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Abstract

The importance of visual context in object recognition has
been intensively studied over the years. Along with the advent
of deep convolutional neural networks (CNN), using contex-
tual information with such systems starts to receive attention
in the literature. Regardless of deep learning advances, aerial
image analysis still poses many great challenges. Satellite im-
ages are often taken under poor lighting conditions and con-
tain low resolution objects, many times occluded. For this
particular task, visual context could be of great help, but there
are still very few papers that consider context in aerial image
understanding. Our work addresses the task of object segmen-
tation in aerial images with a novel dual-stream deep con-
volutional neural network that integrates the local object ap-
pearance and global contextual information into a unified net-
work. Our model learns to combine local object appearance
and global semantic knowledge simultaneously and in a com-
plementary way, so that together they form a powerful clas-
sifier. Experiments on the Massachusetts Buildings Dataset
demonstrate the superiority of our model over state-of-the-
art methods. We also introduce two new challenging datasets
for the task of buildings and road segmentation. While our
local-global model could also be useful in general recogni-
tion tasks, we clearly demonstrate the effectiveness of visual
context in conjunction with deep nets in aerial image under-
standing.

Introduction
Aerial image understanding is enjoying a growing interest
today, due to recent technological advancements in com-
puter vision, along with important improvements in high
performance, low-cost GPUs. The possibility of accurately
recognizing different types of objects in aerial images (e.g.
buildings, roads, vegetation etc.) could greatly help in many
applications, such as creating and keeping up-to-date maps,
improving urban planning, environment monitoring and dis-
aster relief. Besides the practical need for accurate aerial im-
age interpretation systems, this domain also offers specific
scientific challenges to the computer vision domain. The lo-
cal appearance of objects in aerial images is often degraded
due to occlusions, illumination, shadows and distance, lead-
ing to poor resolution. In such cases, contextual cues pro-
vide semantic insights that improve object recognition. Our
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work demonstrates that visual context is vital for accurate
recognition and plays a fundamental role in aerial image un-
derstanding.

Context could be understood in many forms and has been
studied for quite some time in computer vision, with ap-
proaches going from reasoning about objects against the
global scene to looking at more precise spatial and tem-
poral relationships and interactions between different ob-
ject categories (Torralba 2003; Oliva and Torralba 2007;
Leordeanu et al. 2016; Stretcu and Leordeanu 2015; Hoiem,
Efros, and Hebert 2008; Collins, Liu, and Leordeanu 2005;
Rabinovich et al. 2007; Felzenszwalb et al. 2010; Desai,
Ramanan, and Fowlkes 2011; Tu and Bai 2010; Yao, Fi-
dler, and Urtasun 2012). One recent relevant example is
the work of (Choi et al. 2010) that combines both spa-
tial relations to other objects as well as global scene con-
text. It is not yet known what is the best way to combine
object relationships and global information for contextual
reasoning. Deep neural networks are an interesting choice
for modeling context. By reasoning in a hierarchical man-
ner they also offer the possibility of integrating informa-
tion from one level of abstraction as contextual input to the
next, thus relating to approaches using autocontext (Tu and
Bai 2010). Therefore, deep nets seem to offer the proper
environment for designing effective architectures for using
and studying visual context. Such systems, combining con-
text with deep networks, were proposed for action classi-
fication (Gkioxari, Girshick, and Malik 2015), segmenta-
tion by modeling CRFs (Zheng et al. 2015) with recurrent
networks and object detection by training contextual net-
works over nearby bounding box regions (Zhu et al. 2015;
Gidaris and Komodakis 2015).

We propose a dual-stream approach using deep convolu-
tional neural networks that combines the local appearance
of the object with global information retrieved from a larger
scene. Thus, the object is seen both as a separate entity from
the perspective of its own appearance, but also as a part
of a larger scene which acts as its complement and implic-
itly contains information about it. We formulate the problem
as one of segmentation in the sense of finding an accurate
shape for the object of interest. Our combined network is
trained jointly, end-to-end. Different from (Zhu et al. 2015;
Gidaris and Komodakis 2015) our proposed deep architec-
ture is based on a dual-stream network, each pathway hav-
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Figure 1: A: Local appearance is often not sufficiently informative for segmentation in low-resolution aerial images. The larger
context could provide vital information even for highly localized tasks such as fine object segmentation: the exact shape of the
house in the example on the right is better perceived when looking at the larger residential area, which contains other houses of
similar shapes and orientations. Thus, local structure could be better interpreted in the context of the larger scene. B: Our initial
model for residential area detection (RA) has poor localization but low false positive rate within a larger neighborhood. RA can
be effectively combined, in a simple classification tree, with the local semantic segmentation model (L-Seg), which has higher
localization accuracy, but relatively high false positive rate. Note how the output from RA can be used in order to filter out the
houses hallucinated by the local L-Seg model.

ing its own different architecture, centered on the object but
looking over different image areas.

Different from previous work, we study context in the do-
main of aerial imagery, where objects are relatively small
and it is easy to include larger areas as input. There is also re-
cent work (Mattyus et al. 2015) that combines satellite aerial
images available online with ground truth labels from Open-
StreeMap for learning, in order to enhance road maps. Au-
thors use some weak context features based on differences in
mean pixels intensities between the road area and its back-
ground, within a Markov Random Field formulation. Very
few approaches in aerial image analysis use CNNs, with im-
proved results (Mnih 2013a; Saito and Aoki 2015). Our main
contribution over the prior work is to show that contextual
information is important for accurate object recognition in
aerial images and also provide a novel dual-stream architec-
ture, based on deep convolutional neural networks, which
learns in parallel to recognize objects from two complemen-
tary views, one from the local level of object appearance and
the other from the contextual level of the scene.

Intuition and Motivation
Let us look at Figure 1 A. We present two local patches and
their larger scene context. By looking at the patches only,
it appears that local appearance is not sufficient for confi-
dently recognizing the presence and the shape of a house.
In fact, from the local patch alone, the example on the left
seems to be more likely to belong to a house than the one on

the right. When we consider the larger contextual neighbor-
hood, the house roof is more clearly perceived in the second
case, in which the larger residential area contributes in an
important way to the local perception. Geometric grouping
cues such as agreements of houses’ orientations and similar
appearances in the larger residential area increase the chance
that we are indeed looking at a house and also help ”seeing”
its shape better. In the case on the left, the contextual align-
ment of the diagonals in the larger region of grass lowers the
possibility that we are indeed looking at a house.

Buildings vs. Residential Regions: For better motivating
our dual-stream CNNs presented in later sections, we first
discuss the task of finding the shapes of buildings in an aerial
image. We consider both their local appearance and the in-
formation from the larger scene containing them. We are in-
terested to study the role of context on this task first, as build-
ings have various shapes and appearances and are represen-
tative for most aerial images. We employ two models based
on CNNs. First, a local deep neural network, based on the
state-of-the-art VGG-Net (Simonyan and Zisserman 2014),
is trained to output 16 × 16 patches of pixel wise labels,
with values between 0 and 1, in order to predict the pres-
ence or absence of a building at a given pixel. At test time
the image is divided into a disjoint set of patches, on a grid,
and each patch is classified independently. The end result
becomes a segmentation of the entire image, with white ar-
eas belonging to building pixels. The input to the network is
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a larger 64× 64 patch that, in the case of smaller houses, of-
ten contains little surrounding background information. This
network is thus trained to detect and segment houses (output
their exact shapes) using mostly local information. We will
refer to it as the local L-Seg network. In order to study the
role of the larger context, we employ a wider (with larger fil-
ters and input) but shallower architecture based on AlexNet
(Krizhevsky, Sutskever, and Hinton 2012), which takes as
input a 256 × 256 image patch (16× larger in area than the
input to L-Seg) centered at the same location. We trained this
model to segment houses using global information (G-Seg).
A different model (RA) based on the same architecture is
not trained for accurate shape prediction, but only to output
a single binary variable - whether the input patch belongs
to a residential area or not. In our case, a large 256 × 256
patch is considered to be residential if it contains at least 15
houses. This is a moderate number for such patches in an
image with 1 m2 per pixel. For training, the non-residential
patches were not allowed to contain any buildings.

The two models trained completely separately on two dif-
ferent tasks (one for accurate shape segmentation and the
other for binary classification) can be effectively joined into
a classifier tree (Figure 1), in which the residential area clas-
sifier acts as a filter for the local buildings shape segmenter.
The tree model is built by placing the RA classifier as the
root node and the L-Seg model at the leaves. Depending on
how the first node classifies the patch, the leaves will clas-
sify it using different thresholds. Consequently, if a patch is
classified as residential, the segmenter L-Seg will be more
likely to detect buildings than otherwise. Thus, by combin-
ing RA with L-Seg we generally obtained an improvement
in F-measure of about 1% over the L-Seg alone in our ex-
periments. Some qualitative results can be seen in Figure 1.
These results confirm our intuition and constitute a good mo-
tivation for the more complex models we present next.

Dual Local-Global Semantic Segmentation
We take the intuition and initial experiments from the pre-
vious section a step further and create an architecture that
combines L-Seg model and G-Seg model into a single
local-global deep network, termed LG-Seg. The two path-
ways process information in parallel, taking as input im-
age patches of different sizes. Then, the last fully-connected
(FC) layers of each individual network are concatenated and
fed into two FC layers (the first FC layer with 4096 activa-
tion units followed by a layer with 256 units) that learn how
to combine local and contextual information at the level of
semantic interpretation. The final level of abstraction is the
place where bottom-up and top-down reasoning about ob-
jects meet in order to resolve conflicts and reinforce agree-
ments. Based on the experiments performed with the sim-
ple tree model we want to find whether the two pathways
indeed learn categories at different levels, the local one fo-
cusing more on the exact shape of individual buildings and
the other classifying larger residential areas with less focus
on exact localization and delineation of buildings. We ex-
pect the single combined network trained end-to-end to be
able to produce more accurate segmentations over the sim-
ple tree model. Note that the tree model usually does not

Figure 2: Our proposed local-global architecture with resid-
uals and contextual intermediate loss. When stride s is not
mentioned, we use a default value of 1.

improve the shape of the segmentation produced by the lo-
cal network, but only changes the recognition confidence,
using two different thresholds, over relatively large areas. In
the classifier tree case, the residential area network outputs
a single label per patch, while in the LG-Seg model they are
jointly trained to segment objects.

Learning with Residuals and Contextual Loss: The
LG-Seg model is a dual-stream combined architecture, an
adapted VGG-Net and an adapted AlexNet joining into two
last FC layers. Next, we present a second novel dual-stream
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architecture for local-global segmentation which uses resid-
ual connections (He et al. 2015) and an intermediate contex-
tual loss (Figure 2). The two local and global pathways take
the same inputs as in the case of LG-Seg.

The residuals connections are capable of bypassing extra
levels of depth and thus simultaneously combining shallow
and deep pathways into a single multi-path net with filters
of different sizes also acting in parallel. This model is su-
perior to the more traditional LG-Seg and is able to handle
better the difficult challenges present in aerial image recog-
nition. While we let our initial LG-Seg architecture to learn
by itself the complementarity between local and the global
pathways of processing (see Figure 6), in this case we added
an extra intermediate loss for the global pathway in order to
enforce learning of global context in the pathway receiving
larger image patches. Thus we hope to improve the training
time and also the quality of segmentation in places where
context matters more. We experiment with two variants of
this network, one with intermediate loss and global process-
ing (LG-Seg-ResNet-IL) and the other with no contextual
loss (LG-Seg-ResNet). Our extensive experiments demon-
strate that both the addition of residuals and the intermediate
loss help improve both the training time and accuracy in the
case of road detection, where context plays a strong role -
as roads form structures that are better understood from a
higher, more global level.

Problem formulation and learning: We formulate the
object segmentation problem as a binary labeling task,
where all pixels belonging to the object of interest are 1 and
all the others are 0, in a similar way to the one proposed by
Mnih et. all (Mnih and Hinton 2010).

Let I be the satellite aerial image and M the correspond-
ing ground truth labeled map. The goal is to predict a la-
beled image M̂ from an input aerial image I, that is to learn
P (Mij |I) from data, for any location p = (i, j) in the im-
age. We train our network to predict a labeled image patch
W (M, p, wm), extracted from labeled map M, centered at
location p, of window width wm = 16, from two aerial
image patches W (I, p, wl) and W (I, p, wg), centered at the
same location p, with a smaller size window width wl = 64
for the local patch and a larger window width wg = 256
for the global patch. We want to learn a mapping from raw
pixels to pixel labels and use a loss function to minimize the
total cross entropy between ground truth patches and pre-
dicted label patches.

Given a set of N examples let m̂(n) be the predicted label
patch for the nth training case and m(n) the ground truth
patch. Then our loss function L is:

L = −
N∑

n=1

w2
m∑

p=1

(m(n)
p log m̂(n)

p +(1−m(n)
p ) log(1− m̂(n)

p ))

(1)
The minimization of this loss is solved using stochastic

gradient descent. All our models were trained end-to-end us-
ing the same hyperparameters: starting with a learning rate
of 0.0001 and L2 weight decay of 0.0005, momentum set

Figure 3: Example of buildings detection results on the Mas-
sachusetts Dataset. Note the high level of regularity of build-
ings and roads, which look very similar to each other. This
permits the deep nets to almost match human performance.
From left to right, in order, we present the satellite input im-
age, the corresponding ground truth label and the result of
our LG-Seg model.

to 0.9 and weight initialization using (Glorot and Bengio
2010). Our models were implemented, trained and tested us-
ing Caffe (Jia et al. 2014) on a GeForce GTX 970 GPU.

Experimental Analysis
We test our models on three different datasets from US and
Europe, on the tasks of detecting buildings and roads. The
datasets vary greatly in terms of structure and complexity.
The European Datasets are new and publicly available for
download 1.

We measured performance in the same way as our com-
petitors. We used a relaxed version of precision and re-
call (Wiedemann et al. 1998), usually applied in recognition
from aerial imagery: a positive pixel is considered correctly
labeled if it is within ρ pixels from a positively labeled pixel
in the ground truth. In our experiments we set ρ = 3 pixels.

Detection of Massachusetts Buildings: We start by ex-
perimenting with the relatively recent Massachusetts Build-
ings Dataset (Mnih 2013b). It consists of 151 high quality
aerial RGB images of the Boston area. They are of size
1500× 1500, at resolution 1 m2 pixel, and represent mostly
urban and suburban areas, containing larger buildings, in-
dividual houses and sometimes even garages. The entire
dataset covers roughly 340 km2. It is randomly divided in
a set of 137 images used for training, 4 used for the valida-
tion of the model and 10 images for testing. Our qualitative
and quantitative results are presented in Figure 3 and Table
1. We densely sample our patches from a larger map on a
grid. We extract a 16× 16 label, a 64× 64 local patch and a
256×256 global patch, centered at the same location. There-
fore, from each map of size 1500 × 1500, we sample about
10k patches using a stride of 16 in order to restore the map
to its original size. It is worth noting the significant differ-
ence between our approach and the previous state-of-the-art
on the Massachusetts Dataset in the high 90% F-measure
regime. While the improvement between 2013 and 2015 was
less than 0.5%, we brought a significant 2% improvement,
from 92.3% to 94.3%, thus reducing the error rate by 25%.

1https://sites.google.com/site/aerialimageunderstanding/
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Table 1: Results on Massachusetts Buildings Dataset

Method (Mnih 2013a) (Saito and Aoki 2015) LG-Seg LG-Seg-ResNet-IL

F-measure 0.9211 0.9230 0.9423 0.9430

Table 2: Quantitative results on the European Buildings
Dataset

Method G-Seg L-Seg LG-Seg LG-Seg-ResNet-IL

F-measure 0.6271 0.8266 0.8420 0.8387

Detection of European Buildings: We have collected the
European Buildings Dataset from Western European urban
and suburban areas. They contain a lot more variation than in
US, in terms of general urban structure, architectural style,
layout of green spaces versus residential areas and geog-
raphy. We have gathered 259 RGB satellite images from
Google and Bing Maps, of size 1550 × 1600 pixels, with
a spatial resolution of about 0.8 m2 per pixel, with locations
picked randomly from different Western European coun-
tries. Covering a total area of 348.5 km2 of urban and ru-
ral regions spread across Europe, these images also had
a lot more variation in illumination as compared to those
from Boston. We randomly selected 144 images for training
(about 198.2 km2), 10 for validation (21.3 km2) and 100 for
testing (129 km2). We automatically aligned the satellite im-
ages with their corresponding ground truth label map, gener-
ated using vector metadata from the OpenStreetMap (OSM).
For training we extracted about 1 million patches. We tested
four models (Table 2 and Figure 4): our full LG-Seg and LG-
Seg-ResNet-IL nets, and models formed by keeping only
one pathway, G-Seg with the adjusted AlexNet only and L-
Seg formed by the adjusted VGG-Net only. We wanted to
test the capabilities of each separately and study the poten-
tial advantage of combining them into a single LG-Seg. We
also wanted to study the influence of the use of intermediate
loss on this task. Interestingly, the LG-Seg performed, on av-
erage slightly better than the LG-Seg-ResNet-IL with inter-
mediate contextual loss. However, qualitatively the network
with residual connections and intermediate loss was able to
segment finer level of detail. This capability is more visible
in the next set of experiments, on road detection. All mod-
els were trained until complete convergence of the loss, with
the G-Seg model taking 34 epochs, L-Seg model 23 epochs,
LG-Seg 12 epochs, and LG-Seg-ResNet-IL converging the
fastest, in only 6 epochs.

Detection of European Roads: The European Road
Dataset was designed for road segmentation, a much more
challenging task due to limitations and variations in the
data. This particular image set offers large variations in the
roadmap complexity and structure, roads shapes, width and
length. We have collected 200 satellite images (aprox. 276.4
km2) for training, 20 images (27.7 km2) for validation and
50 images (70 km2) for testing our models. The images were
collected and aligned with the ground truth OpenStreetMap

Figure 4: Qualitative performance comparison of our mod-
els on the European Buildings Dataset. Note that the mod-
els based on the dual local-global pathways perform signif-
icantly better, a fact validated by our quantitative results.
LG-Seg and LG-Seg-ResNet-IL performed similarly, with
the later paying slightly more attention to fine details.

Table 3: Results on European Roads Dataset
Method LG-Seg LG-Seg-ResNet LG-Seg-ResNet-IL

F-measure 0.7046 0.7207 0.7342

in the same manner as the European Buildings Dataset. On
this dataset again the models using both local and global
information outperformed the others (Table 3 and Figure
5). It should be noted that on this dataset the network LG-
Seg-ResNet-IL using residuals and the intermediate contex-
tual loss significantly outperforms LG-Seg (3% improve-
ment). Both the residual connections and the intermediate
loss are important as results show in the table, where LG-
Seg-ResNet is the residual network trained without the in-
termediate loss. This fact is very interesting as in the case of
roads it is expected that context plays a more important role.
Road pixels are part of much larger structures that form road
maps at a higher level of interpretation, while covering large
areas. This is different from the case of buildings, which are
more local, occupying a limited enclosed region of space.

Our experiments on the three datasets, of different con-
tent type and structure, reveal once again the importance of
data in learning. When the structures are regular and look
very similar across images, such as it is the case with the
Massachusetts Buildings, the performance reaches almost
human level. However, as the variations in the data and fre-
quency of occlusions increases, the performance starts de-
grading, dropping by almost 20% on the European roads.
These results prove that aerial image understanding is far
from being solved even in the context of state-of-the-art deep
networks and that it remains a very challenging problem.

Discussion on Local-Global Complementarity: What
are the two pathways learning in the case of LG-Seg, when
no intermediate loss is used? In these experiments we high-
light the individual role of each pathway in the combined
output. When we first designed our combined LG-Seg net-
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Figure 5: Example results on European Roads. Note how
difficult the task is on these images, posing a real challenge
even for humans.

Figure 6: Proving Local-Global Complementarity: the sec-
ond column shows results when only the global pathway
is fed with real image signal, the other being given blank
image as input. The third column shows the opposite case,
when only the local pathway is given real information. The
fourth column presents the output of the network running
normally, with both pathways having image input. Note that
the global subnet learns to detect residential areas similar to
our initial classifier for such regions. The third, bottom ex-
ample shows the results of our model on the same image as
in Figure 1 B. Note that the residential area segmentation
produced by the LG-Seg is superior to the one produced by
the RA classifier, even though in the case of LG-Seg it was
not asked to learn about residential areas. Also note that the
local pathways focuses only on small, detailed structures.
We can safely conclude that the two pathways learn to work
together, in complementarity.

work we intentionally chose two different architectures: one
deeper but narrower with smaller filter sizes and smaller in-

put, better suited for more detailed local processing and one
shallower with a larger input and filters encouraging con-
trasting learning along the two pathways. We performed a
set of experiments in order to better understand the role of
each processing branch. After training the full LG-Net, we
performed the following: first, we ran the model over the
test images by providing the local pathway with the original
image input, whilst giving a blank image to the global path-
way. The blank image was created by averaging each RGB
channel separately. Then, we performed the opposite exper-
iment and switched the inputs, by giving the original image
to the global pathway and blocking the signal to the local
one. The idea was to see how, in the fully trained model,
each path contributes to the final decision. The qualitative re-
sults of this experiment, depicted in 6 are both very interest-
ing and satisfying. When provided with information for lo-
cal processing only, the network responds to small buildings
with very clear structure, having crisp, very local responses
over individual houses or buildings. On the other hand, when
given information only to the global stream, the network
produced a result that was closer to a soft residential area
segmentation, in which individual buildings were undistin-
guishable from each other. This result is similar but of higher
quality than our initial residential area detection based on the
same adjusted AlexNet architecture. These qualitative ex-
periments suggest that the intermediate loss is not always
needed, as it is the case of detection of buildings - the net-
work is able to learn by itself to process data in two comple-
mentary ways. However, when the role of context increases,
as it is the case of road detection, then the intermediate loss
plays an important role as the results on the European Roads
show.

Conclusions
We have studied different ways of combining local appear-
ance and global contextual information for semantic seg-
mentation in aerial images and have proposed two novel dual
local-global networks. The LG-Seg model learns completely
by itself to look at objects from two complementary perspec-
tives. When given the task of segmentation of buildings the
network learns to treat each pixel, in parallel, both as part of
a building and as part of a larger residential area. The second
LG-Seg-ResNet-IL model, which uses residual connections
and an intermediate contextual loss, is superior on the task
of road segmentation, where context plays a more important
role. We have performed extensive experiments, with several
architectures, that study along several dimensions the role of
context in aerial image understanding. Our results show that
context is very important and that a dual, local-global ap-
proach is necessary in order to overcome the limitations of
the local appearance alone. Consequently, we see our work
as having the potential to influence future research that will
shed new light on the understanding of context in vision.
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