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Abstract

Currently two barriers exist that sabotage clothing seman-
tic parsing research: existing methods are time-consuming
and the lack of large publicly available dataset that enables
parsing at multiple scales. To mitigate these two dilem-
mas, we hereby embrace deep learning method and design a
lightweight multi-scale inception neural network which is at
both inside and outside multi-scale inception during training.
Moreover, atrous convolution block is involved to enlarge the
field of view while bringing neither extra computation cost
nor parameters. Then the pre-trained model is further pruned
and compressed by fine-tuning on a lightweight version of the
same network used earlier, in which the inactive feature re-
sponse and connections below a pre-defined threshold are di-
rectly removed. Besides, we construct so far the largest fash-
ion guided clothing semantic parsing dataset (FCP) which
contains a total of 5,000 clothing images and each image as-
sociates with both pixel-level, object-level and image-level
annotations. All clothing in the dataset are recommended
by fashion experts or trendsetters and contains as many as
65 common clothing items, accessories. We organize the
dataset as Wordnet tree structure so that it enables fashionably
parsing hierarchically. Finally, we conduct extensive experi-
ments on three currently available datasets. Both quantitative
and qualitative results demonstrate the priority and feasibil-
ity of our method, comparing with several other deep learn-
ing based methods. Our method achieves 35 FPS in a single
Nvidia Titian X GPU with only minimal accuracy loss.

1 Introduction

Semantic parsing, being likened to the holy grail in com-
puter vision community, is a way to understand visual input
at a much higher-level way than traditional tasks like object
detection or classification. It remains as a challenging task
because it tries to assign each individual pixel with a label.
The flourish of an artificial intelligence approach dubbed
as deep learning in recent years has paved a new way to
solve this problem: they broadly depend on deep convolu-
tional neural networks (CNNG5) to directly learn the correla-
tion between the color image input and the parsing result
output (Noh, Seunghoon, and Bohyung 2015)(Noh, Hong,
and Han 2015)(Chen et al. 2015). At the same time, the
emergence of various large scene parsing datasets, such as
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COCO (Lin et al. 2014), VOC (Everingham et al. 2010) and
Cityscapes (Cordts et al. 2015), enormously boosted scene
semantic parsing research.

As a special branch of image semantic parsing research,
clothing semantic parsing has received little attention. The
reasons are twofold: on the one hand, clothing seman-
tic parsing has been shown interest mostly by clothing e-
commerce companies, like eBay. They require semantic
parsing methods to be fast and accurate enough so that they
can deploy them on mobile devices to attract more users.
However, existing methods (Noh, Seunghoon, and Bohyung
2015)(Noh, Hong, and Han 2015)(Chen et al. 2015) are ei-
ther time-consuming or too sophisticated. From commercial
application scenario perspective, a real-time clothing seman-
tic parsing user experience sometimes is more desirable than
parsing accuracy. On the other hand, unlike natural scene
parsing task that can turn to several large public datasets,
so far there is no large dataset which enables to comprehen-
sively evaluate various clothing parsing algorithms. Exist-
ing available dataset including CCP dataset (Yang, Luo, and
Lin 2014) and Fashionista dataset (Yamaguchi, Kiapour, and
Berg 2013) are either too small in size or poorly annotated so
that they is far from satisfying delving deeper into clothing
semantic parsing.

To mitigate the two dilemmas above, we hereby propose
a lightweight multi-scale inception neural network which
achieves real-time clothing semantic parsing without much
accuracy loss, and further introduce an up to date the largest
and also the most comprehensive fashion guided clothing
semantic parsing dataset. We narrow down the clothing se-
mantic parsing to be “fashion-guided” so that we can de-
pend on fashionable outfits recommended by fashion ex-
perts or trendsetters. Actually, fashion related research has
received much attention in recent years, spanning from fash-
ion feature learning (Serra and Ishikawa 2016), fashion style
analysis (Kiapour et al. 2014)(Serra et al. 2015)(Yamaguchi,
Kiapour, and Berg 2013)(Vittayakorn et al. 2015) to fash-
ion likeability prediction(Wang et al. 2015)(He, Lin, and
McAuley 2016). Nevertheless, fashion-centric clothing pars-
ing is, somewhat, still an uncharted area. Incorporating the
two main reasons discussed above, another main reason lies
in the fact the fashion is too subjective and abstract to be
efficiently modelled by machines.

In this paper, we builds our work on currently popu-
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Figure 1: Framework illustration. The learning structure consists of three inception-v3 networks and ASPP module in parallel.
Atrous convolution is added all through the structure to enlarge the field of view. The trained model is further compressed and
pruned according the feature response and dense connection weight during the fine-tune process. 3x and 4x means repeating the
block 3 times or 4 times, respectively. Please note the different operation different color represents and the network structure
difference between our pruned and compressed model and the original inception-v3 network.

lar methods in natural scene parsing (Noh, Seunghoon, and
Bohyung 2015)(Noh, Hong, and Han 2015)(Chen et al.
2015)(Chen et al. 2016), which overwhelming rely on the
new emerging artificial intelligence method dubbed as deep
learning to directly learn the internal inference between
the original color image and parsing results. Deep learn-
ing, especially the Convolutional Neural Networks (CNNs),
has dominated various image-centric tasks and shown state-
of-the-art performance in classic tasks including classifi-
cation (Kriszhevsky, Sutskever, and Hinton 2013) and de-
tection (Ren et al. 2015). Unlike conventional tasks that
highlight compressed high-level feature representation and
transformation invariance, semantic parsing lays empha-
sis on the same-size mapping, multi-scale object percep-
tion and precise localization accuracy. To this end, ex-
isting deep learning based methods try to simultaneously
learn the compressed feature representation and reconstruct
the final parsing image through a stack of downsampling
and upsampling neural network, respectively. In upsam-
pling structure, deconvolution (Noh, Seunghoon, and Bo-
hyung 2015) and bilinear interpolation operation have been
efficiently employed. As to precise localization, additional
global refinement methods like fully connected conditional
random field (CRF) (Kraehenbuehl and Koltun 2011) are of-
ten adopted as post-processing refinement.

Embracing clothing semantic parsing real-time applica-
tion requirement, we design a simple yet powerful end-to-
end trainable neural network that dynamically learns a cloth-
ing image at multiple scales as well as large filed of views
in the training stage. Atrous convolution is adopted here to
enlarge the field of view without increasing the computa-
tion burden nor introducing extra parameters. In order to
overcome the scale variability hurdle, not only the input im-
age is tripled to multiple scales (1x, 0.75x, 0.5x in this pa-
per) before feeding to neural network, but a special block
called atrous spatial pyramid polling (ASSP) is also inserted
to the neural network to percept neural network intermedi-
ate layer at multiple scales both inside and outside. Then the
pre-trained model is further fine-tuned by the same training
dataset on a much lightweight version of the same network
it gets trained earlier. The model is further pruned and com-
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pressed by removing inactive feature response and connec-
tions below a threshold so we achieve real-time processing
without explicit parsing accuracy loss.

As to fashion-guided clothing semantic parsing dataset,
we introduce 5,000 carefully labelled fashion-centric im-
ages. Unlike existing clothing parsing datasets, we take ac-
cessories, body torso parts with different spatial locations
into account and propose so far the largest items number
for fine-grained parsing research. In addition to pixel-level
segmentation, object-level and image-level annotations are
also provided for motivating more research. Details as well
as comparison with other datasets would be thoroughly dis-
cussed later. In sum, the main contribution of this paper
lies in: a lightweight multi-scale inception neural network
that enables real-time clothing semantic parsing with 30
FPS on a Nvidia Titian X GPU. Besides, a large fashion-
guided clothing semantic parsing dataset is introduced with
the original intention to motivate more research on clothing
parsing. This dataset outperforms other relevant datasets at
a large scale from various aspects.

2  Multi-Scale Inception Neural Network

We build our lightweight multi-scale inception neural net-
work on two well-established neural networks: inception-
v3 (Szegedy et al. 2015) and atrous convolution block (Chen
et al. 2016). Our multi-scale inception design derives from
two parts: outside multi-scale and inside multi-scale. In the
outside multi-scale module, we additionally rescale the orig-
inal input image with two factors (0.75x and 0.5x) to gener-
ate two scaled images and feed them together to the triple
parallel inception-v3 neural networks sharing the same pa-
rameters. Finally, the two scaled score maps are rescaled to
the original size and aggregated together with the non-scaled
original score map via linearly max-elementwise operation.
Note that forcing neural network to receive the same image
but with different scales enables to partially overcome the
hurdle that the same clothing item appears in different sizes
on different images. The reason why we choose inception-
v3 is that its inception module is multi-scale oriented by na-
ture and it trains much faster than deeper neural network like
ResNet101 (He, Zhang, and Ren 2016) with subtle or even



no accuracy loss.

As to inside multi-scale, we turn to the current powerful
atrous convolution operation, which has been successfully
employed for enlarging the field of view without adding ex-
tra parameters nor computation burden. Atrous convolution
evolved from undecimated wavelet transform (Holschneider
et al. 1989) for upgrading computation efficiency. In deep
learning based image parsing domain, atrous convolution
purposedly inserts zero values between a filter’s two values
to enlarge filter size. The flexibility of insertion enables to
percept any intermediate layer at any field of view. Besides,
the zero based insertion mechanism introduces neither extra
computation cost nor parameters, which is conversely no-
torious for deconvolution operation (Noh, Seunghoon, and
Bohyung 2015).

Considering any given value z[i], atrous convolution con-
volves it within a pre-defined length N with a filter w[n] to
get the output value y[i],

N

Z x[i 4+ r - njwn)

n=1

yli] = (1

where r is the rate parameter controlling the stride step size
we use to convolve the initial input. Altering  dynamically
simulates various atrous convolution zero insertion schemes,
thus resulting in various filed of views. If » = 1, atrous con-
volution collapses into standard convolution. In general, a
serial of atrous convolutions are consecutively added the last
several layers of inception-v3 to upsample the compressed
representation to the original image’s resolution.

Inspired by the research in R-CNN (He et al. 2014) that re-
gions of arbitrary scale can be efficiently handled by rescal-
ing intermediate convolutional layer, we adopt atrous spatial
pyramid pooling (ASPP) which is originally proposed by L.
Chen et al. (Chen et al. 2016) to insert multiple atrous con-
volutions in parallel to extract an intermediate convolution
layer at multi-scales. The ASPP module here provides inside
multi-scale and we experimentally find it excels at balancing
the mutual scale variation of different items within an image.

The graphic illustration is shown in Fig. 1. The initial im-
age together with its two accompanying rescaled versions
is fed to the inception-v3 neural network in parallel, part
of the standard convolution operations within which are re-
placed by atrous convolution. ASPP module is then linked to
inception-v3 to infer the parsing results in an inside multi-
scale and parameter sharing manner. Finally, the output pars-
ing result is bi-linearly interpolated to the same size with the
original color image.

With the pre-trained model, we prune and compress the
original cumbersome neural network to much lightweight
network by directly pruning those inactive responses and
part of full connections to reduce the parameters. Specifi-
cally, we directly cut off the the reduction_b and incpetion_c
module from inception-v3 neural network, then fine-tune the
remaining network and further compress the model by re-
moving the connections whose connection weights are be-
low a predefined threshold (see Fig. 2). Model compression
has been effectively explored in recent years (Han, Mao,
and Dally 2016). Research shows that appropriate com-
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Figure 2: Model compression: by retraining the model, the
initially dense connected network can be sparely connected
by removing the low-weight connections.
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Figure 3: Sample image: Left: the object-level annotation re-
sult. Middle: the image-level annotation result which gener-
ally shows the detailed item pool. Extra information such as
price tag and bag type is available. Right: pixel-level result.

pressed model achieves no obviously accuracy loss but max-
imumly reduces the model size. By following the compres-
sion method proposed by S. Han et al. (Han, Mao, and Dally
2016), we reduce the size of our model to 7x scale so that
it achieves real-time application without much parsing ac-
curacy loss. We will thoroughly discuss it in the experiment
section.

3 FCP: Fashion-Guided Clothing Semantic
Parsing Dataset
3.1 Dataset Detailed Introduction

As discussed above, one motivation of this paper is to in-
troduce a large fashion-guided clothing semantic parsing
dataset. To this end, we first crawled 5,000 high-quality and
fashion experts recommended images from www.chictopia.
com. Chictopia is the world’s largest fashion style commu-
nity where bloggers or trendsetters share their style posts and
online clothing boutiques sell to the most fashion-forward
audience. This guarantees all collected images are fashion-
oriented. In addition, excessive annotations are available for
most images, including fine-grained clothing item name,
item branch name, color information, price tag, etc. This ad-
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Figure 4: Top: Fashion-guided clothing semantic segmentation dataset WordNet tree structure: each node in the hierarchical
tree is depicted by a bunch of relevant items. Bottom: the frequency of all items in the dataset. Note that the ordinate is not

linearly coordinated for better visualization.

vantage helps to enrich dataset annotation pool from vari-
ous perspectives. Therefore, we have created a total of 64
clothing items excluding the background, ranging from all
daily clothing items to accessories. This dataset, to our best
knowledge, is so far the largest dataset in terms of clothing
semantic parsing.

Each image in Chictopia initially associates with multiple
attributes, yet these attributes sometimes are incomplete and
even erroneous. Thus dataset cleaning and validation in ad-
vance are essential. For each image, we provide both pixel-
level, object-level and image-level annotations. We first re-
cruit three experienced labellers and train them to famil-
iarize themselves with all clothing item names in advance.
For example, since loafer is a special kind of shoes, the la-
bellers have to figure out what makes loafer and the subtle
difference between loafer and other types of shoes, such as
flats, boots and clogs. The prior training is prerequisite be-
cause labellers have to fill the blank or correct the mislabeled
annotations under the circumstances of incomplete or er-
roneous annotations (dataset cleaning and validation work).
After training, labellers label these images both pixel-wisely
and object-wisely with the tool written by ourselves. For
pixel-wise annotation, they label the contour of each sin-
gle item. In case of item overlap, the overlapping area is
labeled to the item category lying atop. The object-level is
bounding box like annotation. That is, each clothing item or
accessory is labelled by a tight bounding box indicating its
location and category name. Image-level annotation corre-
sponds to a set of item name, brand name and color informa-
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tion describing the whole image. Note that we only leverage
the pixel-level annotation in this paper to evaluate our pro-
posed framework. Object-level and image-level are crucial
to motivate more fascinating research. For instances, bound-
ing box supervised image semantic segmentation (Dai, He,
and Sun 2015) and image tagging (Chen, Zheng, and Wein-
berger 2013), fashion outfits recommendation. A sample im-
age with the three annotations result is shown in Fig. 3, in
which the body torso is spatially divided into sub-parts, in-
cluding face, neck, leg and foot, even though the mutually
share visual similarities.

Similar to other natural scene parsing datasets construc-
tion process (Zhou et al. 2016)(Martin et al. 2001), we un-
avoidably encountered three ambiguous problems during
dataset construction: boundary ambiguity, item naming am-
biguity and saving-deleting ambiguity:

e boundary ambiguity: ambiguity around boundary natu-
rally arises as different labellers exhibit different prefer-
ence towards boundary during labelling. To reduce this
ambiguity, we calculate the ratio of inconsistent labelled
pixels around the item boundary over the whole image for
the three labellers and require to relabel the image if the
ratio exceeds 20%.

e naming ambiguity: naming ambiguity derives from two
ways: Chictopia provided item naming could be either er-
roneous or non-specific. For instance, a bodysuit can be
classified as both top and bottom (trouser). The missing
item naming also easily leads to labeller naming ambi-



Instance Pixel-Level ~Object-Level Image-Level Item Category No. Item No. Data Source
CCP(2014) 1098 N 1000 59 17897 Unknown
Fashionista(2013) 685 N N 56 9876 Chictopia
FCP (Ours) 5,000 5,000 5,000 65 72,340 Chictopia

Table 1: Comparison between FCP dataset and CCP (Yang, Luo, and Lin 2014), Fashionista (Yamaguchi, Kiapour, and Berg

2013) datasets.

guity because an item can easily be classified as several
similar fine-grained categories. To minimize this ambigu-
ity, we require all labellers to reach a consensus before
any naming ambiguity happens or give the item a much
more coarse-grained name in order to guarantee its nam-
ing correctness.

e saving-deleting ambiguity: this happens when an item is
too small to be efficiently labelled or largely occluded by
other items. For example, a necklace may be too thin to be
labelled from neck or it blends well with neck skin color.
For items in this case, we choose to neglect them to keep
the whole image’s conformity.

In sum, we have labelled 50,000+ items, averagely an
image associates with about 10 items. We follow the Im-
ageNet dataset (Russakovsky et al. 2015) to organise our
dataset in WordNet hierarchical tree structure, in which each
node corresponds to a bunch of relevant items. The Word-
Net tree is organized coarse to fine from top to bottom, we
first roughly group all items into seven main categories: top,
bottom, shoe, clothing accessory, accessory, skin and others
according to their spatial locations or functionalities. Each
node further corresponds to numerous fine-grained items.
One benefit of this hierarchical organization is that it enables
to evaluate parsing algorithms at different granularities. The
WordNet tree structure and item’s frequency graph is given
in Fig. 4. We can see some items overlap between top and
bottom. Clothing accessory indicates items mainly made by
cloth, while accessory indicating jewellery based items, such
as earrings, necklace and bracelet.

3.2 Comparison with other Datasets

We compare our FCP dataset with two other existing
datasets: CCF dataset (Yang, Luo, and Lin 2014) and Fash-
ionista dataset (Yamaguchi, Kiapour, and Berg 2013). These
two datasets are currently available datasets for clothing
semantic parsing. We compare from four aspects: annota-
tion richness, item completeness and richness, item total
number and data source, the result is shown in Table 1,
from which we can obviously see that our FCP dataset far
more outnumbers the other two datasets in terms of both
pixel-, object- and image-level annotation number. Regard-
ing item category number and item total, our FCP dataset
also goes beyond CCP and Fashionista datasets at a large
margin. Specifically, rather than generically treating all peo-
ple’s skin as skin, we discriminate it and further divide them
into face, neck, leg, foot, hand and skin parts, where skin
here indicates body skin not covered by the other five items.
In general, the FCP dataset introduced in the paper over-
whelmingly outperforms currently existing clothing seman-
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tics parsing datasets and we believe it would definitely push
forward the clothing parsing research. (Shelhamer, Long,
and Darrell 2016)

4 Experiment

We evaluate our proposed framework in both item-level and
category-level, in which item-level amounts to the overall
65 items, while category-level only taking the 7 categories
into account by hierarchically fusing the 65 items according
to the WordNet tree in Fig. 4. Outside our framework, we
compare with two Deeplab versions (Chen et al. 2016): in-
ception_v3 (Szegedy et al. 2015), residual network 101 lay-
ers (He, Zhang, and Ren 2016). fully connected neural net-
work (FCN-8s) (Shelhamer, Long, and Darrell 2016), dilated
convolution (Yu and Koltun 2016) based on VGG16 (Si-
monyan and Zisserman 2016) (Dilation-VGG16). The four
methods involved here overwhelmingly based on deep learn-
ing and have shown promising result on various natu-
ral scene parsing datasets. We do not compare with tra-
ditional semantic parsing methods, like the combination
of exemplar-SVM and graph cut proposed by W. Yang et
al. (Yang, Luo, and Lin 2014), because the main goal of
this paper is to design a lightweight deep neural network
so that it can reach real-time application without explicit
parsing accuracy loss. Thus we choose to compare beneath
the deep neural network framework. The evaluation metric
we embrace here includes pixel accuracy measuring the ra-
tio of pixels being correctly parsed and the mean intersec-
tion over union (mloU) measuring the the ratio of intersec-
tion between parsing result and parsing ground truth over
their union combination. Pixel accuracy and mloU are clas-
sic metrics for scene semantic parsing and usually the higher
of the two values, the better parsing result it gets.

The 5,000 FCP images are divided into 4,000, 500, 500
for train/validation/test respectively. The model is train on
Caffe (Jia et al. 2014) deep learning framework. To test our
proposed framework’s sensitivity regarding the input image
size, we differentiate the input image scale: one is 600 x 400
and the other is 300 x 200. The quantitative result is shown
in Table 2, from which we can see that all methods’ perfor-
mance on category-level far outweighs the performance on
item-level by a margin of about 0.4 for pixel accuracy and
0.3 for mIoU. The reason is twofold: the large fine-grained
items’ number imbalance and the huge differences between
various items’ sizes in an image. For example, usually in
an image, the clothing items have occupied most of the im-
age area than accessories such as necklace, earrings and
bracelet. We argue that an appropriate solution to this prob-
lem might have to rely on both top-to-bottom and bottom-to-
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Figure 5: Samples parsing results by various methods.

Level Item-level Category-level

Metric mloU  Pixel Accu.  mloU : Piyxel Accu. Speed (FPS)
DeepLab (inception_v3)  0.2932 0.7701 0.6998 0.9626 292
DeepLab (ResNet101)  0.2958 0.7775 0.7033 0.9615 2.04
FCN-8s 0.2611 0.7361 0.6755 09511 5.45
Dilation-VGG16 0.2730 0.7389 0.6813 0.9497 341
Ours (600 x 400) 0.2736 0.7434 0.6815 0.9624 35.09
Ours (300 x 200) 0.2602 0.7251 0.6449 0.9550 68.98

Table 2: Quantitative result on FCP dataset in terms of pixel accuracy and mloU. Note that, comparing with the other four
methods, our proposed method achieves much faster speed without obvious pixel accuracy nor mloU loss.

top methods or hierarchical methods treating items of vari-
ous sizes differently. Besides, our pruned and compressed
model achieves the fastest processing time comparing with
the other four methods, enabling real-time application in a
single Nvidia Titan X GPU processing unit. Moreover, the
processing speed is almost doubled if the input image is
rescaled from 600 x 400 to 300 x 200, which indicates the
processing speed increases exponentially while the input im-
age’s scale reduces. This is especially a good news for cloth-
ing semantic parsing commercial application.

Note that we trained model separately on CCF
dataset (Yang, Luo, and Lin 2014) and Fashionista
dataset (Yamaguchi, Kiapour, and Berg 2013), we get
slightly lower but also similar quantitative evaluation results
with our FCP datasets. The subtle difference, we believe, is
caused by the limited amount of dataset. We do not show
the detailed results on the two datasets here due to the space
limit. Two parsing result sample images are shown in Fig.
5. We can clearly observe that our method achieves compa-
rable parsing result with the other four methods. Moreover,
by involving both outside and inside multi-scale inception
strategy, our method successfully fused the flower printing
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with the black dress and parsed the dress as an integral cloth-
ing item (sample in the top row). Unfortunately, all methods
cannot discriminate small accessories from their neighbor-
ing items due to their small sizes (i.e. the glass in the bottom
sample). We keep this problem open and hope to motivate
more research dedicated to resolve it with the help of the
FCP dataset.

5 Conclusion

Building on achievements in exploiting deep learning for
scene parsing as well as deep model compression and prun-
ing, we have proposed a multi-scale inception neural net-
work to achieve real-time clothing semantic parsing.
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