N.; and White, C. 2016. k-center
clustering under perturbation resilience. In Proceedings
of the 43rd annual International Colloquium on Automata,
Languages, and Programming.

Byrka, J.; Fleszar, K.; Rybicki, B.; and Spoerhase, J. 2015.
Bi-factor approximation algorithms for hard capacitated k-
median problems. In Proceedings of the Twenty-Sixth An-
nual ACM-SIAM Symposium on Discrete Algorithms, 722–
736. SIAM.

Cooper, B. F.; Ramakrishnan, R.; Srivastava, U.; Silberstein,
A.; Bohannon, P.; Jacobsen, H.-A.; Puz, N.; Weaver, D.;
and Yerneni, R. 2008. Pnuts: Yahoo!’s hosted data serving
platform. Proceedings of the VLDB Endowment 1(2):1277–
1288.

Dasgupta, S., and Sinha, K. 2015. Randomized parti-
tion trees for exact nearest neighbor search. Algorithmica
72(1):237–263.

Datar, M.; Immorlica, N.; Indyk, P.; and Mirrokni, V. 2004.
Locality-sensitive hashing scheme based on p-stable distri-
butions. In Proceedings of the twentieth annual symposium
on Computational geometry, 253–262.

Dick, T.; Li, M.; Pillutla, V. K.; White, C.; Balcan, M.; and

483

Smola, A. J. 2015. Data driven resource allocation for dis-
tributed learning. CoRR abs/1512.04848.
Gupta, R.; Roughgarden, T.; and Seshadhri, C. 2014. De-
compositions of triangle-dense graphs. In Proceedings of
the 5th conference on Innovations in theoretical computer
science, 471–482. ACM.
Jain, K.; Mahdian, M.; Markakis, E.; Saberi, A.; and Vazi-
rani, V. V. 2003. Greedy facility location algorithms ana-
lyzed using dual fitting with factor-revealing lp. Journal of
the ACM (JACM) 50(6):795–824.
Krizhevsky, A. 2009. Learning multiple layers of features
from tiny images. Technical report, University of Toronto.
Li, M.; Andersen, D. G.; Smola, A. J.; and Yu, K. 2014.
Communication efficient distributed machine learning with
the parameter server. In Advances in Neural Information
Processing Systems, 19–27.
Li, S. 2014a. An improved approximation algorithm for
the hard uniform capacitated k-median problem. In Approx-
imation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques, APPROX/RANDOM, 325–338.
Li, S. 2014b. Approximating capacitated k-median with
(1 + ε)k open facilities. arXiv preprint arXiv:1411.5630.
Loosli, G.; Canu, S.; and Bottou, L. 2007. Training invariant
support vector machines using selective sampling. Large
scale kernel machines 301–320.
Ostrovsky, R.; Rabani, Y.; Schulman, L. J.; and Swamy,
C. 2006. The effectiveness of lloyd-type methods for the
k-means problem. In Foundations of Computer Science,
2006. FOCS’06. 47th Annual IEEE Symposium on, 165–
176. IEEE.
Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.;
Anguelov, D.; Erhan, D.; Vanhoucke, V.; and Rabinovich, A.
2015. Going deeper with convolutions. The IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR).
Urner, R.; Wulff, S.; and Ben-David, S. 2013. Plal: Cluster-
based active learning. In Conference on Learning Theory,
376–397.
Vapnik, V. N., and Bottou, L. 1993. Local algorithms for pat-
tern recognition and dependencies estimation. Neural Com-
putation.
Wei, K.; Iyer, R. K.; Wang, S.; Bai, W.; and Bilmes, J. A.
2015. Mixed robust/average submodular partitioning: Fast
algorithms, guarantees, and applications. In Advances in
Neural Information Processing Systems, 2233–2241.
You, Y.; Demmel, J.; Czechowski, K.; Song, L.; and Vuduc,
R. 2015. CA-SVM: Communication-avoiding support vec-
tor machines on clusters. In IEEE International Parallel and
Distributed Processing Symposium.
Zhang, Y.; Duchi, J.; Jordan, M.; and Wainwright, M. 2013.
Information-theoretic lower bounds for distributed statisti-
cal estimation with communication constraints. In Neural
Information Processing Systems.
Zhang, Y.; Duchi, J. C.; and Wainwright, M. 2012.
Communication-efficient algorithms for statistical optimiza-
tion. In Neural Information Processing Systems.

484

