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Abstract

It is often critical in real-world applications to: (i) perform
inverse learning of the cost parameters of a multi-objective
reward based on observed agent behavior; (ii) perform sensi-
tivity analyses of policies to various parameter settings; and
(iii) analyze and optimize policy performance as a function of
policy parameters. When such problems have mixed discrete
and continuous state and/or action spaces, this leads to pa-
rameterized hybrid MDPs (PHMDPs) that are often approx-
imately solved via discretization, sampling, and/or local gra-
dient methods (when optimization is involved). In this paper
we combine two recent advances that allow for the first exact
solution and optimization of PHMDPs. We first show how
each of the aforementioned use cases can be formalized as
PHMDPs, which can then be solved via an extension of sym-
bolic dynamic programming (SDP) even when the solution is
piecewise nonlinear. Secondly, we leverage recent advances
in non-convex solvers such as dReal and dOp (that offer δ-
optimality guarantees for nonlinear problems given a sym-
bolic function) for non-convex global optimization in (i), (ii),
and (iii) using SDP to derive symbolic solutions to each PH-
MDP formalization. We demonstrate the efficacy and scala-
bility of our framework by calculating the first known exact
solutions to complex nonlinear examples of each of the afore-
mentioned use cases.

1 Introduction

Markov Decision Processes (MDPs) (Howard 1960) are the
de facto standard framework for decision theoretic plan-
ning in fully observable environments (Boutilier, Dean, and
Hanks 1999). MDPs occur in a wide range of real world
domains such as game playing (Szita 2012), power sys-
tems (Reddy and Veloso 2011), ecology (Williams 2009)
and patient admission scheduling (Zhu, Lizotte, and Hoey
2014). Traditional MDP solution techniques often assume
that the parameters of the model are known. However, in
practice, model parameters are usually estimated from lim-
ited data or elicited from humans and hence are naturally
uncertain. It is often critical in real world applications to:
(i) perform inverse learning of parameters of multi-objective
rewards; (ii) perform sensitivity analyses of policies to vari-
ous parameter settings; and (iii) analyze and optimize policy
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performance as a function of policy parameters. Formaliz-
ing models to address each of the aforementioned use cases
is often fraught, due to the specification leading to hybrid
(mixed discrete and continuous state and/or action) MDPs
with nonlinear and/or piecewise structure that have been tra-
ditionally very difficult to solve.

In this paper we make the following key contributions:
• We present Parameterized Hybrid MDPs (PHMDPs) as a

unified model of the aforementioned use cases.
• We provide an algorithm that solves this class of PH-

MDPs exactly and in closed-form by defining a pa-
rameterized variant of Symbolic Dynamic Programming
(SDP) (Boutilier, Reiter, and Price 2001) extended to hy-
brid MDPs (Sanner, Delgado, and Nunes de Barros 2011).

• We use the PHMDP framework in conjunction with pa-
rameterized SDP and state-of-the-art non-convex optimiz-
ers to calculate the first exact solutions to: (i) inverse
learning of the parameters of a multi-objective reward do-
main; (ii) non-convex optimization of public health poli-
cies in epidemic models; and (iii) exact sensitivity analy-
ses of trading strategies for portfolio transactions.

2 Related Work

In this section we briefly survey prior art in the areas
of multi-objective reasoning, exact sensitivity analysis and
nonlinear parameterized policy optimization and conclude
with a discussion of alternate uses of the term parameter-
ized in the MDP literature that contrasts with our work.

The techniques used to solve Multi-objective MDPs
(MOMDPs) with unknown preferences depend on the na-
ture of the scalarization function used to weight each reward
component (Roijers et al. 2013). Methods such as the Con-
vex Hull Value Iteration algorithm (Barrett and Narayanan
2008) can be used for discrete enumerated state MOMDPs
with any linear preference function. Nonlinear scalarization
functions require the calculation of the Pareto front, which
can be prohibitively large. As a result, Pareto front approxi-
mation techniques such as those of (Chatterjee, Majumdar,
and Henzinger 2006) and (Pirotta, Parisi, and Restelli 2015)
or Lorenz optimal refinements such as (Perny et al. 2013)
are often used. In this work we present exact factored hy-
brid MOMDP solutions via the framework of PHMDPs and
SDP.

The AAAI-17 Workshop on  
Symbolic Inference and Optimization

WS-17-14

917



To date, most research into sensitivity analysis of MDP
parameters has focused on uncertainty within the specifi-
cation of the transition function (Kalyanasundaram, Chong,
and Shroff 2004), reward function (Tan and Hartman 2011),
or a combination of both (Givan, Leach, and Dean 2000),
in discrete MDPs. The framework that we introduce in this
paper enables exact sensitivity analysis for PHMDPs that al-
lows it to be applied in continuous state settings and permits
the derivation and analysis of the optimal policy as a func-
tion of these parameters.

Policy gradient methods rely upon optimizing parameter-
ized policies with respect to the expected return by gradient
descent. Two of the most prominent approaches have been
the finite-difference methods, such as those of (Ng and Jor-
dan 2000), and Monte Carlo methods, such as (Sutton et al.
2000; Baxter and Bartlett 2000), both of which are numeri-
cally oriented and sample based. Our use of PHMDPs and
SDP allows us to solve for an exact policy value as a param-
eterized function of policy parameters.

Finally, as a point of differentiation from other uses of the
term parameterized in the MDP literature, we remark that
other works (Doshi-Velez and Konidaris 2016; Duff 2002;
Dearden, Friedman, and Andre 1999; Gopalan and Mannor
2015) have used Parameterized MDP to refer to MDPs with
latent parameters whose beliefs can be updated by observ-
ing reward and transition samples. In contrast, in this work
we assume strict uncertainty of continuous MDP parame-
ters in models that are otherwise fully specified; in this way
we can treat parameters simply as free variables that can be
parametrically analyzed via recent advances in symbolic so-
lution methods and non-convex optimizers (Gao, Kong, and
Clarke 2013).

3 Parameterized Hybrid MDPs

In this section we introduce Parameterized Hybrid Markov
Decision Processes (PHMDPs) and show how the frame-
work can be specialized into models capable of: (i) inves-
tigating multi-objective reward criteria; (ii) exact parame-
ter sensitivity analysis.; and (iii) optimization of continuous
non-convex policy parameters.

3.1 Definition

A parameterized hybrid Markov Decision Process (PH-
MDP) is defined by the tuple 〈S,A, T ,R,H, γ, θ〉.
S specifies a vector of states given by (�d, �x) =
(d1, . . . , dm, x1, . . . , xn), where each di ∈ {0, 1} (1 ≤ i ≤ m)
is discrete and each xj ∈ R (1 ≤ j ≤ n) is continuous. Ah

s

specifies a finite set of state and horizon dependent actions.
�θ ∈ Θ are free parameters from the parameter space Θ.
PHMDPs are naturally factored (Boutilier, Dean, and Hanks
1999) in terms of the state variables �d and �x. Hence, the
joint transition model can be written as:

T :P
(
�d′, �x′

∣∣∣�d, �x, a, �θ)
=

m∏
i=1

P

(
d′i

∣∣∣�d, �x, a, �θ) n∏
j=1

P

(
x′j

∣∣∣�d, �d′, �x, a, �θ)
, (1)

where a ∈ Ah
s . The transition model permits discrete noise

in the sense that P

(
x′j |�d, �d′, �x, a, �θ

)
may condition on �d′,

which are stochastically sampled according to their condi-
tional probability functions.

R : S × A× θ → R is the reward function which encodes
the preferences of the agent. H represents the number of
decision steps until termination and the discount factor γ ∈
[0, 1) is used to geometrically discount future rewards. A
policy π : S × H → A, specifies the action to take in every
state and horizon. The value function of the optimal policy
π∗ satisfies:

V π∗ (
�d, �x; �θ

)
= max

a∈A

{
Qπ

(
�d, �x, a; �θ

)}
. (2)

Qπ
(
�d, �x, a; �θ

)
gives the expected return starting from state

(�d, �x) ∈ S, taking action a ∈ Ah
s , and then following pol-

icy π. In general, an agent’s objective is to find an optimal
policy π∗ which maximises the expected sum of discounted
rewards over horizon H.

We again remark that in our formulation of PHMDPs the
parameters �θ are free parameters and not learned from re-
ward and transition samples.

In subsequent sections we demonstrate how the PHMDP
framework can be specialized into models capable of: (i) in-
vestigating multi-objective reward criteria; (ii) exact param-
eter sensitivity analysis; and (iii) optimization of continuous
non-convex policy parameters.

4 Parameterized Symbolic Dynamic

Programming

Symbolic Dynamic Programming (SDP) (Boutilier, Reiter,
and Price 2001) is the process of performing dynamic pro-
gramming via symbolic manipulation. In the following sec-
tions we present a brief overview of SDP operations and how
it can be adapted to solve Parameterized Hybrid MDPs.

4.1 Symbolic Case Calculus

SDP assumes that all functions can be represented in case
statement form (Boutilier, Reiter, and Price 2001) as fol-
lows:

f =

⎧⎪⎪⎨
⎪⎪⎩
φ1 : f1
...

...
φk : fk

Here, fi are linear expressions over �x and φi are logical
formulae defined over the state (�d, �x) that can consist of ar-
bitrary logical combinations of boolean variables and linear
inequalities (≥, >,<,≤) over continuous variables. We as-
sume that the set of conditions {φ1, . . . , φk} disjointly and
exhaustively partition (�d, �x) such that f is well-defined for
all (�d, �x). In this paper we restrict the fi to be either constant
or linear functions of the state variables. Henceforth, we re-
fer to functions with linear φi and piecewise constant fi as
linear piecewise constant (LPWC), functions with linear φi

and piecewise linear fi as linear piecewise linear (LPWL)
and functions with nonlinear φi and piecewise nonlinear fi
as nonlinear piecewise nonlinear (NPWN) functions.

Operations on case statements may be either unary or bi-
nary. All of the operations presented here are closed form for
LPWC and LPWL functions. All operations except maxy ,
presented below, is closed form for NPWN functions. We
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refer the reader to (Sanner, Delgado, and Nunes de Barros
2011; Zamani and Sanner 2012) for more thorough exposi-
tions of SDP for piecewise continuous functions.

Unary operations on a single case statement f, such as
scalar multiplication c · f where c ∈ R, are applied to each
fi (1 ≤ i ≤ k). Binary operations such as addition, subtrac-
tion and multiplication are executed in two stages. Firstly,
the cross-product of the logical partitions of each case state-
ment is taken, producing paired partitions. Finally, the bi-
nary operation is applied to the resulting paired partitions.
The “cross-sum” ⊕ operation can be performed on two cases
in the following manner:

{
φ1 : f1
φ2 : f2

⊕
{
ψ1 : g1
ψ2 : g2

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
φ1 ∧ ψ1 : f1 + g1
φ1 ∧ ψ2 : f1 + g2
φ2 ∧ ψ1 : f2 + g1
φ2 ∧ ψ2 : f2 + g2

“cross-subtraction” � and “cross-multiplication” ⊗ are
defined in a similar manner but with the addition operator
replaced by the subtraction and multiplication operators, re-
spectively. Some partitions resulting from case operators
may be inconsistent and are thus removed.

Maximisation over cases, known as casemax, is defined
as:

casemax

( {
φ1 : f1
φ2 : f2

,

{
ψ1 : g1
ψ2 : g2

)
=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

φ1 ∧ ψ1 ∧ f1 > g1 : f1
φ1 ∧ ψ1 ∧ f1 ≤ g1 : g1
φ1 ∧ ψ2 ∧ f1 > g2 : f1
φ1 ∧ ψ2 ∧ f1 ≤ g2 : g2
...

...

casemax preserves the linearity of the constraints and the
constant or linear nature of the fi and gi.

A case statement can be maximized with respect to a con-
tinuous parameter y as f1(�x, y) = maxy f2(�x, y). The con-
tinuous maximization operation is a complex case operation
whose explanation is beyond the scope of this paper. We
refer the reader to (Zamani and Sanner 2012) for further de-
tails.

In principle, case statements can be used to represent all
PHMDP components. In practice, case statements are im-
plemented using a more compact representation known as
Extended Algebraic Decision Diagrams (XADDs) (Sanner,
Delgado, and Nunes de Barros 2011), which also support
efficient versions of all of the aforementioned operations.

4.2 SDP for Parameterized Hybrid MDPs

Value iteration (VI) (Bellman 1957) can be modified to solve
Parameterized Hybrid MDPs in terms of the following case
operations:

Qh
(
�d, �x, a; �θ

)
= R

(
�d, �x, a; �θ

)
⊕ γ ·

⊕
�d′

∫
�x′

P

(
�d′, �x′

∣∣∣�d, �x, a; �θ)
⊗ V h−1

(
�d′, �x′; �θ

)
d�x′ (3)

V h
(
�d, �x; �θ

)
= casemaxa∈A

{
Qh

(
�d, �x, a; �θ

)}
(4)

P

(
�d′, �x′

∣∣∣�d, �x, a; �θ)
is specified in Equation (1). We note

that all parameters θi that are free variables are encoded as
δ [(θ′i − θi)], indicating that they are stationary and hence do
not change during the backup operation. Continuous state

parameters �x are handled in a similar fashion. All operations
including action maximization will automatically condition
the value on these parameters, yielding the parameterized
value function in Equation (4).

In the case of discrete A it can be proved that all of the
SDP operations used in Equations (3) and (4) are closed
form for NPWN functions (Sanner, Delgado, and Nunes de
Barros 2011). In the case of continuous A all of the op-
erations are closed form for only LPWC or LPWL func-
tions (Zamani and Sanner 2012).

Inverse Learning for Multi-objective PHMDPs A pos-
sible formulation for the inverse learning problem for multi-
objective MDPs is to constrain the Q-values corresponding
to the observed behavior and maximize the weight w that
best explains the observed behavior:

max
w

Qh
(
w, �d, x, a1; �θ

d
)
�Qh

(
w, �d, x, a2; �θ

d
)
, (5)

where x can either be fixed or a region specified in the con-
straints. The PHMDP framework permits any variant of the
inverse learning problem for multi-objective MDPs.

PHMDPs with multi-objective R and linear scalariza-
tion functions can be solved exactly and in closed-form by
restricting R to LPWC functions and T to LPWL func-
tions. Multi-objective PHMDPs with a nonlinear scalariza-
tion function and NPWN R and T functions lead to NPWN
solutions, which are exact and closed-form (Sanner, Del-
gado, and Nunes de Barros 2011).

Sensitivity Analysis for PHMDPs Sensitivity analysis
for PHMDPs can be analysed exactly and in closed-form
via SDP by first calculating Equation (4) and then taking
symbolic derivatives, up to any order, with respect to the pa-
rameter �θd.

Nonlinear Parameterized Policy Optimization Methods
for PHMDPs Parameterized policies π(�θd), where �θd may
be nonlinear, for PHMDPs can be analyzed exactly and in
closed-form via SDP by substituting π(�θd) in for a in Equa-
tion (3). This precludes the need for action maximization
in Equation (4). Because this function is parametric, it is
possible to take symbolic derivatives up to any order i.e.
�θdQ

h(�d, �x, a; �θd) and apply non-convex optimization tools
that exploit parametric knowledge of the function.

5 Results

In this section we demonstrate the efficacy and tractabil-
ity of our novel framework by calculating the first known
optimal solutions to three difficult nonlinear sequential de-
cision problems. We note that while dOp (Gao, Kong,
and Clarke 2013) offers strong δ-optimality guarantees, we
found that nonlinear solvers such as fmincon (The Math-
Works Inc. 2015) perform comparably well at optimization
and are much more efficient, hence we use fmincon.

5.1 Inverse Learning for Multi-objective
Navigation

The domain is specified as follows: S = 〈loc〉, where
loc is the location of the vehicle. A ∈ {0.0, 5.0} is the
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(a) V π∗
(loc, w2;w1 = 1.0) (b) V π∗

(β, ν; s, i, r, λ,
costinf, costvaccine)

(c) V π∗
(θ, inv;

p = 55.0, κ = 0.165)
(d) ∇θV

π∗
(θ, inv;

p = 55.0, κ = 0.165)

Figure 1: Optimal Value functions for each domain.

amount by which vehicle moves relative to its current lo-
cation. T (loc′|loc, a) = δ [loc′ + (loc+ a)], where a ∈ A.
R (�w, loc, loc′) = w1 · Rregion + w2 · Rmove where,

Rregion(loc
′) = Rmove(loc, loc

′) ={
(loc′ ≥ 10.0) : loc′

otherwise : 0.0
−(loc′ − loc)

Figure 1a, which shows the optimal value function at
H = 15, reveals that the vehicle is willing to incur a cost that
is inversely proportional to its distance from the goal region,
In Figure 2a we utilise techniques from inverse reinforce-
ment learning (Ng and Russell 2000) to learn the parameters
(weights) of the multi-objective reward under a sub-optimal
policy of the form: π̃(0 < loc < 10) = 5.0, π̃(loc < 0 or loc >
10) = 0.0. We note that w2 was at its maximum allowable
value when the vehicle did not move and that it was suffi-
ciently low when the vehicle does move.

5.2 Influenza Public Health Policy

The domain is specified as follows: S = 〈s, i, r〉, where s,
i, and r refer to the size of the susceptible, infected and re-
covered sub-populations, respectively. A ∈ {π(ν)} where
ν ∈ [0.0, 1.0] is the proportion of s to vaccinate at each stage.
The transition function T for each state variable in S is given

by:
T (s′|s, i, r, π(ν)) = δ [s′ − (s− β · s · i− π(ν) · s)]
T (i′|s, i, r, π(ν)) = δ [i′ − (i+ β · s · i− λ · i)]
T (r′|s, i, r, π(ν)) = δ [r′ − (r + λ · i+ π(ν) · s)]

where β is the infection rate and λ is the spon-
taneous recovery rate. The reward is specified as
R (costinf, costvaccine, s, i, r, π(ν)) = (s · (−costvaccine ·π(ν)+
(1−π(ν))))− costinf · i+ r. costinf is the incident cost of in-
fection and costvaccine is the unit cost of vaccination. We as-
sume that the total population is constant and that vaccinated
individuals go straight from s to r without being infected.

Figure 1b shows the optimal value function at H = 7 when

(a) Max w2 ∈ [0.0, 50.0] for π̃

(b) Optimal ν for β ∈ [0.0, 1.0]

(c) Optimal θ for inv ∈ (0.0, 1000.0)

Figure 2: Nonlinear optimization for each domain.

s = 1000.0, i = 100.0, r = 0.0, λ = 0.25, costvaccine = 4.0 and
costinf = 10.0. The value function shows that it is not always
optimal to vaccinate the entire population. In fact, Figure 2b
reveals that this is only optimal when β > 0.25, that is, when
the basic reproductive ratio R0 (= β/λ) (Heffernan, Smith,
and Wahl 2005) exceeds 1.0. Scenarios where R0 > 1.0 can
lead to an epidemic.

5.3 Optimal Execution

The domain is specified as follows S = 〈p, inv〉, where
p is the price of the asset and inv is the inventory
remaining. A ∈ {π (θ)}, where θ ∈ (0.0, 1.0) is
the proportion of inventory to be sold. The transi-
tion function T for each state variable in S is given by:
T (p′|p, inv, π (θ)) = δ [p′ − (p− κ · (inv · π (θ)) + ε)]

T (inv′|p, inv, π (θ)) = δ [inv′ − (inv − inv · π (θ))]

where κ > 0 is a market-impact parameter and ε is a
discrete noise parameter. The reward is specified by
R (p′, inv, π (θ)) = p′ · inv · π (θ) . Figures 1c and 1d show
the optimal value function at H = 10 and its derivative
with respect to the parameter θ, respectively. It is evident
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that the optimal proportion of shares to be sold is inversely
proportional to the amount of inventory remaining. When
inventory is low, selling a large proportion of shares allows
the investor to capture the current price and when inventory
is high, selling a lower proportion of shares captures a more
stable set of future prices.

This insight is confirmed in Figure 1d which shows that
the value function is most sensitive to θ when the inventory
is high.

5.4 Time and Space Complexity

Figure 3: Computational time and space versus H for the
multi-objective navigation domain.

Figure 3 shows the relationship between the horizon H
and the computational time and space for the largest domain
investigated in this section. The computation time and space
required to run SDP on PHMDPs increases linearly with the
horizon indicating tractability of the overall framework.

6 Conclusions

In this paper we introduced Parameterized Hybrid MDPs
as a unifying framework, which enables the inverse learn-
ing of parameters of multi-objective rewards, the examina-
tion of parameter sensitivity and the non-convex optimiza-
tion of continuous policy parameters. We also presented a
novel algorithm to solve PHMDPs by utilizing a parametric
extension of symbolic dynamic programming and state-of-
the-art non-convex optimizers. We demonstrated the util-
ity and scalability of our framework by calculating the first
known exact solutions to the inverse learning of parameters
for multi-objective navigation, non-convex optimization of
vaccination policies and sensitivity analysis of trading mod-
els.

There are a number of avenues for future research. Firstly,
it is important to examine more general representations of
the reward and transition functions while still guaranteeing
exact solutions. Another direction of research lies within
improving the scalability of the algorithm by either ex-
tending techniques for Algebraic Decision Diagrams (Ba-
har et al. 1993) from APRICODD (St-Aubin, Hoey, and
Boutilier 2000) under the current restrictions on the reward
and transition functions or bounded error compression for
XADDs (Vianna, Sanner, and Nunes de Barros 2013) for
more expressive representations. The advances made within
this paper open up a number of potential novel research
paths, which may be used to progress multi-objective analy-
ses, sensitivity analyses and nonlinear parameterized policy

optimization for difficult nonlinear sequential decision mak-
ing problems.
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