
Learning Human-Understandable Strategies

Sam Ganzfried and Farzana Yusuf
School of Computing and Information Sciences

Florida International University
{sganzfri@cis.fiu.edu, fyusu003@fiu.edu}

Abstract

Algorithms for equilibrium computation generally make no
attempt to ensure that the computed strategies are understand-
able by humans. For instance the strategies for the strongest
poker agents are represented as massive binary files. In many
situations, we would like to compute strategies that can ac-
tually be implemented by humans, who may have computa-
tional limitations and may only be able to remember a small
number of features or components of the strategies that have
been computed. We study poker games where private infor-
mation distributions can be arbitrary. We create a large train-
ing set of game instances and solutions, by randomly select-
ing the private information probabilities, and present algo-
rithms that learn from the training instances in order to per-
form well in games with unseen information distributions.
One approach first clusters the training points into a small
number of clusters and then creates a small decision tree
based on the cluster centers. This approach produces low test
error and could be easily implemented by humans since it
only requires memorizing a small number of “if-then” rules.

1 Introduction
Large-scale computation of strong game-theoretic strategies
is important in many domains. For example, there has been
significant recent study on solving game-theoretic prob-
lems in national security from which real deployed systems
have been built, such as a randomized security check sys-
tem for airports (Paruchuri et al. 2008). Typically large-
scale equilibrium-finding algorithms output massive strat-
egy files (which are often encoded in binary), which are
stored in a table and looked up by a computer during game-
play. For example, the recently computed optimal strategy
for two-player limit Texas hold ’em requires 262 TB of stor-
age (using 4-byte floating-point numbers) (Bowling et al.
2015). While such approaches can lead to very strong com-
puter agents, it is difficult to see how a human could imple-
ment these strategies. For cases where humans will be mak-
ing real-time strategic decisions we would like to compute
strategies that are easily interpretable and understandable.

Suppose a human plans to play the following two-player
no-limit poker game. Player 1 and player 2 both ante $0.50
and are dealt a card from a 10-card deck and each have a

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

stack of $3 after posting the ante. Player 1 can bet any mul-
tiple of 0.1 from 0 to 3 (he has 31 possible actions for each
hand). Player 2 can then call or fold. If player 2 folds, then
player 1 wins the $1 from the antes. Otherwise the player
with the better card wins the amount bet plus the antes. For
example, if player 1 has a 4, player 2 has a 9, player 1 bets
0.4 and player 2 calls, then player 2 wins 0.4 plus the antes.

If both players are dealt cards uniformly at random (Fig-
ure 1), then the following is a Nash equilibrium strategy for
player 1:
• Card 1: Bet 0.1 prob 0.091, 0.6 prob 0.266, 1.8 prob 0.643
• Card 2: Bet 0 prob 0.660, 0.3 prob 0.231, 0.6 prob 0.109
• Card 3-6: Bet 0 prob 1
• Card 7: Bet 0.1 prob 1
• Card 8: Bet 0.3 prob 1
• Card 9: Bet 0.6 prob 1
• Card 10: Bet 1.8 prob 1
This can be computed quickly using, e.g., a linear program-
ming formulation (Koller and Megiddo 1992).

However, suppose the cards are dealt according a different
distribution: player 1 is either dealt a very strong hand (10)
or a very weak hand (1) with probability 0.5 while player 2
is always dealt a medium-strength hand (Figure 2). Then the
equilibrium strategy for player 1 is:
• Card 1: Bet 0 prob 0.25, 3 prob 0.75
• Card 10: Bet 3 prob 1
If player 1 is always dealt a medium-strength hand (5) while
player 2 is dealt a very strong or very weak hand with prob-
ability 0.5 (Figure 3), then the equilibrium strategy is:
• Card 5: Bet 0 prob 1

What if player 1 is dealt a 1 with probability 0.09, 2
with probability 0.19, 3 with probability 0.14, etc.? For each
game instance induced by a probability distribution over the
private information, we could solve it quickly if we had ac-
cess to an LP solver. But what if a human is to play the game
without knowing the distribution in advance and without aid
of a computer? He would need to construct a strong game
plan in advance that is capable of playing well for a variety
of distributions with minimal real-time computation. A nat-
ural approach would be to solve and memorize solutions for

The AAAI-17 Workshop on
Computer Poker and Imperfect Information Games

WS-17-06

329

Figure 1: Both players are dealt private information
uniformly at random over all hands.

Figure 2: Player 1 is dealt very strong or weak hand
and player 2 is always dealt mediocre hand.

Figure 3: Player 1 is always dealt mediocre hand and
player 2 is dealt very strong or weak hand.

several games in advance, then quickly determine which of
these games is closest to the one actually encountered. This
is akin to the k-nearest neighbors (k-nn) algorithm from ma-
chine learning. A second would be to construct understand-
able rules (e.g., if .. else ..) from a database of solutions that
can be applied to a new game. This is akin to the decision

tree and decision list approaches.1 Thus, we are proposing
to apply approaches from machine learning in order to im-
prove human ability to implement Nash equilibrium strate-
gies. Typically algorithms from machine learning have been
applied to game-theoretic agents only in the context of learn-
ing to exploit mistakes of suboptimal opponents (aka oppo-
nent exploitation). By and large the approaches for comput-
ing Nash equilibrium and opponent exploitation have been
radically different. We provide a new perspective here by
integrating learning into the equilibrium-finding paradigm.

We present a novel learning formulation of this problem.
In order to apply algorithms we develop novel distance func-
tions (both between pairs of input points and between pairs
of output points) which are more natural for our setting than
standard distance metrics. To evaluate our approaches we
compute a large database of game solutions for random pri-
vate information distributions. We are able to efficiently ap-
ply k-nn to the dataset using our custom distance functions.
Experiments show that we are able to obtain low testing er-
ror even when training on a relatively small fraction of the
data, which suggests that it is possible for humans to learn
strong strategies by memorizing solutions to a carefully se-
lected small set of presolved games. We also investigate de-
cision trees to compute human understandable rules, and
present the most prominent rule, which has depth up to level
6. Finally, we explore clustering the training instances into
5, 10, and 15 clusters, and then computing a decision tree to
implement a strategy based on the cluster centers. This ap-
proach produces relatively low test error and only involves
memorizing a very small number of “if-then” rules from the
optimal decision tree, thus making it easy for a human to
implement this strategy in an arbitrary game instance.

While prior approaches for learning in games of imperfect
information (and poker specifically) typically utilize many
poker-specific features (e.g., number of possible draws to a
flush), we prefer to develop approaches that are more robust
and do not require knowing expert domain features (since
they are likely not relevant for other domains and, in the case
of poker, may not be relevant even for other seemingly sim-
ilar variants). The features we use are the cumulative distri-
bution function (cdf) values of the private information states
of the players, which are based purely on the rules of the
game. (We also compare performance of using several other
data representations, e.g., using pdf values, and separating
out the data for each hand to create 10 data points per game
instance instead of 1). Thus, the approach is general and not
reliant on expert poker knowledge.

2 Qualitative models and endgame solving
There has been some prior study of human understand-
able strategies in imperfect-information games, and in poker
specifically. In “Mathematics of Poker,” Ankenman and
Chen compute analytical solutions of several simplified
poker variants (which typically assume continuous uniform
private information distributions) by first assuming a given

1The problem of constructing human-interpretable rules has
also been studied in machine learning, e.g., (Bertsimas, Chang, and
Rudin 2011).

330

human-understandable qualitative structure on the equilib-
rium strategies, and then computing equilibrium strategies
given this presumed structure, typically by solving a se-
ries of indifference equations (Ankenman and Chen 2006).
While the computed strategies are generally interpretable by
humans, the qualitative equilibrium models were typically
constructed from a combination of trial and error and expert
intuition, and not constructed algorithmically. More recent
work has shown that leveraging such qualitative models can
lead to new equilibrium-finding algorithms that outperform
existing approaches (Ganzfried and Sandholm 2010). That
work proposed three different qualitative models for the fi-
nal round (river) endgame of two-player limit Texas hold
’em (Figures 4– 6), and showed empirically that equilibrium
strategies for the endgame conformed to one of the models
for all input distributions of private information (and that all
three were needed). Again here the models were constructed
by manual trial and error, not learned algorithmically.

We note that while the problem we are considering in this
paper is a “toy game,” it captures important aspects of real
poker games and we expect our approaches to have appli-
cation to larger and more realistic variants, in addition to
domains besides poker due to the generality (our new dis-
tance functions and approaches could be of independent in-
terest). In the recent Brains vs. Artificial Intelligence two-
player no-limit Texas hold ’em competition, the agent Clau-
dico computed the strategy for the final betting round in
real time, and the best human player in the world for that
variant (Doug Polk) commented that the “endgame solver”
was the strongest component of the agent (Ganzfried 2015).
The endgame solving algorithm assumed that both agents
had private information distributions induced by the strate-
gies for the prior rounds using Bayes’ rule, assuming both
agents had been following the agent’s strategy for the prior
rounds (Ganzfried and Sandholm 2015). The game we study
here is very similar to no-limit Texas hold ’em endgames,
except that we are assuming a ten-card deck, specific stack
sizes and betting increment, and that raises are not allowed.
We expect our analysis to extend in all of these dimen-
sions and that our approaches will have implications for no-
limit Texas hold ’em strategy (particularly for final round
endgames and potentially for earlier rounds too). No-limit
Texas hold ’em is the most popular poker variant for hu-
mans, and is a widely recognized AI challenge problem.
The game tree has approximately 10165 states for the vari-
ant played in the AAAI Annual Computer Poker Competi-
tion (Johanson 2013). There has been significant interest in
endgame solving in particular in the last several years, and
several new advances have been developed (Burch, Johan-
son, and Bowling 2014; Moravcik et al. 2016).

3 Learning formulation
We now describe how we formulate the problem of com-
puting a solution to a new game instance from a database
of solutions to previously solved game instances as a learn-
ing problem. The inputs to the learning problem will be the
20 values of the private information cumulative distribution
function (cdf). First are the ten values for player 1 (the prob-
ability he is dealt ≤ 1, probability he is dealt ≤ 2, etc.), fol-

Figure 4: First qualitative model for two-player limit Texas
hold ’em river endgame play.

Figure 5: Second qualitative model for two-player limit
Texas hold ’em river endgame.

Figure 6: Third qualitative model for two-player limit Texas
hold ’em river endgame.

lowed by the ten cdf values for player 2. For example for the
uniform case the input would be

X = (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1,

0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1),

for the situation where player 1 is dealt a 10 or 1 with prob-
ability 0.5 and player 2 is always dealt a 5 it is

X = (0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 1,

0, 0, 0, 0, 1, 1, 1, 1, 1, 1),

and for the situation where player 1 is always dealt a 5 and
player 2 is dealt a 10 or 1 with probability 0.5 it is

X = (0, 0, 0, 0, 1, 1, 1, 1, 1, 1,

331

Figure 7: Earth-mover’s distance has proven a successful
metric for distance between probability distributions.

0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 1).

The output will be a vector of the 310 Nash equilibrium
strategy probabilities of betting each size with each hand.
First for betting 0, 0.1, 0.2, . . . , 3 with 1, then with 2, etc.
(recall that there are 31 sizes for each of ten hands). For
example for the uniform case the output would be

y = (0, 0.091, 0, 0, 0, 0, 0.266, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0.643, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, . . .).

We could have created ten different data points for each
game corresponding to the strategy for each hand, as op-
posed to predicting the full strategy for all hands; however
we expect that predicting complete strategies is better than
just predicting strategies for individual hands because the
individual predicted hand strategies may not balance appro-
priately and could be highly exploitable as a result. We will
explore this design choice in the experiments in Section 4.

To perform learning on this formulation, we need to se-
lect a distance function to use between a pair of inputs as
well as a distance (i.e., cost) between each pair of outputs.
Standard metrics of Euclidean or Manhattan distance are
not very appropriate for probability distributions. A more
natural and successful distance metric for this setting is
earth mover’s distance (EMD). While early approaches for
computing groupings of hands used L2 (Gilpin, Sandholm,
and Sørensen 2007), EMD has been shown to significantly
outperform other approaches, and the strongest current ap-
proaches for game abstraction use EMD (Johanson et al.
2013). Informally, EMD is the “minimum cost of turning
one pile into the other, where the cost is assumed to be
amount of dirt moved times the distance by which it is
moved,” and there exists a linear-time algorithm for com-
puting it for one-dimensional histograms (Figure 7).

We define a new distance metric for our setting that gen-
eralizes EMD to multiple distributions. Suppose we want to
compute the distance between training input vector X and
testing input vector X̂ . Each vector contains 20 probabili-
ties, 10 corresponding to player 1’s distribution and 10 to
player 2’s. Our distance function will compute the EMD
separately for each player, then return the average (Algo-
rithm 1). We note that before the aggregation we normalize
the EMD values by the maximum possible value (the dis-
tance between a point mass on the left-most and right-most
columns) to ensure that the maximum of each is 1. We also
create a new distance (i.e., cost) function between predicted
output vector Ŷ and the actual output vector from the train-
ing data Y (the output vectors have length 310, correspond-
ing to 31 bet sizes for 10 hands). It computes EMD sepa-
rately for the strategy vectors of size 31 for each hand which

are then normalized and averaged (Algorithm 2). After spec-
ifying the form of the inputs and outputs and a distance met-
ric between each pair of inputs and outputs, we have formu-
lated the problem as a machine learning problem.

Algorithm 1 Distance between input vectors X , X̂

Inputs: cdf vectors X, X̂ , number of players n, deck size d

X ′ ← cdf-to-pdf(X); X̂ ′ ← cdf-to-pdf(X̂)
resultTotal ← 0
for i = 0 to n− 1 do

start ← i× d, end ← start + d
result ← 0, δ ← 0
for j = start to end-1 do

δ ← δ + X ′[j]− X̂ ′[j]
result ← result + |δ|

result ← result / (d-1)
resultTotal ← resultTotal + result

resultTotal ← resultTotal / n
return resultTotal

Algorithm 2 Distance between output vectors Y , Ŷ

Inputs: Strategy vectors Y, Ŷ , deck size d, number of bet sizes b
resultTotal ← 0
for i = 0 to d− 1 do

start ← i× b; end ← start + b
result ← 0, δ ← 0
for j = start to end-1 do

δ ← δ + Y [j]− Ŷ [j]
result ← result + |δ|

result ← result / (b-1)
resultTotal ← resultTotal + result

resultTotal ← resultTotal / d
return resultTotal

4 Experiments
We constructed a database of 100,000 game instances by
generating random hand distributions and then computing a
Nash equilibrium using the linear program formulation with
Gurobi’s solver (Gurobi Optimization, Inc. 2014). The naı̈ve
approach for constructing the distributions (of assigning uni-
form distributions for the players independently) is incorrect
because it does not account for the fact that if one player
is dealt a card then the other player cannot also be dealt
that card (as is the case in real poker). We instead used a
new procedure described in Algorithm 4. We first generate
the two distributions independently as in the naı̈ve approach,
using the procedure described in Algorithm 3. Algorithm 4
then multiplies these individual probabilities together only
for situations where players are dealt different cards to com-
pute a joint distribution over the private information (these
values are then normalized). The procedure could be more
generally applicable beyond this setting. We then create the
cdf values from the joint private information distribution to
be used as the inputs to the learning problem.

We experimented with several different data representa-
tions. The first was described above. The second uses the

332

Algorithm 3 Generate point uniformly at random from n-
dimensional simplex
Inputs: dimension n

s = 0
for i = 0 to n− 1 do

a[i] ← randomDouble(0,1)
a[i] ← −1× log(a[i])
s ← s+ a[i]

for i = 0 to n− 1 do
a[i] ← a[i]/s

return a

Algorithm 4 Generate private information distribution
Inputs: dimension n, independent distributions x1, x2

s = 0
for i = 0 to n− 1 do

for j = 0 to n− 1 do
if i != j then

next ← x1[i]× x2[j]
x∗[i][j] ← next
s ← s+ next

for i = 0 to n− 1 do
for j = 0 to n− 1 do

x∗[i][j] ← x∗[i][j]/s
return x∗

pdf values as the 20 features instead of the cdfs. The third
separates each datapoint into 10 different points, one for
each hand of player 1. Here the first 20 inputs are the cdfs
as before, followed by a card number (1–10), which can be
viewed as an additional 21st input, followed by the 31 strat-
egy probabilities for that card. The fourth uses this approach
with the pdf features. The 5th and 6th approaches are simi-
lar, but for the 21st input they list the cdf value of the card,
not the card itself.

4.1 Nearest neighbors
We first experimented with k-nearest neighbors (k-nn). We
selected this algorithm because a natural approach for hu-
mans would be to study solutions to a number of situations
in advance and then map the situation encountered in real
time to one previously studied. In particular we would ex-
pect that humans would naturally implement the strategies
from the single closest solution that was studied, and there-
fore we focused on k = 1. For our experiments, we used
cross validation, varying the division percentages between
the training and testing set to examine the effect of train-
ing data size on test error. Due to the complexity of k-nn
(it must compute distances between each test input and each
training input), we selected only a subset of the database for
these experiments (1000 games). We used our custom dis-
tance function for the inputs and outputs. The results are in
Figures 8 and 9. The pdf representation produced slightly
lower errors, which was expected because it encodes more
information than the cdf (the pdfs encode all of the informa-
tion for the hand distributions from the original game, while

the cdfs do not correspond to unique hand distributions—
that is, it is possible for several games with different hand
probabilities to produce the same cdf values but not the same
pdfs). We note that for both approaches, even using a small
fraction of the training data already produced relatively low
test error, which suggests that it may be possible to gener-
ate a small set of carefully chosen instances for humans to
study and perform well in a variety of unknown instances.
We also observed that using the original 310 representations
outperformed the 31 ones. Figures 10 and 11 show the re-
sults for the latter representation. The large spikes in error as
a function of training set size indicate that we should likely
experiment on more games.

4.2 Decision tree
The next approach we considered was to learn a decision
tree. For this approach we used 20,000 of the games from
the database, using the standard division of 80% the data
for training and 20% for testing. We used Python’s built in
decision tree regressor function from sklearn.tree from the
scikit-learn library. This library uses mean squared error as
a default, but we were able to integrate our new distance
metrics (we can do this also for the built-in libraries for other
common machine learning algorithms). We report the errors
using our new generalized EMD distance function, as well
as the mean-squared error score, which is the “coefficient of
determination R2 of the prediction.”

Experimenting on all 6 representations, the 5th (using cdfs
separately for each card plus a separate card cdf input) pro-
duced lowest error (Table 1), though all approaches pro-
duced extremely low errors. We expected using the cdfs to
perform better for the decision trees since they seem like
natural values to branch on, despite the fact that for k-nn
pdf performed better and using 310 outputs outperformed
just using 31. Using Python’s DecisionTreeRegressor func-
tion with a maximum depth of 12 produced an EMD error
of 6.68× 10−8 for the best approach on 100,000 games.

Representation Error (EMD) Score (MSE)
pdf-310 0.001123239 0.083686509
cdf-310 0.000818163 0.110532576

pdf-card-31 2.79× 10−6 0.164877403
cdf-card-31 6.68× 10−8 0.197207893

pdf-card-cdf-31 0.000145299 -0.15212355
cdf-card-cdf-31 3.29× 10−6 0.165946891

Table 1: Earth-mover’s distance error and mean-squared er-
ror score for decision tree for different data representations.

We present the branching sequence for the most promi-
nent (i.e., smallest depth) rule for two of the best approaches
(the third and the fifth) in Figures 12 and 13. Recall that the
Xi inputs are the hand cdf values, with X1–X10 correspond-
ing to player 1’s hand probabilities, X11–X20 correspond-
ing to player 2’s, and then X21 corresponding to the card
number (Figure 12) or card cdf value (Figure 13). So the
third rule for the third representation (X18 <= 0.699) cor-
responds to “if the probability that player 2 is dealt at most

333

Figure 8: k-nn with k = 1 using pdf features. Figure 9: k-nn with k = 1 using cdf features.

Figure 10: k-nn with k = 1 using pdf features, with one data
point for each card (each output is 31 strategy probabilities).

Figure 11: k-nn with k = 1 using cdf features, with one data
point for each card (each output is 31 strategy probabilities).

an 8 is less than or equal to 0.699 then...” while the first rule
(X21 > 6.5) corresponds to “if player 1’s card is greater than
6.5 then...” Each rule has a branch for true and false values,
leading down a path that eventually terminates at a leaf node,
which corresponds to a strategy to be played. The leaf node
for the given sequence (of all T) in Figure 12 is the strat-
egy that bets 0.1 with probability 1, and for Figure 13 it is
the strategy that bets 3.0 with probability 1. While memoriz-
ing the entire tree would be infeasible, a human could easily
memorize the most important or shallowest-depth rules in
advance and apply them during game play.

4.3 Clustering

Inspired by the k-nn results, we decided to explore whether
there was a small number of “canonical” instances that
were representative of the dataset, so that if a human were
to memorize their solutions he could then classify a new
instance according to which canonical instance was most
similar and implement that strategy. To accomplish this
we used the k-medoids clustering algorithm (Kaufman and
Rousseeuw 1987), which utilizes an arbitrary distance met-
ric (as opposed to k-means which uses the standard MSE),
and we were able to integrate our new generalized earth
mover’s distance function. The clustering errors as a func-
tion of number of clusters used are reported in Figures 14
and 15. These were based on using 1000 data points, with a
training size of 800 and testing size of 200. We find it sur-
prising that the errors were not monotonically decreasing,
with the middle value of 10 clusters performing worst for

both representations. Overall, using cdf features with only 5
clusters performed best out of all the approaches.

We note that the errors of clustering are somewhat higher
than the errors of k-nn and significantly higher than those
using decision trees. However, it would be nearly impossi-
ble for a human to implement the full decision tree due to
its size (though it would be easy to implement several of the
most prominent rules). Even k-nn would be extremely diffi-
cult for a human to implement, as using 20% of the dataset
would have required a human to memorize the full solutions
to 200 games in advance, and furthermore to be able to eas-
ily determine which of the games a new instance was closest
to. Clustering with 5 clusters can be much more easily im-
plemented by a human, since it would only require memo-
rizing solutions to the 5 cluster medoids in advance, as well
as an efficient method to determine which of the medoids
a new instance was closest to (using the generalized EMD
function). This inspires our final approach, which attempts
to draw on the advantages of the prior approaches while also
precluding the need for a human to perform challenging real-
time distance calculations.

4.4 Most interpretable approach: decision tree
for cluster medoids

The approaches described previously each have their ben-
efits and limitations, but none produces strategies that can
be implemented easily by a human, which was our goal. We
now present such an approach. We first perform clustering as
described in Section 4.3, and then construct an optimal deci-

334

Figure 12: Smallest-depth rule from decision tree with sep-
arate datapoints for each hand using cdf features (third rep-
resentation).

Figure 13: Smallest-depth rule from decision tree with sep-
arate datapoints for each hand, using cdf features plus a 21st
feature for the cdf of the card (fifth representation).

sion tree from the cluster centers as described in Section 4.2.
We used 5 clusters with cdf features, which was shown to
perform best. This led to a very simple decision tree: the
optimal tree has depth 4 and only 4 rules (Figure 16).

The 5 optimal cluster medoids, as well as the correspond-
ing cdfs of the hand distributions used to generate them,
are given in the appendix. One can view these as the main
canonical representative game instances. One can see that
the strategies and cdf distributions are very different between
the medoids. For instance, consider medoid 4. Player 2 is
very rarely dealt a 9—less than 1% of the time (the differ-
ence between his cdf value of 9 (1) and his cdf value of
8(0.994))—while player 1 is dealt a 9 12.3% of the time.
More generally player 1’s distribution of strong hands is
clearly superior to player 2’s (as indicated by the fact that
his cdf values for 6, 7, and 8 are significantly lower). The
strategy indicates that player 1 chooses a very aggressive
action of betting 3.0 with his 9, and betting 0.9 with his 8
for this game. By contrast, for medoid 2 player 2 is dealt a
9 22.3% of the time, and player 1 is forced to take a much
more conservative strategy, which only bets 1.3 with a 9 and
0.2 with an 8 (and doesn’t even bet at all with a 7).

The most prominent rule in the optimal decision tree is
the first branch to the left. Intuitively it says that if the cdf
value for player 1 for hand 4 is 0.4273 (i.e., if the probability

that player 1 is dealt at most 4 equals 0.4273), then player 1
should output a strategy (the cluster 5 strategy from the ap-
pendix). It turns out that this rule matches the training data
(consisting of the 5 cluster centers) perfectly in this case (as
indicated by the 0.0 value on the top row denoting the EMD
error of that depth level). To compute the errors we tested on
1000 data points. The next value is the number of samples
considered at each level (e.g., at the second level the sample
splits on the left with 1 sample and on the right with 4 sam-
ples). The overall EMD error of the decision tree is 0.142,
with an accuracy classification score of -1.03. Note that this
error is extremely close to that of the clustering, since the
decision tree learns the cluster centers almost perfectly. We
found it very interesting that we were able to obtain a rel-
atively low error with such a simple tree containing only 4
rules (which only conditions on 3 of the cdf values).

5 Conclusion
We presented a novel formulation of the problem of com-
puting strong game-theoretic strategies that are human un-
derstandable as a machine learning problem. Traditionally
computing strong strategies in games has fallen under the
domain of specialized equilibrium-finding algorithms that
produce massive strategy files which are unintelligible to hu-
mans. We studied a game that mirrors no-limit Texas hold
’em endgames. Solving these endgames has proven to be a
critical component of the strongest poker agents for the most
popular variant of poker among humans and a widely recog-
nized AI challenge problem. We proposed a novel formula-
tion where the input features are the private information cdf
values and the outputs are the strategy probability vectors,
and we devised novel distance functions between pairs of in-
puts and outputs that generalize the successful earth mover’s
distance. We also provided a novel procedure for generat-
ing random distributions of private information, which we
used to create a large database of game solutions. Using
the formulation and database, we experimented with sev-
eral learning algorithms. Experiments with k-nearest neigh-
bors showed that we can achieve low test error by training
on only a relatively small percentage of the data. This sug-
gests that there may exist a small set of “canonical” game
instances whose solutions could be utilized to obtain good
solutions for a variety of unknown instances. Experiments
showed that it is feasible to implement decision trees for a
large database and to learn simple and useful rules that hu-
mans could implement (though it would not be feasible for
a human to implement the full strategy indicated by the de-
cision tree). Experiments on k-medoid clustering with our
distance metric showed that we can obtain a relatively small
error using only a very small number of representative clus-
ter centers. Finally, we presented a new approach that com-
bines the benefits the prior approaches: we first clustered the
data into 5 clusters, then constructed a decision tree from
these cluster centers. Surprisingly this approach produced
relatively small error (as low as clustering and close to that
of k-nn). The decision tree is very small and the strategies
can be represented compactly, making this approach very
easily amenable to human implementation.

We would like to analyze the optimal decision trees to ob-

335

Figure 14: Clustering error using k-medoids with earth
mover’s distance with pdf features.

Figure 15: Clustering error using k-medoids with earth
mover’s distance with cdf features.

Figure 16: Rules for optimal decision tree from 5 medoids.

tain understandable rules for strong poker strategy, such as
the prominent rules we presented. A dual goal of our ap-
proach, separate from that of generating strategies for hu-
mans to implement, would be to lead to development of
improved algorithms for equilibrium computation. It has al-
ready been shown that leveraging equilibrium strategy mod-
els can improve performance of equilibrium-finding algo-
rithms (Ganzfried and Sandholm 2010). If we are able to
compute a small database of solutions for two-player no-
limit Texas hold ’em endgames that generalize such that all
encountered endgames are close to a game in the database,
this could lead to much more efficient endgame solving,
since we would not need to do a full equilibrium compu-
tation in real time. This could allow endgame solving to be
utilized on earlier rounds of the game and not just on the final
round. It could also allow endgame solving to be efficiently
integrated with the strongest equilibrium-finding algorithm
for large imperfect-information games, counterfactual regret
minimization (Zinkevich et al. 2007) and its Monte Carlo
sampling variants (Lanctot et al. 2009). Rather than have to
sample all the way down the tree and store/update regrets
and average strategies for the endgames we could look up
the endgame strategy for the closest game in the database us-
ing our approach. A promising algorithm has been recently
devised for integrating endgame solving with offline equilib-
rium computation using CFR (Burch, Johanson, and Bowl-
ing 2014). This approach could be improved by looking up

endgame strategies from a presolved database instead of re-
peatedly solving them during runtime.

There are several avenues we would like to pursue for this
project. First, we would like to perform more comprehen-
sive experiments comparing the six data representations we
have proposed. We would also like to study theoretical dif-
ferences between the representations (e.g., characterize ex-
actly the set of game instances that would have identical cdf
but different pdf distributions). We would like to evaluate
our new strategy distance metrics, which are heuristic and
potentially not the best. Note that an effective distance met-
ric between strategies would have many potential applica-
tions. For instance, a recent algorithm for opponent exploita-
tion required a procedure to compute the “closest” strategy
to a given prior strategy that agreed with the observations,
and an approach resembling EMD outperformed L1 and L2
approaches experimentally (Ganzfried and Sandholm 2011).
We would also like to implement full-game exploitability as
a new metric to evaluate the “cost” of a strategy, which can
be integrated with all the learning approaches.

We note that the contributions are not specific to poker
games. The model and formulation are general, and would
apply to any imperfect-information game where agents are
given ordered private information signals. The approaches
could also apply to perfect-information games where we
can generate a database of games by modifying the values
of natural parameters. The approaches are also not specific
to two-player zero-sum games, though they do assume that
solutions can be computed for the games used in training,
which can be more challenging for other game classes.

References
Ankenman, J., and Chen, B. 2006. The Mathematics of
Poker. ConJelCo LLC.
Bertsimas, D.; Chang, A.; and Rudin, C. 2011. Ordered rules
for classification: A discrete optimization approach to asso-
ciative classification. Operations Research Center Working
Paper Series OR 386-11, MIT.
Bowling, M.; Burch, N.; Johanson, M.; and Tammelin, O.
2015. Heads-up limit hold’em poker is solved. Science
347(6218):145–149.
Burch, N.; Johanson, M.; and Bowling, M. 2014. Solving
imperfect information games using decomposition. In Pro-

336

ceedings of the AAAI Conference on Artificial Intelligence
(AAAI).
Ganzfried, S., and Sandholm, T. 2010. Computing equilibria
by incorporating qualitative models. In Proceedings of the
International Conference on Autonomous Agents and Multi-
Agent Systems (AAMAS).
Ganzfried, S., and Sandholm, T. 2011. Game theory-
based opponent modeling in large imperfect-information
games. In Proceedings of the International Conference on
Autonomous Agents and Multi-Agent Systems (AAMAS).
Ganzfried, S., and Sandholm, T. 2015. Endgame solving
in large imperfect-information games. In Proceedings of the
International Conference on Autonomous Agents and Multi-
Agent Systems (AAMAS).
Ganzfried, S. 2015. Reflections on the first man vs. machine
no-limit Texas hold ’em competition. SIGecom Exchanges
4.2. To appear in AI Magazine.
Gilpin, A.; Sandholm, T.; and Sørensen, T. B. 2007.
Potential-aware automated abstraction of sequential games,
and holistic equilibrium analysis of Texas Hold’em poker.
In Proceedings of the AAAI Conference on Artificial Intelli-
gence (AAAI).
Gurobi Optimization, Inc. 2014. Gurobi optimizer reference
manual version 6.0.
Johanson, M.; Burch, N.; Valenzano, R.; and Bowling, M.
2013. Evaluating state-space abstractions in extensive-form
games. In Proceedings of the International Conference on
Autonomous Agents and Multi-Agent Systems (AAMAS).
Johanson, M. 2013. Measuring the size of large no-limit
poker games. Technical report, University of Alberta.
Kaufman, L., and Rousseeuw, P. 1987. Clustering by means
of medoids. Statistical Data Analysis Based on the L1-Norm
and Related Methods 405–416.
Koller, D., and Megiddo, N. 1992. The complexity of two-
person zero-sum games in extensive form. Games and Eco-
nomic Behavior 4(4):528–552.
Lanctot, M.; Waugh, K.; Zinkevich, M.; and Bowling, M.
2009. Monte Carlo sampling for regret minimization in ex-
tensive games. In Proceedings of the Annual Conference on
Neural Information Processing Systems (NIPS).
Moravcik, M.; Schmid, M.; Ha, K.; Hladik, M.; and
Gaukrodger, S. J. 2016. Refining subgames in large imper-
fect information games. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence (AAAI).
Paruchuri, P.; Pearce, J. P.; Marecki, J.; Tambe, M.; Ordonez,
F.; and Kraus, S. 2008. Playing games with security: An
efficient exact algorithm for bayesian stackelberg games. In
Proceedings of the International Conference on Autonomous
Agents and Multi-Agent Systems (AAMAS).
Zinkevich, M.; Bowling, M.; Johanson, M.; and Piccione,
C. 2007. Regret minimization in games with incomplete
information. In Proceedings of the Annual Conference on
Neural Information Processing Systems (NIPS).

A Distributions and strategies for 5 clusters

Card P1 cdf P2 cdf
0 0.1132343 0.0323525
1 0.1547225 0.1672163
2 0.1888979 0.2948809
3 0.3210657 0.3365564
4 0.4975004 0.6160222
5 0.623888 0.6887151
6 0.7403509 0.7403384
7 0.857168 0.8101873
8 0.8853638 0.8697037
9 1.0 1.0

Table 2: Medoid 1 hand distributions.

Card(s) Bets(probabilities)
0 1.3(1)
1 0.1(0.225), 0.3(0.088), 1.2(0.292), 1.3(0.395)

2–4 0(1)
5–7 0.1(1)

8 1.2(1)
9 1.2(0.252), 1.3(0.748)

Table 3: Medoid 1 strategy.

Card P1 cdf P2 cdf
0 0.1965438 0.0843366
1 0.2133783 0.129227
2 0.3845294 0.2263237
3 0.5221381 0.2880686
4 0.5768681 0.3534791
5 0.6698331 0.5186297
6 0.6893295 0.6870242
7 0.8345081 0.7378451
8 0.9574423 0.7769845
9 1.0 1.0

Table 4: Medoid 2 hand distributions.

Card(s) Bets(probabilities)
0 0(0.639), 0.2(0.021), 1.3(0.340)

1–7 0(1)
8 0.2(1)
9 1.3(1)

Table 5: Medoid 2 strategy.

Card P1 cdf P2 cdf
0 0.0270415 0.1397059
1 0.1150136 0.3303171
2 0.2877046 0.33761
3 0.4277975 0.5392525
4 0.6064050 0.5960327
5 0.6319442 0.7613663
6 0.7270908 0.8692346
7 0.8002724 0.8889503
8 0.8425349 0.9618729
9 1.0 1.0

Table 6: Medoid 3 hand distributions.

337

Card(s) Bets(probabilities)
0 0(0.591), 0.1(0.002), 0.3(0.010), 0.6(0.362), 2.0(0.035)

1–5 0(1)
6 0.1(1)
7 0.3(1)
8 0.6(1)
9 2.0(1)

Table 7: Medoid 3 strategy.

Card P1 cdf P2 cdf
0 0.1516277 0.1718702
1 0.2031077 0.2505481
2 0.3500789 0.2615690
3 0.3909628 0.3670855
4 0.5128757 0.5872985
5 0.5226815 0.6486966
6 0.6294331 0.6984665
7 0.7380967 0.8388290
8 0.8868218 0.9935035
9 1.0 1.0

Table 8: Medoid 4 hand distributions.

Card(s) Bets(probabilities)
0 0.1(0.003), 0.9(0.647), 3.0(0.350)
1 0.9(1.0)
2 0(0.981), 0.1(0.019)

3–6 0(1)
7 0.1(1)
8 0.9(1)
9 3.0(1)

Table 9: Medoid 4 strategy.

Card P1 cdf P2 cdf
0 0.0066483 0.0668309
1 0.0588898 0.1650387
2 0.2279267 0.2450563
3 0.3064846 0.3245739
4 0.3571740 0.4779984
5 0.5144995 0.5027299
6 0.6154961 0.7156640
7 0.7699768 0.8044380
8 0.9093516 0.8223335
9 1.0 1.0

Table 10: Medoid 5 hand distributions.

Card(s) Bets(probabilities)
0 0.4(1.0)
1 1.0(1.0)
2 0.1(1.0)
3 0.1(0.068), 0.4(0.530), 1.0(0.370), 2.8(0.033)
4 0 (0.915), 0.1(0.085)
5 0(1)
6 0.1(1)
7 0.4(1)
8 1.0(1)
9 2.8(1)

Table 11: Medoid 5 strategy.

338

