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Abstract 
Causal learning is an inductive process and causal 
knowledge about the world is of paramount importance for 
intelligent systems, natural or artificial. Given an 
observation of events happening in the world, how does an 
intelligent system establish the causalities between them? 
The issue is further complicated by intervening noisy 
events. Psychologists have proposed a contingency model 
of causal induction but it does not incorporate 
computational means of addressing the issues of 
intervening noise to recover the causalities between events. 
In this paper we propose an inductive causal learning 
method that is able to establish causalities between events 
in the presence of intervening noisy events, and we apply 
the method to real-world data to investigate its viability. We 
demonstrate that the learning method works well in 
uncovering valid causalities, and relatively non-noisy, 
opportunistic situations provide the best confirmation of the 
causalities involved. Causal knowledge is the foundation of 
problem solving and the ability to learn causal knowledge 
enables the intelligent system to be maximally adaptive. 

 Introduction   
One of the most important issues for AI specifically and 
cognitive science in general is the learning of causality. 
Using the psychologist Patricia Cheng’s words, the 
determination of causality is basically about answering the 
question: “How does a reasoner know that one thing 
causes another?” (Cheng 1997). This lies at the foundation 
of our knowledge building process to gain knowledge 
about the world and hence the ability to successfully 
operate in it. However, the issue is not an easy one to tackle 
as the process is inductive. There are techniques that have 
been developed for deductive causal inference, such as the 
Bayesian causal inference method, which involves 
inferring the likely causes of certain observed effects by 
calculating the a posterior probabilities involved given the 
a priori probabilities and likelihoods (Pearl 2009). 
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However, the process of deriving the likelihoods requires 
first having the knowledge of what events (causes) are 
causally linked to what other events (effects), like 
answering the Cheng’s question above, before the 
probabilities of these causally linked pairs of events could 
be calculated to obtain the likelihoods. 
 In various studies of causal induction, psychologists 
have shown that often prior knowledge is needed to assist 
in the process (e.g., Cheng 1997, Griffiths and Tenenbaum 
2009, Johnson and Keil 2014). However, humans and 
animals arrive in this world without any pre-knowledge of 
anything (though they may have some built-in reflexes of 
sorts), and must learn a host of causalities for survival. AI 
systems are also required to have the same ability to learn 
causalities for maximum adaptability. The process is one 
of bootstrapping. Firstly, some basic causalities are 
inductively learned. Then, these form the pre-knowledge 
to facilitate the further learning of causalities, like in the 
cases studied by the psychologists. The question addressed 
in this paper is knowledge-free inductive causal learning. 
We describe an inductive causal learning mechanism that 
is able to observe the temporal correlations between events 
and establish likely causal relationships between them, in 
the presence of other “noise events.” The algorithm is 
tested on real-world data – specifically the learning of the 
lightning-thunder causality from videos of real world 
situations – and the results are presented and discussed. 

Note that we are not claiming that temporal correlation 
is the only way to establish causality, but it can establish 
some causalities, such as the lightning-thunder causality. 
These are termed the “ground level” causalities, and other 
“higher, knowledge level” causalities can be built on them. 

Fire and Zhu (2015) had also investigated the inductive 
recovery of causality from perceptual input. However, 
their method relies on setting a fixed time window within 
which to observe putative causal relations. Our method 
does not impose this constraint.  
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Basic Considerations 
Figure 1 shows a sequence of events, EV1, EV2, … in 
some temporal order. Suppose an observer-agent with no 
prior knowledge makes observations on the events as they 
occur. After observing the second event, EV2, it is 
reasonable to postulate that perhaps the first event, EV1, is 
the cause of EV2 based on the temporal connection 
(assuming that the events are not spaced too far apart 
temporally – the quantitative consideration of this will be 
provided later). After the third event, EV3, is observed, 
there are several possibilities. It could be EV2 that is the 
cause of EV3: EV2  EV3; it could be EV1 EV3, with 
EV2 being “noise”; or it could be that both EV1 and EV2 
are required to cause EV3: EV1 & EV2  EV3. 
Therefore, at the point after EV3, we could postulate all 4 
possibilities, including the earlier EV1 EV2, and these 
can be placed on a “tentative list of possible causalities” 
(TLPC). Further observation is needed to discern which 
are “true” causalities and which are “noise.” (On the issue 
of whether “correlation implies causality,” Ho (2014, 
2016) provides an extensive discussion on this issue and 
proposes the idea of “effective causality.” Hence, here we 
take any good, consistent temporal correlation to imply 
there is “causality” between the event in terms of 
effectively using the information for problem solving and 
other inference processes.) 

Figure 1. A sequence of events and possible causalities. 

One of two situations could obtain after this point in 
time. There could be more and more different events that 
happen and this would increase combinatorially the 
number of possible cause-effects relations to be kept on 
the TLPC. Another situation is shown in Figure. 1 in which 
some of the earlier events happen again that provide 
information on what the likelier candidates are for 
causality on the TLPC. For example, if EV1 and EV3 
happen again without an intervening EV2, it is likely then 
that 3 out of 4 of the cause-effect relations on the current 
TLPC, i.e., those that involve EV2, could be discounted. 
Of course, due to noise (e.g., the unreliability in 
observation, or that EV2 is just probabilistically associated 
with the other events), EV2 may just be fortuitously 
missing. Therefore, the cause-effect relations that involve 
EV2 should not be totally removed from the TLPC list at 
this point, instead, some measure of confidence associated 

with them could be reduced, and further observation would 
either increase or decrease these confidence measures. 

To reduce the possibility of combinatorial explosion of 
TLPC, we propose instead to just record the adjacent event 
pairs on the TLPC. I.e., only EV1 EV2 and EV2 EV3 
are recorded after the observation of EV3. The TLPC 
would then grow linearly as more events are observed. 
One may then ask, what happens to the possible relations 
EV1 EV3 and EV1&EV2  EV3? For EV1 EV3, if 
indeed it is the case that EV2 is noise, more EV3 following 
EV1 without the intervening EV2 would be observed, and 
that would establish EV1 EV3 as a strong causal relation 
later. As for EV1 & EV2 EV3, if indeed EV1 and EV2 
are conjunctively needed for the occurrence of EV3, then 
EV1 EV2 and EV2 EV3 would both emerge as 
strongly temporally correlated, and this would be 
equivalent to EV1 & EV2  EV3.  

The Inductive Causal Learning Algorithm  
In Figure 2 we use some well-known day-to-day events 

to demonstrate the proposed inductive causal learning 
algorithm. The algorithm is an “online” algorithm as it 
establishes causalities as observation reveals events across 
time. In the world we know, lightning is the cause of 
thunder. We know this perhaps first from sensory 
information, that lightning seems always to precede 
thunder. After humanity has gained a deeper 
understanding of physical processes, we know that thunder 
is caused by the disturbance to the air as a result of 
electricity traveling through it, which is lightning. But 
presumably way before humanity has understood these 
physical processes, thunder has already always been 
known to be the effect of lightning, and not the other way 
around, and also not as an effect of other events (such as 
someone sneezing just prior to the thunder). That 
knowledge can only be obtained from observing the 
temporal correlations from direct sensory observation, and 
also in the presence of noise such as other preceding, 
succeeding, or intervening events between lightning and 
thunder. Therefore, in Figure 2 we include other events 
such as wind (W), headlight of cars (H), and sound of cars 
or other objects (S). 

Firstly, we consider the event pairs of interest with no 
intervening noise. In Figure 2 we show that sometimes 
lightning is followed immediately by thunder but 
sometimes thunder is missing. In the case when thunder is 
missing, it could be because there is intervening noise and 
it may appear later, or it could be because it is “really” 
missing in the sense that even after observing some other 
intervening events, it is still not observed and instead 
lightning is observed – this could be due to a “weak” 
lightning that somehow does not generate thunder or that 
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the observation of thunder fails because the thunder is too 
soft or being obscured by other sounds.  

Figure 2: Lightning (L) and thunder (T) events, along with 
events that intervene between them – wind (W), car headlight 
(H), car or other sound (S). L and T events are highlighted by 
vertical arrows. 

We define Forward Immediate Probability, FIP, as the 
probability of observing an effect given a certain putative 
cause. Therefore, after the second lightning event in Figure 
2, the FIP for the Lightning Thunder relation is 0.5 as 
thunder fails to appear immediately after the second 
lightning. However, as we mentioned above, thunder may 
appear after “skipping over” some other intervening 
events. This is FSP – forward skipped over probability. 
Therefore, after the last lightning event in Figure 2, the 
FSP for the Lightning Thunder relation is 0.33. This is 
because out of the 3 event sequences, L—S—H—S—L, 
L—H—T, and L—S—W—L, in which lightning happens 
first followed by some other intervening events, only one, 
the L—H—T sequence, ends with a thunder. 

In a similar manner, we define BIP, backward 
immediate probability and BSP, backward skipped over 
probability. BIP is the probability of observing the 
immediately preceding event – i.e., for thunder, how often 
lightning preceeds it. BSP is the backward probability 
considering skipping over other events. 

We define the probability of EV1 causing EV2 as 
follows: 

 
Prob (Cse(EV1, EV2)) = FIP+FSP-(1-(BIP+BSP))   (1) 

 
That is, the total of the “forward” probabilities, 

FIP+FSP, increases the likelihood that there is a causal 
relation between EV1 and EV2 and the total ‘backward” 
probabilities provides a “check” on the forward 
probabilities – i.e., if the total backward probabilities is 1, 
then it means the cause consistently precedes the effect, 
and that means the total of the forward probabilities, 
FIP+FSP, is not being reduced at all by the remaining 
terms. Otherwise, the smaller the BIP+BSP, the less likely 
EV1 and EV2 are causally linked. 

At this point, we would like to pause and compare the 
above equation to that proposed in a so-called contingency 
model of causal induction used in psychology (Rescorla 

1968, Jenkins and Ward 1965). The formula is stated as 
follow: 

 
ΔPi = P(e | i) – P(e | ¬ i)                    (2) 

 
ΔPi is the “contingency” between a candidate cause 

(event) i and an effect (event) e. P(e | i) is the probability 
that effect e happens given that the cause i has happened, 
and this probability is reduced by the probability that e 
happens without i having happened, P(e | ¬ i), to derive 
the contingency ΔPi. Eqn. 1 parallels exactly Eqn. 2 except 
that we separate the corresponding probabilities into 
“immediate” and “skipped-over” probabilities, thereby 
incorporating the consideration of “noisy” intervening 
events. Our method is therefore a practical implementation 
of Eqn. (2) with consideration of “noisy” intervening 
events. 

The consideration of causally linked events in the 
presence of skipped-over events allows noise to be 
bypassed, but this brings back the issue of combinatorial 
explosion discussed in connection with Figure 1. We 
therefore define a threshold called Skipped-Over 
Consideration Threshold (SOCT) that is used to activate 
skipped-over considerations only when the putative 
causality has acquired some degree of likelihood.  We use 
a certain percentage (e.g., 30%) of the highest value of FIP 
(corresponding to a certain cause-effect pair) as the SOCT 
and include all the putative cause-effect pairs that have 
higher FIPs than the SOCT for skipped-over consideration 
(i.e., their FSP and BSP would be computed). In a situation 
in which there are not many different kinds of events, 
which means there will not likely be combinatorial 
explosion of the TLPC list, it is alright to set SOCT to 0 so 
that good cause-effect relations will not be missed. 

Building on the Basic Causal Formula – the Issue 
of Asymmetry 
Having established a basic formula describing the putative 
causal relations between two events, there are two other 
issues that need to be considered that has bearing on the 
“strength” of the causal relation. One is the issue of 
temporal symmetry between a pair of events and the other 
is the amount of noise that intervenes between them. 

Figure 3 shows a sequence of an event EV1 alternating 
with another event EV2. Considering a real-world 
example, EV1 could be lightning and EV2 could be 
thunder. If one observes a sequence such as this, how 
could one distinguish whether it is EV1 that causes EV2 
or the other way around? Eqn. 1 or 2 does not provide any 
means to exploit the asymmetry between EV1 and EV2 to 
provide a means for the discernment of the causal 
direction. 
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EV1—EV2—EV1—EV2—EV1—EV2… 

Figure 3: Two alternating events, EV1 and EV2. 

In some kinds of event pairs such as lightning (EV1) and 
thunder (EV2), there is an asymmetry between the 
intervals EV1—EV2 and EV2—EV1. Typically, the last 
thunder may have ended many days, weeks, or months ago 
and in a lightning-thunder season, one observes lightning 
happens “first’ after a long hiatus. The causal direction is 
then more likely to be EV1 EV2 rather than EV2 EV1. 
In some other kinds of event pairs, such as two 
alternatively blinking lights with exactly identical EV1—
EV2 and EV2—EV1 intervals (such as that might be 
obtained from an electronic circuit controlling the lights), 
there is no asymmetry and the causalities in both directions 
are equally likely. 

We define the uncertainty associated with interval 
length, UIL, as follows: 

UIL(EV1, EV2)= 
F1(Av(IL(EV1, EV2))/Av(IL(  EVP)))          (3) 

 
where Av(IL(EV1, EV2)) is the average interval length of 
the event pairs EV1—EV2, and Av(IL(  EVP)) is the 
average interval length of all event pairs, including EV1—
EV2. The purpose of using the quotient between these two 
quantities to create a relative measure of interval length is 
that whether an interval is considered large or small is 
relative to what other intervals are like in absolute terms. 
F1 is a function that bounds UIL between 0 and 1 so that it 
has a comparable magnitude to the probability measure of 
Eqn. 1 in order that they can be combined in some manner 
in a formula to be described below. F1 is defined as: 

F1(x) = 0 for x ≤ 1

F1(x) = 2/(1+EXP(-k(x-1))) – 1 for x > 1

where k is a quantity that determines the rate of change of 
the exponent. F1 is derived from the logistic function. For 
k = 0.2, when x is 10, which means when the interval 
length involved (for an event pair) is 10 times that of the 
average interval length of all event pairs, the value of F1 is 
0.72, which is quite close to the “worst” value of 1. When 
the value of x is 1, F1 is 0, which means that if the average 
value of the interval involved is the same as that of the 
average of all the interval lengths associated with all event 
pairs, the uncertainty in the interval length associated with 
the event pair involved is 0. 

Other than the average value of the interval length, the 
variability of the interval length is also an indicator of the 
strength of the causal relationship. If the variability is low, 
the causality between the events involved is more certain. 

We define the uncertainty due to interval variability, UIV, 
as follows: 

UIV(EV1, EV2) =
F2(Dv(IL(EV1, EV2)) / Av(IL(EV1, EV2))        

where Dv(IL(EV1, EV2)) is the deviation of the values of 
the interval lengths between event pairs EV1—EV2. The 
deviation can be computed by any means. A simple 
calculation for Dv takes the difference between the largest 
and smallest interval values. Standard deviation can also 
be used. F2 serves the same function as F1 in Eqn. 4 to 
bound the value of UIV between 0 and 1 except that we 
desire F2 to be 0 when x is 0, instead of when x = 1 like in 
the case of F1 above, because we want the uncertainty 
involved to be 0 when the deviation is 0. F2 is defines as: 

F2(x) = 0 for x ≤ 0

F2(x) = 2/(1+EXP(-k(x))) – 1 for x > 0

Intervening Noise 
Other than interval length, the number of other events that 
intervene between a pair of events under consideration is 
also a reflection of the strength of the causal relation 
between them. So, if lightning is followed by thunder 
without other intervening events, the lightning thunder 
causality is “strong.” If these “noisy events” are randomly 
distributed, then the interval length measure described in 
the previous section is proportional to the measure of 
intervening noise. However, there can be situations in 
which they are independent. For example, during a storm, 
not only there are a lot of lightning—thunder events, there 
are usually also a lot of wind, rain, fewer or more vehicles 
plying the roads, etc. We therefore measure the uncertainty 
in the causal relation arising from intervening noise, 
UIN(EV1, EV2), as follows: 

UIN(EV1, EV2)= 
F1(Av(NOE(EV1, EV2)) / Av(NOE(  EVP)))     (7) 

 
where NOE(EV1, EV2) is the number of other intervening 
events between the event pair EV1—EV2. Av and  EVP 
have the same meaning as in Eqn. 3. F1 is as defined in 
Eqn. 4. In a similar vein as Eqn. 5, we define the 
uncertainty due to the variability in the number of 
intervening other events, UINV(EV1, EV2), as follows: 

UINV(EV1, EV2) =
F2(Dv(NOE(EV1, EV2)) / Av(NOE(EV1, EV2))

where Dv and F2 are as defined in Eqns. 5 and 6 
respectively. 
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Strength of Causal Relation 
With the various uncertainty measures, we can calculate a 
total uncertainty, TU, for the putative causal relation of the 
event pair EV1—EV2 as follows:  
 

TU(Cause(EV1, EV2)) = UIL+UIV+UIN+UINV     (9) 
 
where UIL, UIV, UIN, UINV are as defined in Eqns. 3, 5, 
7, and 8 respectively. With this, we define the Strength of 
causality of the event pair EV1—EV2 as: 

Strength(Cse(EV1, EV2)) = 
Prob(Cse(EV1, EV2)) – w*TU(Cse(EV1, EV2)) (10)             

 
where w is use to scale the contribution of TU to the 
Strength value. 

Testing with Real-World Data  
For testing with real-world data, we selected some 
YouTube videos of lightning and thunder events, which 
are typically also accompanied by other intervening 
events. Figure 4 shows a screenshot of one of the videos 
we selected named “Nonstop Thunder and Lightning!”: 
https://www.youtube.com/watch?v=csODdOOxEpk. 

Figure 4. Screenshot of the Nonstop Thunder and Lightning 
video: https://www.youtube.com/watch?v=csODdOOxEpk. 

This video consists of about 20 minutes of recording of 
a number of lightning and thunder events, together with 
cars moving in the foreground and a blinking beacon on a 
building in the distance. The lightning events come mostly 
in the form of “flashes in the sky” rather than the typical 
distinct electrical discharges characteristic of lightning. 
The thunder events can be heard as “rumbles from the 
sky.” In the following we describe the experiments 
performed on 3 separate videos of lightning and thunder. 
In all experiments, the SOCT (discussed in connection 
with Eqn. 1) is set to 0, the deviation, Dv (Eqns. 5 and 8), 
is the average of the sum of the absolute values of the 
differences between the data values and their average 

value. K (Eqns. 4 and 6) was set to 0.2 and w (Eqn. 10) 
was set to 0.5. 

The Nonstop Thunder and Lightning Video 
The first experiment was performed on the video whose 
screenshot is shown in Figure 4. Visually, the event pattern 
stays more or less the same throughout the entire 20-
minute length of the video, so we selected at random three 
1-minute segments to collect data from to perform 3 tests: 
Test 1: 3:01 to 4:00 minute, Test 2: 5:01 – 6:00 minute, 
Test 3: 8:01 – 9:00 minute. The main events that are 
observable are lightning (L), thunder (T), beacon (B), and 
moving cars. These events were manually identified and 
the times at which they happen were manually noted. 
Because thunder tends to appear as a long-drawn rumble, 
we take the time of the start of the rumble to represent the 
time of the thunder event. We use the moving cars to create 
“headlight observation” events. We assume an observer is 
located at a specific place to observe the various events, 
including “flashes of car headlight” shining at her. To 
simulate this effect, we selected the bottom edge of the 
video frame at which the cars move out of or into the video 
frame, indicated in Figure 4 as “vehicles crossing edge,” 
and recorded the moments of crossing to be the moments 
of “headlight flashes events.” There are two streams of 
traffic, one coming toward the edge and the other going 
away from it. We label the points of crossing as H and G 
respectively and these are the points at which the observer 
observes the “flashes of headlight” events, Hs and Gs.  

Figure 5(a) shows the collected data of the five events: 
T, L, B, H, and G in the Test 1 segment. Each time step in 
Figure 5(a) represents 200 ms (milliseconds) of time. We 
work with a temporal resolution of less than 1 second 
because often more than 1 event happens within 1 second. 
However, it is difficult for humans to discern the order of 
events taking place within a 1-second interval. We 
therefore randomly assign the order of events observed 
within each 1-second interval. 

Figure 5(b) shows the cause-effect Strengths of the 
various event pairs in Figure 5(a) based on Eqn. 10. There 
are two kinds of Strength values computed and displayed 
in Figure 5(b). They are for the same-event-pairs and 
different-events-pairs. The same-event-pairs are made up 
of causes and effects that are both the same kind of events, 
such as L and L. As mentioned earlier, there could be 
repeated events, such as blinking lights, that have a 
regularity and computing their cause-effect Strengths 
would be useful as they would allow us to 
predict/anticipate the next event (and as mentioned, 
whether this is “truly causal” does not matter as what we 
are after is effective causality (Ho 2014)). Now, due to the 
way we compute the Strength values, there is a positive 
“bias” toward giving same-event-pairs much higher values 
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because unlike different-events-pairs, in which sometimes 
the “cause” event is not followed by the “effect” event and 
vice versa (with “immediately following/preceding” or 
skipped-over considerations), thus lowering the Strength 
values involved, there are always an instance of an event 
following or preceding another instance of that same kind 
of event in a long sequence of that event, except at the 
beginning or the end of the sequence. Therefore, the 
Prob(Cse(EV1, EV2)) part (Eqn. (1)) of the Strength 
calculation is always high and only the value of the TU 
portion (interval length  and variability, etc.) would 
determine the overall Strength value. Hence, the data for 
same-event-pairs and different-event-pairs are separately 
considered, and the same-event-pairs are shaded in gray. 

Since our focus is on how well can the method uncovers 
the L T relation, we evaluate the results based on 4 
criteria: (1) How strong is the L T Strength value; (2) By 
how much do other event pairs’ Strength values exceed the 
L T Strength value (excluding same-event-pairs); (3) 
How different is the L T Strength value from that of the 
next strongest one (excluding same-event-pairs); (4) How 
different is the L T Strength value from that of the T L 
value. Following this evaluation, we will discuss, in the 
Discussion and Conclusion section, how a system can 
extract any meaningful causalities using the current 
method, in the absence of any pre-knowledge of what 
causality to look out for. 

In Figure 5(b) it can be seen that though the L T 
Strength is at the top of the list, at a value of 0.357, the 
value is not high. It is not that well separated from the next 
higher event-pair H L even though it is very well 
separately from T L in terms of the Strength values. The 
reason why this value is low is that L is not always 
followed by T and T is not always preceded by L, even 
including skipped-over considerations, thus lowering the 
Prob(Cse(EV1, EV2)) value of Eqn. (1). The TU portion 
of the equation for Strength (Eqn. (10)) also contributed to 
the low overall value because of the values of UIL, UIV, 
UIN, and UINV. 

The reason why the Strength value of L T is not well 
separated from the H L value is that in the data stream 
that we collected, all the events continue to occur with 
similar frequencies. In principle, cars could have stopped 
moving, and lightning and thunder could go on, if a longer 
data stream is collected. That would give rise to a much 
lower H L value and L T would be better separated 
from it. 

As for the high value of the same-event-pair, H H, it 
is due to the relative regularity of the H—H events. 
Therefore, we can say that an H event predicts another H 
event quite well. For this H—H event pair, we know from 
background knowledge that it is not “causality” per se, just 
a stream of headlights from moving cars, but the strong 
correlation is a measure of how well the observation of one 

H events allows the observer to predict a subsequent H 
event. 

(a) 

(b) 

Figure 5. (a) Event data collected from the Test 1 segment. 
Events begin from top left corner. L=lightning, T=thunder, 
B=beacon, H,G=headlight flashes as described in text. (b) The 
result for the Test 1 segment. Same-event-pairs are shaded in 
gray. 

Figure 6 shows the event data and results for the Test 2 
segment of the Non Stop Thunder and Lightning video of 
Figure 4. The results are similar to that of Figure 5 – the 
Strength value of L T is not high (though higher than 
before at 0.461), but is the highest (excluding the same-
event-pair, G—G) and well separated from that of the 
T L pair, though not well separated from the next highest 
value pair for the same reason as that explained in 
connection with Figure 5(b). 

The event data collected from the Test 3 segment of the 
Non Stop Thunder and Lightning video shows a similar 
pattern as that of the Test 1 and 2 segments. This shows 
that lightning, thunder and other events continue to occur 
with a similar pattern across time in this video. 

In the two sets of results shown in Figures 5(b) and 6(b), 
L T does not score high for criterion (1) but scores well 
for criteria (2) and (4). It does not score well for criterion 
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(3) for the above reason explained in connection with 
Figure 5(b) (i.e., comparing H L and L T). We 
conclude that L  T is moderately successfully recovered 
from the observation in this set of test data. 

(a) 
 

(b) 

Figure 6. (a) Event data collected from the Test 2 segment. (b) 
The results of the Test 2 segment. Only causal pairs with 
positive Strength values are shown. 

The Severe Thunderstorm Derecho Video 
In the next experiment, we used a “Severe Thunderstorm 
Derecho” video from YouTube: 
https://www.youtube.com/watch?v=QPSdgaY1cyU. 
Visually there does not appear to be a strong correlation 
between lightning and thunder and the results also scored 
badly in terms of the above 4 criteria and we conclude that 
the L T relation is not successfully recovered in this set 
of test data. 

The Best Lightning Strike Compilation #6 Video 
In the last experiment, we used the “Best Lightning Strike 
Compilation #6” video from YouTube: 
https://www.youtube.com/watch?v=P7K3m2zHEhs. We 
collected data in the time period of 1:00-4:30 minutes. The 
video consists of a compilation of a number of sequences 
of lightning and thunder events, but the commonality 
between them is they are all very distinct lightning and 

thunder events, with distinct electrical discharges. A 
screenshot of the lightning is shown in Figure 7. 

Figure 7. Lightning and thunder from YouTube video: 
https://www.youtube.com/watch?v=P7K3m2zHEhs. The 
lightning and thunder events are very distinct. 
 

Even though this video consists of a number of 
lightning-thunder sequences strung together, we treated 
them as though they were all from the same sequence. 
Only lightning and thunder events were collected as there 
are no significant other kinds of events. The events were 
collected at 1 second intervals, unlike the 200 ms intervals 
in previous experiments. The event data collected and 
results are shown in Figure 8. 

(a) 
 

(b) 

Figure 8. (a) Event data collected from the Best Lightning 
Strike Compilation #6 video on YouTube. (b) The results of the 
event data of (a). 
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It can be seen in Figure 8(b) that the L T causality has 
a very high Strength value. There are no other different-
events-pairs that have higher Strength values than it. 
However, even though the T L causality value is lower 
than it, they are not that well separated. This is due to the 
fact that in the data stream that we collected the events, 
lightning and thunder did not stop. If the situation is like 
that of the real world, in which typically after a last thunder 
event ended, it may be days or weeks before the first 
lightning event would occur, then the interval variability 
of T L would be very high and the T L causality would 
have a lower Strength value. Therefore, we consider the 
L T causality is well recovered here. 

Discussion and Conclusion 
From the above experiments we can see that it is indeed 
possible for the inductive causal learning process 
described to be applied to real-world situations to recover 
the lightning—thunder causality, and that the best 
situation to recover the causality is the situation of Figure 
7, which consists of very distinct lighting and thunder 
causalities with practically no other noisy events. 
However, this is from an evaluation point of view in which 
we are looking for a known L T causality. If we do not 
have the pre-knowledge of or a way to determine what a 
good situation is for causal recovery, how do we discover 
the lightning—thunder causality? 

In the real world, all the various situations in the various 
experiments, from the favorable situation of Figure 7 to the 
moderately favorable situation of Figure 4 and the very 
unfavorable situation of the Severe Thunderstorm Derecho 
Video could all take place one after another, either 
immediately following one another or after some time 
gaps. If the algorithm simply collects all lightning and 
thunder events from the first moment of observation, with 
or without noisy interventions and with distinct or 
indistinct lightning—thunder causalities, the low Strength 
L T episodes may drown out the high Strength ones and 
at the end no distinct L T causality such as that from the 
situation of Figure 8 could be established. 

An approach for the recovery/establishment of causality 
could rely on a measure of “favorable” or “opportunistic” 
situation. An opportunistic situation for a putative pair of 
causally linked events can be defined as one that produces 
a high Strength value for that pair of events. Any good 
causalities detected in such a situation can be “locked-in” 
in that we do not allow any further noisy situations to 
reduce the Strength already established. In fact, we may 
use the established high Strength value, such as that for the 
L T causality that is recovered, say from a situation like 
that in Figure 8, to interpret the data in noisier situations 
such as that of Figure 4 – e.g., if L is connected with T, 

perhaps it is less likely that they participate in other causal 
relations. 

Therefore, the inductive causal learning algorithm 
described in this paper can be used to learn causalities 
quickly in opportunistic situations, and the earlier learned 
causalities can assist in further establishment of other 
causalities in a bootstrapping process. 

Knowledge of causality is the foundation of problem 
solving. For example, if an intelligent system learns that 
pushing an object causes it to move in a particular manner, 
it can later use that knowledge for problem solving: If a 
certain movement is desired for an object, the 
corresponding action can be effected on it. This way, the 
knowledge for problem solving is learned from the 
environment and not built-in and the system involved 
would be highly adaptive: New causal rules/knowledge 
can be learned when the environment changes. 
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