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Abstract

A kidney exchange is a centrally-administered barter market
where patients swap their willing yet incompatible donors.
Modern kidney exchanges use 2-cycles, 3-cycles, and chains
initiated by non-directed donors (altruists who are willing to
give a kidney to anyone) as the means for swapping.
We propose significant generalizations to kidney exchange.
We allow more than one donor to donate in exchange for their
desired patient receiving a kidney. We also allow for the pos-
sibility of a donor willing to donate if any of a number of
patients receive kidneys. Furthermore, we combine these no-
tions and generalize them. The generalization is to exchange
among organ clubs, where a club is willing to donate organs
outside the club if and only if the club receives organs from
outside the club according to given specifications.
Forms of organ clubs already exist—under an arrangement
where one gets to be in the club as a potential recipient if one
is willing to donate one’s organs to the club upon death. Our
approach can be used as an inter-club exchange mechanism
that increases systemwide good (and can also be applied to
live donation). In this paper we introduce these ideas, present
the notion of operation frames that can be used to sequence
the operations across batches, and present integer program-
ming formulations for the market clearing problems for these
new types of organ exchanges.

Introduction

Chronic kidney disease is a condition that causes a reduc-
tion of the kidney function, often with life-threatening con-
sequences. Its societal burden is likened to that of dia-
betes (Neuen et al. 2013). The National Institute of Diabetes
and Digestive and Kidney Diseases estimates that one in 10
American adults, more than 20 million, have some level of
chronic kidney disease (NIH 2011).

Kidney transplantation is the most effective treatment for
kidney failure. However, the demand for donor kidneys far
exceeds the supply. The United Network for Organ Sharing
(UNOS) reported that as of October 28th, 2016, the waiting
list for kidney transplant had 99,382 patients. Table 1 shows
the aggregate number of patients entering and leaving the
US waiting list after receiving a kidney (from a deceased or
living donor) for the past five years (OPTN 2016).
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Removals for donation

Year Additions Deceased donor Living donor

2015 35,037 12,236 5585

2014 36,156 11,559 5284

2013 36,393 11,152 5265

2012 34,832 10,850 5088

2011 33,560 11,026 5154

Table 1: Number of patients entering and leaving the US
national wait list (due to receiving a kidney).

Roughly two thirds of transplanted kidneys are sourced
from cadavers, while the remaining one third come from
willing healthy living donors. Patients who are fortunate
enough to find a willing living donor must still contend with
compatibility issues, including blood and tissue type biolog-
ical compatibility. If a willing donor is incompatible with a
patient, the transplantation cannot take place.

This is where kidney exchange comes in. A kidney ex-
change is a centrally-administered barter market where pa-
tients swap their willing yet incompatible donors. Modern
kidney exchanges use 2-cycles, 3-cycles, and chains initi-
ated by non-directed donors (altruists who are willing to give
a kidney to anyone) as the means for swapping.

The idea of kidney exchange was introduced in 1986 (Ra-
paport 1986), and the first organized kidney exchanges
started around 2003-04 (Roth, Sönmez, and Ünver 2004;
2005). Today there are kidney exchanges in the US, Canada,
UK, the Netherlands, Australia, and many other countries.
In the US, around 10% of live-donor kidney transplants now
take place via exchanges.

Kidney exchange started first as matching markets where
one donor-patient pair would give to, and receive from, an-
other donor-patient pair. In other words, 2-cycles (Roth,
Sönmez, and Ünver 2005) were the only structures used.
Then, kidney exchange was generalized to also use 3-
cycles (Roth, Sönmez, and Ünver 2007), and then short and
finally never-ending chains initiated by non-directed donors
(altruists who are willing to give to anyone without needing
an organ in return) (Roth et al. 2006; Rees et al. 2009).
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Significant work has been invested into scaling the mar-
ket clearing algorithms, that is, the algorithms that find the
optimal combination of non-overlapping (because any one
donor can give at most one kidney) cycles and chains (Abra-
ham, Blum, and Sandholm 2007; Constantino et al. 2013;
Manlove and O’Malley 2015; Anderson et al. 2015b; Dick-
erson et al. 2016). There has also been significant work
on improving the objective function to take into consider-
ation several aspects of real-world kidney exchange pro-
grams, such as failure-awareness (Dickerson, Procaccia,
and Sandholm 2013; Anderson 2014; Glorie et al. 2015)
and a long-term (rather than batch) approaches of how
the market clearing is done (Awasthi and Sandholm 2009;
Ünver 2010; Dickerson, Procaccia, and Sandholm 2012a;
Dickerson and Sandholm 2015) in the way the donors are
assigned to patients.

Summary of Our Contribution

We propose a significantly generalized, more expressive, ap-
proach to kidney exchange. We allow more than one donor
to donate in exchange for their desired patient receiving a
kidney. We also allow for the possibility of a donor willing
to donate if any of a number of patients receive kidneys. Fur-
thermore, we combine these notions and generalize them.

Our generalization can be formalized around the concept
of exchange among organ clubs, where, roughly speaking, a
club is willing to donate organs outside the club if and only
if the club receives organs from outside the club according
to given specifications. More specifically, exchange clubs
extend the notion of a donor-pair pair, allowing for a set of
healthy donors equally willing to donate one of their kidneys
in exchange for an equal (or greater) number of kidneys re-
ceived by a target set of patients.

Forms of organ clubs already exist—under an arrange-
ment where one gets to be in the club as a potential re-
cipient if one is willing to donate one’s organs to the club
upon death. For example, there was such a club called
LifeSharers in the US for several years (Hennessey 2006).
It shut down in 2016 amid controversy regarding whether
an organ club would actually hurt the nationwide organ
allocation. Similarly, there is an organ club in the mil-
itary “that allows families of active-duty troops to stipu-
late that their loved ones’ organs go to another military
patient or family (Kime 2016).” Also, Israel started an
organ club where those who have given consent to be-
come organ donors upon death (or whose family members
have donated an organ in the past) get priority on the or-
gan waitlist if they need organs; this increased organ dona-
tion in Israel by 60% in just one year (Stoler et al. 2016;
Ofri 2012). One way to think of the approach that we are
proposing is as an inter-club exchange mechanism that in-
creases systemwide good—and can also be applied to live
donation.

Our approach is beneficial also in a setting where there are
no organ clubs in the traditional sense. We will nevertheless
find the notion of a club useful in a technical sense to define
the constraints, as we will detail later. We propose a formal-
ization of this new kind of organ exchange, and propose an
organ exchange approach where clubs are conceptually the

primary agents—whether they are actually clubs, altruists,
or donor-patient pairs, or a combination thereof. We support
both intra-club and inter-club donations.

We propose a linear integer programming formulation for
the optimization problem arising from the new club formal-
ism, and note that it suffers of a synchronization issue, mak-
ing it unsuitable for real-life implementations. Specifically,
the issues are that (1) a club (of which a donor-patient pair
is a special case, as is an altruist donor) wants to receive no
later than it gives, and (2) there are logistical limits as to
how many operations can be conducted simultaneously. In
order to fix this problem, we introduce the concept of opera-
tion frames. Operations frames provide a convenient frame-
work for handling the problem of synchronizing different
transplants, by imposing a partial order on them. We then
propose a second linear integer formulation overcoming the
shortcoming of the first.

The Standard Model

Today’s kidney exchanges (and other modern barter ex-
changes) can be modeled as follows. There is a directed
compatibility graph G = (V,E), where vertices represent
participating parties and edges representing potential trans-
actions (Roth, Sönmez, and Ünver 2007; Abraham, Blum,
and Sandholm 2007). In the kidney exchange context, the
set of vertices V is partitioned as V = Vp ∪ Vn, where Vp

represents the set of donor-patient pairs, and Vn represents
the set of non-directed donors (NDDs).

For sake of simplicity, we will consider all non-directed
donor vertices as formal donor-patient pairs, where the pa-
tient is an artificial object—denoted by ⊥—that is incom-
patible with any donor in the system. Vertices u and v are
connected by a directed edge u → v if the donor in u is com-
patible with the patient in v. The exchange administrator can
also define a weight function w : E → R representing, for
each edge e = (u, v) ∈ E, the underlying quality or priority
given to a potential transplant from u → v.

Given the model above, we wish to solve the clearing
problem, that is, we wish to select some subset of edges
with maximum total weight subject to underlying feasibility
constraints. For example, a donor d in a donor-patient pair
v = (d, p) ∈ Vp will donate a kidney if and only if a kid-
ney is allocated to his or her paired patient p. Non-directed
donors have no such constraint. In the model described so
far, any solution consists of only two kinds of structure:
• chains, that is paths in G initiated by NDDs and then con-

sisting entirely of donor-patient pairs; and
• cycles, that is loops in G consisting of vertices in Vp—and

not non-directed donors in Vn.
Furthermore, in any feasible solution, these structures can-
not share vertices: no donor can give more than one kidney.
Figure 1 gives a feasible solution for a small example graph.

In kidney exchange, a length cap L is imposed on cycles
for logistical reasons. All transplants in a cycle must be per-
formed simultaneously so that no donor can back out after
his patient has received a kidney but before he has donated
his kidney. In most fielded exchanges worldwide, L = 3, so
only 2-cycles and 3-cycles are allowed.
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Figure 1: Example of a feasible solution in a pool with 9
donors and 7 patients. Donors d1 and d7 are NDDs. Dashed
arrows represent compatible edges not selected in the so-
lution. The solution uses one chain, one 2-cycle, and one
3-cycle. For simplicity, edge weights are omitted.

Chains do not need to be constrained in length, because
it is not necessary to enforce that all transplants in the chain
occur simultaneously. There is a chance that a donor backs
out of her commitment to donate, but this event is less catas-
trophic than the equivalent in cycles. Indeed, a donor back-
ing out in a cycle results in some other patient in the pool
losing his donor while not receiving a kidney—that is, a par-
ticipant in the pool is strictly worse off than before—while
a donor backing out in a chain simply results in the chain
ending. While that latter case is unfortunate, no participant
in the pool is strictly worse off than before. In practice, how-
ever, a chain length cap is used, in order to make the planned
solution more robust to last-minute failures (Dickerson, Pro-
caccia, and Sandholm 2012b; Dickerson et al. 2016).

The problem can be formulated as an integer program to
find the optimal solution, and indeed there has been sig-
nificant work on developing increasingly scalable integer
programming algorithms and formulations for this problem
(e.g., (Roth, Sönmez, and Ünver 2007; Abraham, Blum, and
Sandholm 2007)). The state of the art formulation is called
PICEF (Dickerson et al. 2016). Its number of variables is
polynomial in chain length cap and exponential in cycle
length cap, which is not a problem in practice because the
latter cap is small. Furthermore, the LP relaxation is very
tight, causing good upper bounding in the search tree and
therefore fast run time.

Exchange Clubs as a Modeling Construct

We propose significant generalizations to (kidney) ex-
change. We allow more than one donor to donate in ex-
change for their desired patient receiving a kidney. We also
allow for the possibility of a donor willing to donate if any
of a number of patients receive kidneys. Furthermore, we
combine these notions and generalize them. We formalize
this by introducing the modeling concept of exchange clubs.

Definition 1. (Exchange club) An exchange club c is a tu-
ple (Dc, Pc, αc, γc) composed of

• a non-empty set of donors Dc;
• a (possibly empty) set of patients Pc;
• a real αc ≥ 1 called “matching multiplier”. Intuitively,

this means that for each matched patient in Pc, the club is
willing to donate (in expectation) αc kidneys to the pool;

• a real γc ≥ 0 called “matching debt”.
The idea of exchange clubs is that donors in Dc are will-

ing to donate kidneys only if doing so results in a tangible
benefit (that is, kidneys donated) to patients in Pc. More
precisely, let next

d (t) be the number of kidneys donated from
donors in Dc to clubs other that c by time t, and let next

p (t)
be the number of kidneys donated from donors outside of c
to patients in Pc; then the following inequality must hold for
all time t in order for club c to be willing to participate in
the solution:

next
d (t) ≤ αcn

ext
p (t) + γc (1)

For now, we ignore parameter γc, whose role and motivation
will become clear in the following sections.

We can now formalize the uncapped generalized clearing
problem as follows.
Definition 2. (Disjoint clubs) We say that two exchange
clubs c and c′ are disjoint if Pc∩Pc′ = ∅ and Dc∩Dc′ = ∅.
Problem 1. (Uncapped generalized clearing problem)
Let C be a set of mutually disjoint exchange clubs; let D =
∪c∈CDc and P = ∪c∈CPc denote the overall set of donors
and patients respectively. Furthermore, let E ⊆ D × P be
the set of compatibility edges, and let w : E → R a weight-
ing function assigning a weight to every compatibility edge.
We want to find a set of edges that maximizes the sum of
weights and satisfies Inequality 1 assuming all the selected
transplants occur simultaneously.

Matching Debts

We now explain the meaning of γc. Suppose a number
next
p of patients in club c receive kidneys from other clubs,

and that the optimal solution of the problem requires that
next
d donors from club c donate a kidney to other clubs. If

next
d < αcn

ext
p , we say that club c owes αcn

ext
p −next

d kidneys
to the system. This is exactly the meaning of the “match-
ing debt” of a club. It reflects the sum of all debts that a
club has cumulated in the past. Except for clubs defined by
non-directed donors, each club starts with a debt of 0 at the
beginning, and potentially increases and decreases its debt
to the system over time.

The Standard Model is a Special Case

The (uncapped) standard model is a special case of our new
model:
• each non-directed donor defines a club c with no patient,

and where he or she is the only donor. Furthermore, the
club has γc = 1 (the value of αc is irrelevant);

• each (d, p) donor-patient pair in the standard models de-
fines a club c, where Dc = {d}, Pc = {p} and αc = 1.
At the same time, our new model allows for some impor-

tant generalizations. For instance, consider the case where
one patient p has a set of two donors both willing to donate
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a kidney in exchange for only one kidney donated to p. In
this case, the two donors and the p form a club with αc = 2.

The introduction of exchange clubs as a modeling con-
struct calls for a different representation of the problem be-
cause the traditional donor-patient pairs cannot capture all
the new aspects. Therefore, we explicitly represent donors
and patients as different types of vertices in the graph. Fig-
ure 2 illustrates this under the further assumption that αc =
1, γc = 0 for all clubs. We represent donor vertices with
a square and patient vertices with a circle. Observe that in
Figure 2 it is not possible to extend the given solution with
an edge from Donor 8 to Patient 7, as doing so would violate
Inequality 1: Club D does not receive any kidney from other
clubs, and therefore it cannot be asked to donate.

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

Donors

Patients

A B C D

Clubs

Figure 2: Tiny example problem instance. Vertical dashed
lines separate different exchange clubs (so that, for instance,
the first club has D1 = {1, 2, 3}, P1 = {1, 2}). Solid donor-
patient edges exemplify a solution. Dotted donor-patient
edges represent compatible pairs not used in the matching.
For simplicity, we do not show edge weights in the figure.
This figure assumes αc = 1, γc = 0 for all four clubs.

Incentive Issues

We briefly discuss some of the incentive issues in the new
model. The issues we discuss arise when considering a club
with a matching multiplier αc > 1, that is, the club is willing
to donate more than it receives.

First of all, we give a bit more context as to why Inequal-
ity 1 requires that next

{d,p} refers to kidneys donated from and
to other clubs, i.e. clubs different from c. This is because
when αc > 1, we do not want transplants within the club to
increase the number of donations the club is willing to make
to other clubs. Furthermore, if one were to increase the debt
a club owes to outside the club based on the intra-club trans-
plants, that would (further) incentivize the club to not reveal
their intra-club transplants. In terms of actual mechanism
design, it is already known that even in versions of the stan-
dard model, one cannot achieve both efficiency and incentive
compatibility (i.e., all centers being motivated to reveal all
their pairs) in a single-shot setting (Ashlagi and Roth 2014;
Ashlagi et al. 2015), but credit mechanisms hold promise in
this regard (Hajaj et al. 2015).

Second, we might be forced to consider that when αc > 1,
intra-club donations might be preferable to inter-club do-
nations. Consider the scenario where αc > 1 and club c
faces the decision of whether to accept a donation to patient

p ∈ Pc from a different club c′, or match the same patient
p with a donor d ∈ Dc. Unless the donation from club c′ is
much better than the one from donor d, club c would have in-
centive to match internally to avoid accruing a debt of αc−1
to the system. In order to account for this issue, we can con-
strain the inter-club donations so that they can only happen
if they are better than the alternative intra-club donations (if
the latter exist). We ignore this issue in the rest of this paper,
but we observe that the task is not difficult, as the constraints
can be easily incorporated in Formulations 1 and 2 that we
will present later in the paper.

Finally, we don’t assume that every donor in Dc be in-
compatible with all patients in Pc. Indeed, we argue that
even if some donor d is compatible with some patient p, we
cannot simply conclude that matching d with p is necessarily
a good idea, as it depends on the weight of the edge between
them. In general, avoiding a greedy intra-club match would
result in greater (or equal) value for the system as a whole.

Uncapped Problem Formulation

It is not clear how one could apply an integer program for-
mulation like the state-of-the-art PICEF formulation for the
standard kidney exchange problem (Dickerson et al. 2016)
in this new setting. The problem here is that the realizability
of a particular donation depends on what transplants have
already been conducted. It does not seem immediate how
such aspects could be encoded in a formulation like PICEF.

We now present an integer linear program formulation,
Formulation 1, for finding an optimal solution to the un-
capped clearing problem (Problem 1).

max
∑

(d,p)∈E

wdp xdp

1
∑

p∈P
(d,p)∈E

xdp ≤ 1 ∀ d ∈ D

2
∑

d∈D
(d,p)∈E

xdp ≤ 1 ∀ p ∈ P

3
∑

d∈Dc

∑

p∈P\Pc

(d,p)∈E

xdp ≤ γc + αc

∑

p∈Pc

∑

d∈D\Dc

(d,p)∈E

xdp ∀ c ∈ C

4 xdp ∈ {0, 1} ∀ (d, p) ∈ E

Formulation 1: MIP formulation for the uncapped clearing
problem.

Here, we let xdp be a binary value (Constraint 4 ) indi-
cating whether the edge (d, p) ∈ E is selected in the solu-
tion. Constraints 1 and 2 ensure that each donor donates
at most one kidney and that each patient receives at most
one kidney, respectively. Constraint 3 encodes the condi-
tion that each club c donates at most �γc + αcn

ext
p � kidneys.

Finally, the objective function makes sure that we select a
maximum-weight solution.
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Operation Frames

While the above modeling approach is promising, we ob-
serve that it has a major shortcoming: it might require that
a potentially large number of operations happen at the same
time so as to honor the condition that the donors not be oper-
ated on strictly before patients in their clubs receive kidneys.
An example is provided in Figure 3, where we would need
patients {1, 2, 3, 6, 7} and {1, 2, 3, 5, 6} to be operated on at
the same time.

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

Donors

Patients

A B C DD E F

Clubs

Figure 3: Example of a match requiring 5 simultane-
ous transplantations. Patients {1, 2, 3, 6, 7} and donors
{1, 2, 3, 5, 6} have to be operated on at the same time. The
same holds, at a smaller scale, for patients {8, 9} and donors
{8, 9}. The transplantation between donor 4 and patient 4
can be completed any time. Admissible unused edges are
not shown; we assumed αc = 1, γc = 0 for all six clubs.

This is not practically viable for at least two reasons:
• the success probability of all the planned transplants

in the structure succeeding in their pre-operation blood
type compatibility tests (aka. crossmatch test) and other
pre-transplant testing decreases multiplicatively with the
number of edges in the planned structure,1 and

• the logistic (and financial) details are hard to execute—
ten people to operate on have to be coordinated, together
with the surgeons and staff needed for ten surgeries.
In order to solve this synchronization issue, we introduce

the concept of operation frames. An operation frame t is
an edge set of size up to Kt, representing operations to be
performed at the same time. The introduction of operation
frames enables us to reason in terms of order in which the
operations will be carried out. The chronological order im-
posed on the operation frames is partial. For this reason,
we can formalize the set and relationships among opera-
tion frames by means of a directed acyclic graph (DAG)
F = (T,B), where the set of vertices (i.e., T ) coincides with
the set of operation frames, while the set of edges B ⊆ T×T
denotes the happens-strictly-before chronological (partial)
order. We say that operation frame u happens strictly be-
fore operation frame v, denoted by u � v, if there exists a
directed path in F from u to v. Figure 4 gives an example.

The introduction of operation frames enables Inequality 1
to be written in terms of logical time, that is, substituting the
notion of time with the partial happens-strictly-before order.

1For further details about pre-transplant test failures, see Dick-
erson, Procaccia, and Sandholm (2013) and Blum et al. (2015).

4 3

4

5 44

A

B D

C

E F

3

G

Figure 4: Example of a partial order imposed on the op-
eration frames {A, . . . , G}. The number in each operation
frame t is the cap size for the operation frame, Kt. Exam-
ples of the happens-strictly-before relation include A� D,
A � F , C � E. Notice that the pairs (B,C) and (D,C)
are not comparable according the partial order “�”.

Thus, for any frame τ ∈ T , the number of kidneys that were
surely (i.e., for any possible linearization of the DAG F )
donated to and from club c at the time when τ is executed is

nd(τ) =
∑

τ ′�τ

d(c, τ ′), np(τ) =
∑

τ ′�τ

p(c, τ ′),

where d(c, τ ′) and p(c, τ ′) represent the number of trans-
plant from and to club c scheduled for operation frame τ ′,
respectively.

We argue that operation frames provide a richer problem
structure, as it is now possible to assign a (partial) chrono-
logical order to the operations we plan to perform. Further-
more, they encode the condition that “no more than Kt peo-
ple get operated on at the same time” in a very natural way:
every operating frame has a parameter Kt. Indeed, operation
frames guarantee that not too many surgeries are planned to
happen at the same time. Conceptually, they are equivalent
to imposing chain and cycle length caps, as it is done in
standard model. However, here we are allowing much richer
exchange structures (and, as presented so far, there is no way
of specifying a different cap on the size of chains versus cy-
cles versus other structures). This is because the operation
frame size cap Kt represents an actual limit on the number
of simultaneous operations that can be accommodated. Dif-
ferent frames can have different size constraints.

Finally, operation frames allow an integer programming
formulation of the problem that (unlike PICEF) uses a num-
ber of variables that is polynomial in the maximum size cap
maxt Kt. We present that formulation in the next section.

Capped Problem Formulation

The idea of operation frames can be plugged into Formula-
tion 1, leading to the following formulation, Formulation 2.

We let xt
dp be a binary value (Constraint 5 ) indicating

whether the transplant represented by the edge (d, p) ∈ E
is scheduled for operation frame t. Analogous to the un-
capped case, Constraints 1 and 2 ensure that each donor
donates at most one kidney and that each patient receives at
most one kidney, respectively. Constraint 4 ensures that
in any operation frame t ∈ T , no more than K transplants
are scheduled. Constraint 3 enforces that at any time t,
for each club c ∈ C, the total number of kidneys donated
from club c does not exceed �γc + αcn

ext
p (t)�, where next

p (t)
is the total number of kidneys donated to club c from other
clubs, before or at operation frame t. The objective function
ensures that a maximum-weight solution is found.
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max
∑

(d,p)∈E

∑

t∈T

h(t)wdp x
t
dp

1
∑

p∈P
(d,p)∈E

∑

t∈T

xt
dp ≤ 1 ∀ d ∈ D

2
∑

d∈D
(d,p)∈E

∑

t∈T

xt
dp ≤ 1 ∀ p ∈ P

3
∑

τ�t

∑

d∈Dc

∑

p∈P\Pc

(d,p)∈E

xτ
dp ≤

γc + αc

∑

τ�t

∑

p∈Pc

∑

d∈D\Dc

(d,p)∈E

xτ
dp

∀ c ∈ C,
t ∈ T

4
∑

(d,p)∈E

xt
dp ≤ K ∀ t ∈ T

5 xt
dp ∈ {0, 1} ∀ (d, p) ∈ E,

t ∈ T

Formulation 2: MIP formulation for the capped problem.

One can also model temporal preferences by multiplying
the edge weights by discounts h(t), which depend on which
operation frame t the surgery is conducted. (This assumes
that the time between frames is exogenous—but not neces-
sarily constant—that is, the time between frames does not
depend on what transplants the optimizer decides to put in
each frame.) This discounting is already include in the ob-
jective in Formulation 2.

Operation Frames Make the System Less Myopic

Present-day kidney exchanges operate in a batch setting, po-
tentially planning in a single shot long chains that will, in
practice, execute in segments over many months. Solvers
for the standard problem (e.g., those based on PICEF) op-
timize on a batch-by-batch basis, selecting the global opti-
mum solution only inside of a single batch, and not consider-
ing future batches. Our approach is more powerful than the
standard batch-based one also in the sense that it inherently
breaks long structures into shorter ones that execute sequen-
tially. Figure 5 shows an example compatibility graph where
our model will return a higher-value solution than the opti-
mal solution in the traditional model.

Figure 2 shows that the capped approach in the standard
model cannot consider certain solutions; yet, our capped
approach—based on the concept of operations frames—
optimizes across all the operation frames at the same time,
resulting in less myopic behavior. Under the assumption that
the kidney exchange pool is not affected by any exogenous
behavior (e.g., compatibility failures, deaths of donors or pa-
tients, dynamic insertions and deletions of edges and ver-
tices), our formulation is guaranteed to find a globally opti-
mal allocation of transplants across all operation frames. In

d1
?

d2
p2

d3
p3

d4
p4

d5
p5

d6
p6

1 1 4

2

1

Figure 5: An example graph where Formulation 2 returns a
higher-value solution than the standard batch approach, even
with only the standard kinds of vertices available. Given a
cap K = 2, the standard approach will choose the lower 2-
chain over the upper 2-chain for utility 3, while our solver
will choose to match the upper 3-chain across two frames
for greater overall utility of 6.

contrast, even under these strong assumptions, present-day
solvers for the standard model will (by design) fail to find a
globally optimal solution across batches.

Conclusions & Future Research

Motivated by the reality of fielded kidney exchanges, in
this paper we proposed significant generalizations to kid-
ney exchange—and barter markets more generally. Specifi-
cally, we moved the model from individual and independent
patient-donor pairs to the modeling concept of multi-donor
and multi-patient organ clubs, where a club is willing to do-
nate organs outside the club if and only if the club receives
organs from outside the club according to expressed pref-
erences. We presented the notion of operation frames that
sequence the operations across batches, and gave IP formu-
lations that optimally clear these new types of markets.

Operation frames inherently include a notion of time via
the happens-strictly-before ordering; yet, this does not cap-
ture the full dynamics of kidney exchange, where vertices
and edges arrive and disappear over time. Finding an op-
timal matching policy for fully dynamic kidney exchange
is an open problem from both the theoretical (Akbarpour,
Li, and Gharan 2014; Anderson et al. 2015a) and compu-
tational (Awasthi and Sandholm 2009; Dickerson, Procac-
cia, and Sandholm 2012a; Dickerson and Sandholm 2015)
points of view; perhaps the ordering introduced by operation
frames can be used to decrease computational intractability
when reasoning in the fully dynamic setting.

More fully exploring incentive issues in this new model
is practically interesting. Incentives at the patient or donor
level have not been explored thoroughly in the kidney ex-
change literature beyond “a donor does not have an incentive
to donate unless his paired patient receives a kidney.” Or-
gan clubs give patients and donors a new, variable amount
of bargaining power. Furthermore, in the past, generaliza-
tions to the basic kidney exchange model have already al-
lowed mechanism designers to circumvent strong impossi-
bility results (Hajaj et al. 2015; Ashlagi and Roth 2014). The
more expressive models presented in this paper could result
in similar advances in designing mechanisms with desirable
game-theoretic properties.
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