
BDD-Constrained A∗ Search: A Fast Method for Solving
Constrained DAG Shortest-Path Problems

Fumito Takeuchi,1 Masaaki Nishino,2 Norihito Yasuda,2 Takuya Akiba,3

Shin-ichi Minato,1 Masaaki Nagata2

1Graduate School of Information Science and Technology, Hokkaido University
2NTT Communication Science Laboratories, NTT Corporation

3Preferred Networks, inc.
fumito@ist.hokudai.ac.jp

Abstract

This paper deals with the constrained DAG shortest path
problem (CDSP), which finds the shortest path on a
given directed acyclic graph (DAG) under any logical
constraints posed on taken edges. There exists a previ-
ous work that uses binary decision diagrams (BDDs)
to represent the logical constraints, and traverses the
input DAG and the BDD simultaneously. The time
complexity of this BDD-based method is derived from
BDD size, and tends to be fast only when BDDs are
small. However, since it does not prioritize the search
order, there is considerable room for improvement, par-
ticularly for large BDDs. We combine the well-known
A∗ search with the BDD-based method synergistically,
and implement several novel heuristic functions. The
key insight here is that the ‘shortest path’ in the BDD
is a solution of a relaxed problem, just as the shortest
path in the DAG is. Experiments, particularly practi-
cal machine learning applications, show that the pro-
posed method deceases search time by up to 2 orders of
magnitude, with the specific result that it is 2,000 times
faster than a commercial solver.

Introduction

The constrained DAG shortest path problem (CDSP) con-
sists of finding a path from a start node to an end node that
minimizes the sum of edge weights, subject to not violating
any given logical constraints that may be posed on edges.
Many combinatorial optimization problems, which are usu-
ally solved by dynamic programming (DP) algorithms, can
be reduced to DAG shortest path problem equivalents. In
the same way, CDSP can solve constrained versions of
these combinatorial optimization problems. These include
problems of practical importance such as the 0-1 knapsack
problem with disjunctive constraints (Yamada, Kataoka, and
Watanabe 2002), sequence alignment with user-defined an-
chor points (Morgenstern et al. 2006), and incorporating
knowledge based constraints into statistical machine learn-
ing models (Chang, Ratinov, and Roth 2012).

Although a DAG shortest path can be solved in time lin-
ear to the number of graph edges, introducing logical con-
straints makes the problem difficult to solve. Nishino et al.

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

T

T

e45e45

e46

e14

1

2

3

4

5

6

7

5

2

3

4

2 3

2 2

6

α1

α2 α3

α4

1

(a) (b)

Figure 1: (a) Example of an edge-weighted DAG and (b)
BDD corresponding to the Boolean function F = (e14 ∧
e46) ∨ e45 that represents logical constraints.

has proposed an algorithm that uses the binary decision dia-
gram (BDD) (Akers 1978; Bryant 1986) to represent the log-
ical constraints and thus solve CDSP (Nishino et al. 2015).
Their method, called BDD-constrained search (BCS), simul-
taneously traverses the input DAG and the BDD. During the
traverse, the method checks the logical equivalence of the
partial paths to reduce the number of search states. We note
that since BCS can be slow when BDDs are large and it does
not prioritize the search order, there is considerable room to
improve efficiency, particularly for large BDDs.

To address this problem, this paper adds to BCS the well-
known A∗ search. As is often the case, the efficiency of
A∗ search depends on the estimation accuracy of a heuris-
tic function. Since the shortest path in a DAG is a solution
of a relaxed version of the original problem, we use this as
an estimate of the original solution. Moreover, we focus on
the fact that a BDD is also a DAG. We also define a kind of
shortest path on the BDD by properly weighting its edges.
Accordingly, we employ two types of estimations; one is
DAG based and the other is BDD based. Since these estima-
tions are independent of each other, we hope to synergisti-
cally combine them to form one heuristic function. We call
A∗ search with this heuristic function BCA∗.

Preliminary

Notation

Let G = (V,E) be a DAG, where V is a set of vertices
and E is a set of edges. Let |V | and |E| be the numbers
of vertices and edges, respectively. We use v1, v2, . . . , v|V |

The AAAI-17 Workshop on
Symbolic Inference and Optimization

WS-17-14

944

to represent vertices. We use eij to represent the directed
edge whose source and target vertices are vi and vj , respec-
tively. We assume that every DAG is edge-weighted, i.e.,
each edge, eij ∈ E, has a real value weight, wij . We also
assume that vertices v1, . . . , v|V | follow a topological order.
Let p be a path on the DAG and represent it as a subset of
E. Let the length of path p be the sum of the weights, wij ,
of the edges eij contained in p. Given vertices u, v ∈ V , let
Pu,v be the set of all paths that start at u and end at v.

Binary Decision Diagram

The BDD is a data structure for representing the Boolean
function F (x1, . . . , xn), where x1, . . . , xn are logical vari-
ables and n is the number of arguments. The BDD con-
sist of two types of nodes: terminal nodes (⊥ and �) and
non-terminal nodes. Every non-terminal node is associated
with a logical variable as its label, and it has two outgo-
ing edges called lo-edge and hi-edge. A node with no par-
ent node is called root. Every BDD node recursively repre-
sents a Boolean function. ⊥ and � represent the Boolean
functions false and true, respectively. Suppose that the lo-
edge and hi-edge of node α with the label xi point to nodes
that represent the Boolean functions F0 and F1, respectively.
Then, α represents the Boolean function F (xi, . . . , xn) =
(x̄i ∧ F0) ∨ (xi ∧ F1). Figure 1 (b) shows an example of a
BDD representing F = (e14 ∧ e46) ∨ e45, where e14, e46,
and e45 are logical variables. Dashed edges represent lo-
edges and a solid edges represent hi-edges. In this example,
α3 represents the subfunction Fα3

= (¯e45 ∧ e46) ∨ e45. A
path from the root to the � node corresponds to an assign-
ment of variables that makes the Boolean function true. And
we define the width of a BDD as the maximum number of
nodes pointed to by the edges in a cut of the BDD at a level
of nodes.

BDD-Constrained Search

Before explaining BCS, we briefly remind the reader why
solving DAG shortest path problems without constraints is
fast. The point is that the shortest s−t path that goes through
v is obtained by concatenating the shortest path from s to
the vertex v ∈ V with the shortest path from v to t. This
is because which path is chosen as s− v does not affect the
remaining v − t path. By using this feature, we can solve
the problem with a DP algorithm that computes and stores
the shortest path from s to every vertex v ∈ V in topological
order, thus the computing time is O(|E|). In contrast, we
cannot apply the same DP algorithm to CDSP, because the
path obtained by concatenating the shortest s − v path with
the shortest v − t path may not satisfy the constraints.

BCS solves CDSP with a DP algorithm by checking the
equivalence of constraints posed on the set of paths. Let F
be the Boolean function representing the logical constraints
whose variable order is taken to be the topological order of
the DAG. Suppose that we take partial path p ∈ Ps,v from
start vertex s to intermediate vertex v, then the subfunction
Fp, representing the constraints posed over the remaining
paths from v to t, is obtained by the partial assignment:
e = 1 if e ∈ p, e = 0 if e �∈ p and the source vertex of

Algorithm 1 BDD-constrained search algorithm
Input: Weighted DAG G = (V,E), a BDD representing the logi-

cal constraints on path s, t ∈ V
Output: The shortest path from s to t that satisfies the logical con-

straints
1: Cost[s][root] ← 0,
2: for Select every eij ∈ E in topological order do
3: (v, u) ← source and target vertices of eij
4: for all BDD node α which is key to Cost[v][α] do
5: β ← followBDD(eij , α)
6: if β = ⊥ then continue
7: if label(β) = eij then
8: β ← hi(β)
9: if Cost[u][β] > Cost[v][α] + wij then

10: Cost[u][β] ← Cost[v][α] + wij

11: Back[u][β] ← (eij , α)
12: (e, α) ← Back[t][�]
13: while Source vertex of e is not s do
14: u ← source vertex of e
15: Output e;
16: (e, α) ← Back[u][α]
17: return Cost[t][�]

e precedes v. This subfunction means that the constraints
on the remaining v − t path must be satisfied. Suppose that
there are two paths p, q ∈ Ps,v that satisfy Fp = Fq . Then,
the set of possible paths from v to t is the same regardless
of whether p or q is taken. Therefore, if p is longer than
q, then the shortest s − t path that goes through v while
satisfying constraint F must not contain p as a partial path
because any s − t path that satisfies F and contains p as a
partial path can be shortened by replacing p by q. We can
prune the search starting from p. In this manner, we can use
the equivalence of constraints to prune the search on non-
optimal partial paths.

To exploit the equivalence of constraints, we have to (i)
update Fp along with path p and (ii) check the equivalence
of Fp and Fq for different paths p, q ∈ Ps,v; BDD is used
for these operations. For (i), updating Fp along with path
p corresponds to assigning values to variables in F . This
operation corresponds to following lo-edges or hi-edges of
the BDD representing F . Therefore, there always exists a
BDD node α that represents Fp for any path p. For (ii), the
equivalence of Boolean functions can be checked by using
the canonicity of BDDs, i.e., if there are two s− v paths p, q
satisfying Fp = Fq , then the BDD nodes that correspond to
Fp and Fq are always the same. Hence, we can check the
equivalence of Fp and Fq in constant time.

We show an example in Figure 1. The Boolean function
represented by this BDD is F = (e14∧e46)∨e45. If we take
path p = {e12}, then Fp becomes e45 by assigning e12 = 1
and e14, e13 = 0 to F . Fp corresponds to the BDD node
α2 and can be reached from the root node by following the
appropriate paths. Let q, r be the paths q = {e12, e24} and
r = {e13, e34}. Then, Fq = Fr = e45, and both functions
correspond to BDD node α2. In this case, the lengths of
q, r are, respectively, 9 and 4. Thus, we prune the search for
paths that contain q because replacing q by r always shortens
the path.

945

(v5,�)

(v6,�)

(v7,�)

(v6,⊥)

(v1, α1)

(v2, α2)

(v3, α2)

(v4, α3)

(v4, α2)

Figure 2: Example of the process of BCS algorithm.

BCS represents the search state by the pair (v, α), where v
is a current end of partial path s− v and α is the BDD node
that represents the subfunction defined by the path. Thus
start DAG vertex s corresponds to state (s, root), and the
goal vertex t corresponds to state (t,�). If edge eij exists
and β is a subfunction of α, we define the direct transition
from (vi, α) to (vj , β), with transition cost is wij . With this
definition, the CDSP solution corresponds to finding succes-
sive transitions from state (s, root) to (t,�) with minimum
cost. Algorithm 1 shows the procedure of BCS. Subroutine
followBDD(e, α) visits BDD nodes by following lo-edges
from node α until the label of the visited node is not less
than e and returns the last visited node β. Subroutines hi(α)
and lo(α) return the node pointed to by the hi-edge and lo-
edge of α, respectively. The time complexity of BCS is
O(|E|W), where |E| and W denote the number of edges
in the DAG and BDD width, respectively. Consequently,
BCS is fast only if BDD width is small. Figure 2 shows an
example of BCS solving the problem shown in Figure 1.

BDD-Constrained A∗ Search

In this section, we incorporate A∗ search into BCS. For each
state (v, α), we calculate value f(v, α), an estimate of the
shortest path length that encompasses the state. Let g(v, α)
be the shortest path length from (s, root) to (v, α). Let
h(v, α) be a heuristic function that is monotonic and returns
the estimated length from state (v, α) to goal state (t,�).
Then f(v, α) is defined as

f(v, α) = g(v, α) + h(v, α) .

BCA∗ works as shown in Algorithm 2. We also use two ta-
bles Cost[v][α] and Back[v][α]. The list named open list is
used to store the set of candidate states to be explored. After
initializing Cost[s][root] (line 1) and appending (s, root) to
the open list (line 2), BCA∗ selects a state whose value of
f(v, α) is minimum in the open list (line 4). Then, for every
edge eij whose source vertex is v, it calculates state (u, β)
that can be reached from (v, α) by using eij (lines 6–10).
It then computes the score of (u, β) and updates Cost[u][β]
and the open list (lines 11–16).

The Heuristic Function

In this subsection we describe the heuristic function used for
BCA∗. Since the shortest path in the DAG is a solution of a
relaxed problem of the original problem, the value is always
shorter than or equal to the solution of the original problem.
Thus we can use this as the estimate needed by the heuristic

Algorithm 2 BDD-Constrained A∗ Search
Input: Weighted DAG G = (V,E), s, t ∈ V, BDD, monotonic

heuristic function h
Output: shortest path that satisfies constraints represented by

BDD from s to t on DAG
1: Cost[s][root] ← 0
2: add (s, root) to open
3: while open is not empty do
4: (v, α) ← the state with the minimum f(v, α) in open
5: if Cost[v][α] + h(v, α) < f(v, α) then continue
6: if (v, α) = (t,�) then break
7: for all edges eij ∈ E such that source vertex is v do
8: u ← target vertex of eij , β ← followBDD(eij ,α)
9: if β = ⊥ then continue

10: if label(β) = eij then
11: β ← hi(β)
12: if (u, β) is in open then
13: if f(u, β) ≤ Cost[v][α] + wi,j + h(u, β) then
14: continue
15: Cost[u][β] ← Cost[v][α] + wi,j

16: Back[u][β] ← (ei,j , α)
17: f(u, β) ← Cost[u][β] + h(u, β)
18: add (u, β) to open
19: (e, α) ← Back[t][�]
20: while Source vertex of e is not s do
21: u ← source vertex of e
22: Output e
23: (e, α) ← Back[u][α]
24: return g(t,�)

function. Similarly, because BDD is also a DAG, we can
also use the definition of the ‘shortest path’ of the BDD as
an estimate. More specifically, CDSP can be interpreted as
finding X ⊆ E that minimizes the sum of the weights of the
edges contained in X and satisfies the following conditions:
(i) X corresponds to a path from s to t in the problem DAG,
and (ii) X makes the Boolean function F (X) = true . By
relaxing these two conditions independently, we can intro-
duce two types of cost estimations.

By relaxing condition (ii), the problem becomes a DAG
shortest path problem. Let hD(v) denote the shortest path
length from v to t in the DAG. The estimated shortest path
length for state h(v, α) is defined as:

h(v, α) = hD(v).

Next, we relax condition (i). The relaxed problem is
to find assignments of 0, 1 to all eij ∈ E that minimize∑

eijwij and satisfy F = 1. We can calculate the values
for all BDD nodes using Knuth’s Algorithm B (Knuth 2009),
which is a DP algorithm that runs in time proportional to the
number of BDD nodes.

For example, in Figure 1, we can get the value of hB(α);
h(�) = 0, h(α4) = h(�) + 3 = 3, h(α3) = min{h(α4) +
0, h(�) + 2} = 2, and so on.

If hB(α) denotes the shortest path length from α to � in
the BDD, the estimated shortest path length for state h(v, α)
is defined as:

h(v, α) =
∑

eij∈Ev,α

min(wij , 0) + hB(α),

946

h(v1) = 7

(v1, α1) (v1, α1)

(v5,�)

(v6,�)

(v7,�)

h(v1) = 7

h(v2) = 8

h(v3) = 6

h(v4) = 4

h(v5) = 2

h(v6) = 6

h(v7) = 0
3

2 2

(v6,�)(v1, α1)

(v2, α2)

(v3, α2)

(v4, α3)

(v3, α2)

(v2, α2)

(v5,�)

(v6,�)

(v7,�)

h(v1) = 7

h(v2) = 8

h(v3) = 6

h(v4) = 4

h(v5) = 2

h(v6) = 6

h(v7) = 0

5

2

3

3

2 2 (v7,�)

(v1, α1)

(v2, α2)

(v3, α2)

(v4, α3)

(v6,�)

(v3, α2)

(v2, α2)

(v5,�)

(v6,�)

h(v1) = 7

h(v2) = 8

h(v3) = 6

h(v4) = 4

h(v5) = 2

h(v6) = 6

5

2

3

3

2
(v5,�)

(v1, α1)

(v2, α2)

(v3, α2)

(v4, α3)
(v6,�)

(v3, α2)

(v2, α2)

h(v1) = 7

h(v2) = 8

h(v3) = 6

h(v4) = 45

2

3(v1, α1)

(v2, α2)

(v3, α2)

(v4, α3) (v3, α2)

(v2, α2)

(v4, α3)

explore (v1, α1)

explore (v4, α3)

explore (v5,�)
explore (v7,�)

Figure 3: Example of the process of BCA∗ algorithm.

where Ev,α is the set of edges that come after the first eij
whose source vertex is v and that come before the edge that
corresponds to label(α) in topological order. We need the
first term because the Boolean function that represents the
logical constraints on remaining paths at vertex v is defined
over the set of all edges that come after the first eij whose
source is v in topological order. On the other hand, the
Boolean function represented by the BDD node is defined
on the set of all edges that come after label(α). Let |BDD|
be the number of BDD nodes. The running time to finish the
above estimation for all BDD nodes is O(|E| + |BDD|),
because computing the cumulative sum for all edges takes
O(|E|) time and the computation of h(α) takes O(|BDD|)
time.

Here we combine these two together into our heuristic
function. Because hD(v, α) and hB(v, α) are independent
of each other, we can use these functions in parallel. There-
fore, the proposed heuristic function is defined as follows:

hD&B(v, α) = max(hD(v, α), hB(v, α)).

Since hD ≤ hD&B and hB ≤ hD&B , this heuristic function
can, by definition, give a closer estimate than hD or hB .
Since both hD and hb are monotonic, obviously hD&B is
also monotonic.

Example of BCA∗

Figure 3 shows an example of BCA∗. The input DAG
and BDD are shown in Figure 1(a) and (b), respectively.
The BDD corresponds to the Boolean function F =
(e14,∧e46)∨e45. Due to space limitation, the heuristic func-
tion illustrated considers only the estimation from the DAG
side. For states v1, . . . , v7, the values of the DAG heuris-
tic function h(vi, α) are, 7, 8, 6, 4, 2, 6, and 0, respectively.
Search states are represented as rectangles, and the arcs
between them represent transitions between states. Gray-
colored rectangles represent explored states. We initialize
the search by appending the initial search state (v1, α1) to
the open list. Then, we remove the state from the list and
explore it and add three states (v2, α2), (v3, α2), (v4, α3)

can be reached from (v1, α1) to the open list. Because the
lengths of the current shortest paths from the start state to
each state are Cost[v2][α2] = 5, Cost[v3][α2] = 2, and
Cost[v4][α3] = 3, the estimated scores are f(v2, α2) =
Cost[v2][α2]+h(v2, α2) = 13, f(v3, α2) = Cost[v3][α2]+
h(v3, α2) = 8, and f(v4, α3) = Cost[v4][α3]+h(v4, α3) =
7, respectively. Because f(v4, α3) is the smallest among
the states in the open list, it is used in the next step. By
repeating this procedure, we explore states in the order
(v1, α1) → (v4, α3) → (v5,�) → (v7,�) to finally reach
the goal state (v7,�) and finish the search. We eventually
get the shortest path {e14, e45, e57} and its length, 7. After
the search ends, we explore 4 states, while BCS will explore
9 states as shown in Figure 2.

Complexity

Theorem 1. When the open list is implemented as a priority
queue with a binary heap, the worst-case time complexity of
BCA∗ is O(|E|W log (|E|W)). The worst-case space com-
plexity is O(|V |W).

Proof. Because the number of states expanded in BCS is
O(|E|W), this is also true for BCA∗. Thus, the num-
ber of states stored in the binary heap is also O(|E|W).
Because storing each state in the binary heap requires
O(log(|E|W)), the worst-case time complexity of BCA∗ is
O(|E|W log (|E|W)).

The time complexities of the DAG heuristic function and
BDD heuristic function are O(|E|) and O(|E| + |BDD|),
respectively. Because |E| ≤ |E|W and |BDD| ≤
|E|W , they are less complex than BCA∗. Therefore, the
worst-case time complexity of the whole algorithm is also
O(|E|W log (|E|W)). With regard to space complexity, be-
cause O(W) states exist at most for each vertex in the DAG,
the worst-case space complexity is O(|V |W).

Discussion

BCS can be extended to solve constrained shortest path
problems when there are many-to-one correspondences be-

947

Figure 4: Time comparison between Gurobi and BCA∗ (left)
/ BCS (right)

tween DAG edges and Boolean variables. In this setting, the
value of the variable is true if and only if a path includes
one of the edges. This representation reduces the size of
the BDD. This extension allows for more natural represen-
tations of some kinds of constraints. For example, the action
of taking an item corresponds to deleting multiple edges in
the DAG that represents a 0-1 knapsack problem. Thus, log-
ical constraints imposed on taken items are naturally repre-
sented as constraints on groups of edges of the DAG. BCA∗
can also handle this many-to-one correspondence, and the
DAG heuristic function can be used without any modifica-
tion. The BDD heuristic function requires a small modifica-
tion in that the weight of every variable is set to the minimum
weight of the edge that corresponds to the variable. In the
next section, we use this constraint-on-group setting in ex-
periments on 0-1 knapsack problems that involve searching
for a Viterbi path.

With small modifications, BCA∗ can also be used to solve
the constrained DAG longest path problem.

Experiments

Experimental Settings

We conducted two experiments using two types of practi-
cal problems: the Viterbi path finding problem of hidden
Markov models (HMMs), and the 0-1 Knapsack problem.

The first experiment assumes sequential labeling, a kind
of machine learning task. We followed the settings in
(Chang, Ratinov, and Roth 2012), where the HMM is as-
sumed to be used for identifying the role, such as ‘author’
and ‘title’, of each word in a given citation text snippet. The
sequential labeling task correspond to finding the Viterbi
path of the HMM. The Viterbi path is the sequence of hid-
den states that maximizes the likelihood scores. If we see
the searching space as a DAG, the Viterbi path correspond
to the longest path in the DAG. We trained the HMM with 10
training samples and used 99 samples as test data. Both sets
were obtained from (Chang, Ratinov, and Roth 2012). There
are 12 types of constraints. Some of them are non-local,
complex constraints. One example, called AppearOnce, de-
mands that the same type of role must appear consecutively
with no separation. We compared the proposed algorithm
with the commercial solver Gurobi 6.5.1.

pair ratio time (msec)
γ BCA∗ Yamada 02 BCS
0.001 1.89 2.43 79.95
0.005 2.16 3.54 19140.33

0.01 47.31 37.20 N/A
0.5 4.33 1509.41 294.42
0.9 1.70 60.93 16.28

0.95 1.70 39.83 16.40

Table 1: Results from solving DCKP.

As the second experiment, we considered a kind of 0-1
knapsack problem called disjunctively constrained knapsack
problem (DCKP)(Yamada, Kataoka, and Watanabe 2002;
Hifi and Michrafy 2006). DCKP is a kind of 0-1 knap-
sack problem with disjunctive constraints, i.e. constraints
on pairs of items that cannot be selected together. We can
find an optimal solution of a 0-1 knapsack problem by us-
ing the pseudo polynomial time DP algorithm. This DP
algorithm is equivalent to the problem of finding an opti-
mal path on a DAG. Thus DCKP can be seen as a DAG
shortest path problem with disjunctive constraints posed on
DAG edges. We made instances of a knapsack problem
with 100 items and budget size of 1000. We randomly as-
signed an integer in the range [1, 100] to the weight and
value of each item. As for constraints, disjunctive pairs
were randomly selected according to the probability param-
eter γ = (#disj.pairs)

(#items)(#items−1)/2 . We varied γ as follows:
0.001, 0.005, 0.01, and 0.5. Since the size of the BDD de-
pends on items selected in each pair as well as the number
of disjunctive pairs, it is hard to predict the complexity of
finding the shortest path from just the number of disjunctive
pairs. Therefore, we prepared 10 instances for each setting.
We compared the proposed method with Yamada02, a ded-
icated algorithm for DCKP that uses Lagrangian relaxation
and the branch and bound method.

All experiments were performed on a Linux machine with
Xeon X5680 3.33 GHz CPU and 48 GB RAM. We imple-
mented BCS and BCA∗ with C++ and constructed BDDs
using the CUDD library.1

Results

For the sequential labeling task, Figure 4 compares the re-
sults of BCA∗ and Gurobi (left) along with the results of
BCS and Gurobi (right). Both axis have log scale. As we
can see, BCA∗ outperforms Gurobi in almost all cases; one
of the 99 cases was the exception. BCA∗ is at least 100
times faster than Gurobi, and in the best case the ratio is
about 2,000, note that the worst case ratio is around 0.28.
In contrast, the right figure for BCS shows a neutral result.
Actually it outperformed Gurobi in only 54 cases.

Table presents the measured results of DCKP. Each value
is the average of 10 tests. In this table, N/A indicates that
BCS couldn’t obtain the result due to memory outage. Since
BCA∗ expands fewer states than BCS, it requires less mem-
ory than BCS, thus BCA∗ could obtain shortest paths in all
cases. From this table, we can see that BCA∗ dramatically

1http://vlsi.colorado.edu/˜fabio/CUDD/

948

Figure 5: Computation time for various numbers of disjunc-
tive pairs. BCA∗

D, BCA∗
B indicates the BCA∗ whose heuris-

tic function considers only DAG shortest path and BDD
shortest path, respectively.

improves on the speed of BCS. It is even faster than an algo-
rithm designed for this problem in many cases.

In order to investigate the behavior of the two components
of the heuristic function, we exhaustively varied the inten-
sity of the constraint using smaller problems. We tested
DCKP again with 50 items (i.e. 1225 pairs). The range
of the weights and values are [1, 50] and the capacity is
500. We varied the number of randomly selected disjunctive
pairs from 20 to 210. Again, we repeated 10 tests for each
instance. We compared four methods: BCA∗ with com-
bined heuristic function (BCA∗), BCS, BCA∗ whose heuris-
tic function only considers DAG shortest path (BCA∗

D), and
BCA∗ whose heuristic function only considers BDD short-
est path (BCA∗

B). The result is shown in Figure 5. We can
see that BCA∗ is always faster than BCS and the ratio is at
most 700 times. In cases with few disjunctive pairs, since the
solution would be close to the solution of the DAG shortest
path problem, estimations from the DAG side work fine and
BCA∗

D is the fastest. On the other hand, if there are many
disjunctive pairs, disjunctive constraints become the domi-
nant factor. As a result, estimations from the BDD side are
effective and BCA∗

B is fastest. However, both BCA∗
D and

BCA∗
B run slower than BCS when their estimation is not

close to the optimal value. This is often the case with gen-
eral A∗, since we have to pay the cost of using a priority
queue to maintain the open list. We can see that the com-
bined heuristic function is always to superior to its compo-
nents, this means that BDD-side and DAG-side two estima-
tions work synergistically.

Related Work

CDSP can be seen as a special case of the constrained short-
est path problem (CSP), which generally does not limit the
input graph to a DAG. However, most studies of CSP handle

a special type of constraint, which limits the total consump-
tion of edge-associate non-negative values, called resources
in (Handler and Zang 1980; Santos, Coutinho-Rodrigues,
and Current 2007). This type of CSP is specifically called
the resource-constrained shortest path problem (RCSP) (Zhu
and Wilhelm 2012; Pugliese and Guerriero 2013). Since
we assumed arbitrary logical constraints, CDSP can also be
seen as a generalization of RCSP. As another view of gener-
alization, the multiple resource constraint shortest path prob-
lem (MRCSP) accepts multiple resource constraints.

Since CDSP accepts arbitrary logical constraints, MRCSP
can be converted into CDSP. Conversely, some classes of the
logical constraints can be represented as MRCSP instances.
For example, DCKP can be converted into an MRCSP in-
stance whose number of constraints equals the number of
disjunctive pairs. However, since existing studies treat very
few constraints, we suspect that this approach would im-
practical with dozens or more disjunctive pairs. The A∗ ap-
proach has also been studied for MRCSP(Liu and Ramakr-
ishnan 2001). It has some common points with our method
in the sense that unconstrained DAG shortest paths are used
by a heuristic function.

CDSP can also be solved using only BDDs and the AND
operation. More precisely, we prepare a BDD represent-
ing the paths of the DAG and a BDD representing the con-
straints and then build the BDD of these two BDDs. Find-
ing the shortest path in this BDD will give the optimal so-
lution. However, this approach has major drawbacks com-
pared to BCS or BCA∗. To allow determination of the in-
tersection, the two BDDs must have same variable sets. On
the other hand, BCS just requires the BDD to represent the
constraints posed on DAG edges. This difference becomes
clearer when some edges in a DAG have the same mean-
ing. Such situations frequently appear in DAGs derived from
standard dynamic programming methods. For example, in
the knapsack-problem, taking an item will impact a group
of multiple DAG edges. In this case, BCS/BCA∗ has less
complexity than the pure BDD-based approach.

The combination of BDD and A∗ is considered in
(Edelkamp and Reffel 1998; Torralba and Alcázar 2013),
where BDD is used for improving the efficiency of the
search process. BDD here is used for managing the search
state of A∗. On the other hand, in BCA∗, BDD is rather a
part of the problem and used represent the constraint. There-
fore, the BDD roles differ.

Conclusion

We proposed BDD-constrained A∗ search (BCA∗), which
efficiently solves constrained DAG shortest path problems.
BCA∗ is a A∗ search variant based on an algorithm that uses
BDD. We introduced a novel heuristic function for BCA∗.
Using the fact that both the DAG shortest path and the BDD
shortest path are solutions to the same relaxed problem, the
heuristic function consists of combining these two factors.
Experiment showed it offers dramatically improved perfor-
mance; the proposed method runs up to 2,000 times faster
than a commercial solver.

949

References

Akers, S. B. 1978. Binary decision diagrams. Computers,
IEEE Trans. on 100(6):509–516.
Bryant, R. E. 1986. Graph-based algorithms for
boolean function manipulation. Computers, IEEE Trans. on
100(8):677–691.
Chang, M.-W.; Ratinov, L.; and Roth, D. 2012. Structured
learning with constrained conditional models. Mach. Learn.
88(3):399–431.
Edelkamp, S., and Reffel, F. 1998. OBDDs in heuristic
search. In Proc. of KI, 81–92.
Handler, G. Y., and Zang, I. 1980. A dual algorithm for
the constrained shortest path problem. Networks 10(4):293–
309.
Hifi, M., and Michrafy, M. 2006. A reactive local search-
based algorithm for the disjunctively constrained knapsack
problem. Journal of the Operational Research Society
57(6):718–726.
Knuth, D. E. 2009. The Art of Computer Programming,
Volume 4, Fascicle 1: Bitwise Tricks & Techniques; Binary
Decision Diagrams. Addison-Wesley Professional.
Liu, G., and Ramakrishnan, K. 2001. A* prune: an algo-
rithm for finding k shortest paths subject to multiple con-
straints. In In Proc. of INFOCOM, volume 2, 743–749.
Morgenstern, B.; Prohaska, S. J.; Pöhler, D.; and Stadler,
P. F. 2006. Multiple sequence alignment with user-defined
anchor points. Algorithms for Molecular Biology 1:6.
Nishino, M.; Yasuda, N.; Minato, S.; and Nagata, M. 2015.
BDD-constrained search: A unified approach to constrained
shortest path problems. In Proc. of AAAI, 1219–1225.
Pugliese, L. D. P., and Guerriero, F. 2013. A survey of
resource constrained shortest path problems: Exact solution
approaches. Networks 62(3):183–200.
Santos, L.; Coutinho-Rodrigues, J.; and Current, J. R. 2007.
An improved solution algorithm for the constrained shortest
path problem. Transportation Research Part B: Methodolog-
ical 41(7):756–771.
Torralba, Á., and Alcázar, V. 2013. Constrained symbolic
search: On mutexes, BDD minimization and more. In Proc.
of SOCS, 175–183.
Yamada, T.; Kataoka, S.; and Watanabe, K. 2002. Heuris-
tic and exact algorithms for the disjunctively constrained
knapsack problem. Information Processing Society of Japan
Journal 43(9):2864–2870.
Zhu, X., and Wilhelm, W. E. 2012. A three-stage approach
for the resource-constrained shortest path as a sub-problem
in column generation. Computers & Operations Research
39(2):164–178.

950

