
Using Options to Accelerate Learning of
New Tasks According to Human Preferences

Rodrigo Cesar Bonini, Felipe Leno da Silva,
Edison Spina, Anna Helena Reali Costa

Escola Politécnica da Universidade de São Paulo, São Paulo, Brazil
{rodrigo cesarb,f.leno,spina,anna.reali}@usp.br

Abstract

Over the years, people need to incorporate a wider range of
information and multiple objectives for their decision mak-
ing. Nowadays, humans are dependent on computer systems
to interpret and take profit from the huge amount of available
data on the Internet. Hence, varied services, such as location-
based systems, must combine a huge quantity of raw data to
give the desired response to the user. However, as humans
have different preferences, the optimal answer is different for
each user profile, and few systems offer the service of solving
tasks in a customized manner for each user. Reinforcement
Learning (RL) has been used to autonomously train systems
to solve (or assist on) decision-making tasks according to user
preferences. However, the learning process is very slow and
require many interactions with the environment. Therefore,
we here propose to reuse knowledge from previous tasks to
accelerate the learning process in a new task. Our proposal,
called Multiobjective Options, accelerates learning while pro-
viding a customized solution according to the current user
preferences. Our experiments in the Tourist World Domain
show that our proposal learns faster and better than regular
learning, and that the achieved solutions follow user prefer-
ences.

Introduction

In recent years, human activities have impacted several
branches and gradually have been modifying our behav-
ior and needs. For the development of any modern society,
good quality information technology is necessary to sup-
port and ensure constant progress, especially assisting in
routine and recurring tasks, providing the necessary knowl-
edge for decision-making as fast as possible. Understand-
ing and identifying the dimensions of human preferences for
decision-making is a key component of any modern recom-
mender system.

Nowadays, computer systems aim at supplying this grow-
ing demand for quick and good information through var-
ied services one. These systems must take into account dif-
ferent preferences and restrictions, and solve tasks such as
”find a free ambulance that can get to a traffic collision
place in less than fifteen minutes”. Typical applications of
location-based systems include navigation services (Smith

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

et al. 2004), tourist information systems (Hinze and Voisard
2003), emergency response, and disaster management (Er-
haruyi and Fairbairn 2003). However, these services do not
always take into account user-preferences, because they are
limited in their ability to evaluate alternative decisions and
solve multiple and conflicting objectives when solving tasks.
For example, a Travel Recommendation System may receive
the user query ”find me a cheap yet comfortable hotel in San
Francisco, CA”. While it is easy to find the cheapest hotel
in the city, this place may fall outside the definition of com-
fortable for most users. Therefore, the system must balance
the cheap and comfortable metrics according to the current
user’s preferences, and the optimal answer will be different
for another user.

For this kind of functionality, it is necessary to integrate
some kind of Multi Criteria Decision Making (MCDM)
technique (Triantaphyllou 2013). MCDM is a decision sup-
port methodology based on the idea that humans use various
decision criteria to determine the best solution for a prob-
lem. MCDM tecnhiques range from simple additive weight-
ing criteria to more sophisticated methods (Rinner and Mal-
czewski 2002). Agichtein et al (2008) conducted a work
in which community-provided answers to questions from
varied topics were evaluated through the use of MCDM in
conjunction with Data Mining techniques. User preferences
were described by numeric weights (that can be learned
through observation of the user behavior), and the top ranked
answers achieved the same effectiveness of expert-provided
answers (for the current user). But, in this way the systems
need information from users and experts.

A way to support decision making without the need of a
specialist is through the use of Reinforcement Learning (RL)
(Sutton and Barto 1998), which is a framework that can be
used to solve tasks when the computer (agent) is expected to
learn autonomously how to solve its tasks. The main idea of
RL algorithms is that the agent follows a trial and error pro-
cedure and learns by observing the outcome of interactions
with the environment. At each decision step, the current state
is observed, an action that affects the environment is chosen
and applied by the agent, and finally the agent observes how
much that action helped to the task completion through a re-
ward function. Under certain conditions, an agent can learn
how to optimally solve tasks by executing this process mul-
tiple times.

The AAAI-17 Workshop on
Human-Machine Collaborative Learning

WS-17-11

643

RL has been successfully applied in many complex prob-
lems (Tesauro 1995; Seo and Zhang 2000; Ng et al. 2006;
Singh et al. 2002; Mnih et al. 2015), showing strong evi-
dence that it can be very effective for decision-making on is-
sues of information, because it can work autonomously. For
example, Seo and Zhang (2000) proposed a RL system to in-
crease the chance of success of customized internet searches.
User preferences are estimated from the history of searches,
keywords, and number of visits to particular sites.

Consider the following scenario to understand the synergy
between the techniques of interest: A traveler is in an un-
known city and decided to extend his stay. It is late at night
and the traveler needs to find a hotel. With the currently used
location-based systems it is possible to find hotels near trav-
eler’s position. However, the traveler wants the hotel that
best meets his preferences, with a reasonable price for the
room, private bathroom, and late checkout time. All of these
criteria are subjective and therefore have varied importance
levels for different travelers. Still, the system should be able
to give the optimal recommendation for the current traveler.

The main problem when applying RL is that the classi-
cal algorithms learn very slowly through interactions of trial
and error type, taking a very long time, since RL classi-
cal approach needs many steps to explore the state-action
space. The problem is further intensified when we describe
it by using multiple reward functions (which is the case for
MCDM). The extension of the classical RL paradigm, Mul-
tiobjective Reinforcement Learning MORL (Van Moffaert,
Drugan, and Nowé 2013) solves tasks with multiple reward
functions {R1, . . . , Ri} by balancing all objectives as well
as possible, considering the criteria informed by humans. As
domains become progressively complex over the years, scal-
ability gains more importance for these methods.

Transfer Learning(TL) (Taylor and Stone 2009) is one
of the solutions proposed to accelerate learning in RL
tasks. The option-based solutions (Sutton, Precup, and Singh
1999) allow to reuse previously acquired knowledge in new
tasks, generalizing and transferring knowledge between do-
mains, agents, and tasks, consequently accelerating learning
in RL tasks. For instance, it is relatively easier for a traveler
travel to a mountain if he/she has been in another similar
mountain in other part of the world before.

The Options Framework (Sutton, Precup, and Singh
1999) was proposed to alleviate scalability issues through
the use of options, that are high-level actions that encapsu-
late a partial solution, often representing the solution of a
subproblem. For example, in a travel by car between two
cities, an option could be the trip until half way to fuel the
car. While in the original Options Framework each option
was provided by a domain expert, later works like the Pol-
icyBlocks Algorithm (Pickett and Barto 2002), propose au-
tonomous option-discovery methods through the evaluation
of previous task solutions. Furthermore, learned options are
reported to accelerate learning even when transferred across
similar problems. However, to the best of our knowledge our
proposal is the first work to provide option-based methods
that can be used in multiobjective problems.

Thus, the idea here is to allow a user to define his/her cri-
teria of interest for each application task, and to use RL to

learn new solutions according to his/her preferences and to
accelerate learning by taking into account previous knowl-
edge in other tasks. Thereunto, we here propose a method
hereafter called Multiobjective Options (MO-Opt) to learn
options in MORL tasks in order to accelerate learning, ar-
guing that MORL algorithms can also benefit from option-
based and TL solutions to accelerate learning according to
humans preferences.

Foundation and Related Work

Before describing our proposal, we define the concepts
which form the foundation of our work. We first introduce
the relevant basic concepts of RL. Then we present relevant
concepts about MORL. Finally, we describe the extension of
RL to Options.

Reinforcement Learning

Many sequential decision-making problems may be mod-
eled by a Markov Decision Problem (MDP) (Puterman
1994), and RL is a extensively used solution for MDPs. In
the RL framework (Sutton and Barto 1998), an agent learns
by interacting with an environment over a series of discrete
time steps. In each decision step k, the agent observes the
current state sk and applies an action ak. Then, the next state
is defined by a transition probability function (unknown by
the agent in learning scenarios) and the agent receives a re-
ward rk. The agent goal in an MDP is to learn an optimal
policy π* that maps each state to the actions that leads to the
greatest expected cumulative sum of rewards.

Formally, an MDP is composed of < S,A, T,R >,
where:

• S is a finite set of possible environment states.

• A is a finite set of actions that can be executed by the
agent.

• R : S × A × S → R is the reward function that maps
the agent actuation to a numerical reward.

• T : S × A× S → [0, 1] is the state transition function,
where T (sk, ak, sk+1) defines the probability of a state
transition from sk to sk+1 after the execution of ak at k.

We are here interested in learning problems where T and
R are unknown to the agent, which can only observe the
current state and the reward signal.

As the output from the transition and reward functions
cannot be predicted in learning problems, the MDP can be
solved through interactions with the environment, what can
be accomplished by the Q-Learning algorithm (Watkins and
Dayan 1992). Q-Learning iteratively learns a Q-table, that
aims to estimate the cumulative discounted reward associ-
ated to each state-action pair: Q : S × A → R. At each
decision step Q is updated following:

Qk+1(sk, ak) ← (1− α)Qk(sk, ak)+

α[rk+1 + γmax
a

Qk(sk+1, a)]
(1)

where rk+1 = R(sk, ak, sk+1), 0 < α ≤ 1 is the learning
rate and γ is the discount factor.

644

Q-Learning eventually converges to the true Q function:
Q∗(s, a) = E

[∑∞
i=0 γ

iri
]
, and Q∗ can be used to define an

optimal policy as:

π∗(s) = argmax
a

Q∗(s, a) (2)

RL also shows strong evidence that it can be very effec-
tive in decision-making, because it can provide solutions au-
tomatically and in real time. For example assisting in the
identification of public interest areas, informing traffic ac-
cidents and hospitals (van Treeck and Ebner 2013). RL has
also been used to optimize solutions that increase the chance
of success in internet searches in accordance with charac-
teristics of each person, obtaining as much information as
possible about a user profile (Seo and Zhang 2000).

However, the standard Q-Learning may be inefficient in
environments with large state spaces, as it may need many
steps to reach the convergence. Furthermore, the standard
Q-Learning only takes into account single-objective tasks,
but many RL tasks cannot be easily described by a single
reward function, and are rather described by multiple reward
functions. Thereupon, an approach to help solving this kind
of problem is detailed in the following.

Multiobjective Reinforcement Learning

A single reward function cannot easily describe some tasks,
as they require the maximization of multiple, usually con-
flicting objectives (Liu, Xu, and Hu 2015; Ngai and Yung
2011). Multiobjective decision-making has long been recog-
nized as an important research subject (Van Moffaert, Dru-
gan, and Nowé 2013), which indeed led to the development
of RL techniques to multiobjective problems. MORL algo-
rithms learn policies that optimize a vector of reward func-
tions, rather than a single one.

Thus, Multiobjective MDPs (MOMDPs) only diverge
from regular MDPs with respect to the reward function, that
is now composed of i objectives. Consequently, MOMDPs
can be solved by learning a Q-table for each one of the ob-
jectives (using, e.g., Equation (1)), resulting in a vector of
Q-tables:

MQ(s, a) = [Q1(s, a), Q2(s, a), . . . , Qi(s, a)]T (3)

where Qi(s, a) is the Q-table learned using reward values
from objective i. Depending on the scenario, the solution of
an MOMDP can be either multiple policies that approximate
the Pareto Front (Roijers et al. 2014) or a single policy that
tries to balance all objectives (Khamis and Gomaa 2014).

As a single policy that maximizes all objectives simul-
taneously usually does not exists (specially when conflict-
ing objectives are included in the MOMDP), the concept of
an optimal policy is not clear in MORL. Nonetheless, the
user (or designer) domain knowledge can be used to define
a scalarization function, that projects MQ to a single nu-
meric value:

SQf (s, a) = f(MQ(s, a)), (4)

where f : [R, . . . ,R]T → R is the scalarization function. A
linear combination of the Q-values is a widely used scalar-
ization function (Ngai and Yung 2011; Silva and Costa 2015;
Zeng et al. 2010), which is defined as:

f(MQ(s, a),w) =

i∑
i=1

wiQ
i(s, a) (5)

where w is a vector with hand-crafted specified weights ac-
cording to the humans preferences in a problem. After an ad-
equate scalarization function, a policy can be defined using
SQ (Equation (4)) instead of a standard Q-table(Equation
(1)).

MORL may be applied in many real-world tasks, and
all of them would be benefited from faster RL algorithms.
Therefore, our goal is to accelerate learning in such tasks.
MORL achieved interesting results and can be used in a va-
riety of domains (Khamis and Gomaa 2014; Ngai and Yung
2011; Zeng et al. 2010; Silva and Costa 2015; Brys et al.
2014). However, these approaches suffer from scalability is-
sues and present slow learning, since solving problems with
several and possibly conflicting objectives can often be com-
putationally and sample expensive and take a long time.
Thus, these issues hamper the studies and development of
new techniques and new approaches in this topic.

Options

The Options Framework (Sutton, Precup, and Singh 1999)
was proposed to alleviate RL scalability issues. Options
extend the usual notion of actions, providing closed-loop
partial policies for taking actions over a certain period of
time. Options are high-level actions that aim at decompos-
ing MDPs in subtasks and solving them, providing tempo-
rally extended courses of actions. Some examples of options
may include a car passing in determined locations, a traveler
going to a distant city or unlocking a door, in other words,
tasks that require a certain number of primitive actions to
achieve a desired subgoal.

An option for an MDP is a conditional sequence of prim-
itive actions defined as a three-tuple, { π, I, β }, consisting
of a policy (π : S → A), a set of initiation states (I ⊆
S), and a termination condition (β : S → [0, 1]) (Sutton,
Precup, and Singh 1999). The initiation set I is the subset
of the state space in which the option can be executed, i.e,
an option is available in state st iff st ∈ I. When the op-
tion initiation condition is satisfied and the agent selects it,
the policy is followed until a termination condition is met.
The termination condition β is a probability function over
states that defines the likelihood with which the agent ends
the execution of an option when it is in that state. It may
also be a time limit, that terminates deterministically when
the execution of the option policy reaches a certain num-
ber of episodes parametrized by designer (Bernstein 1999).
Then, when an option ends, the agent has the chance to se-
lect another option, and this process repeats over time, until
a goal state is reached. Primitive actions are a special case
of option that always lasts exactly 1 step.

We use Q(s, o) to be the expected return given that the
agent starts in state s and takes option o. Thus, the concept

645

of an action-value function generalizes to an option-value
function. When an option terminates, its value is changed
according to the maximum option-value at the resulting state
and the cumulative discounted reward obtained during its
execution:

Qk+1(sk, ak) ← (1− α)Q(sk, ok)+

α
[
rk + γt max

o∈Ost+k

Qk(st+k, o)−Qk(sk, ok)
] (6)

The idea behind using options in RL comes from the sim-
ple fact that the probability of an agent to behave in a certain
way should be proportional to how often that behavior was
successful in the long-dated past (Thrun and Schwartz 1995;
Bowling and Veloso 1998; Bernstein 1999; Mcgovern and
Barto 2001).

In general, the aforementioned algorithms, were proposed
to work along specific kinds of problems, not being able to
solve general problems with the same quality. The Policy-
Blocks Algorithm is an interesting options-discovery algo-
rithm due to its versatility and good results in very different
tasks (Pickett and Barto 2002).

Algorithm 1 PolicyBlocks (2002)

1: M ← a given set of single-objectives tasks M
2: n← desired number of options
3: use RL or DP to create a solution set L for M
4: O ← empty option set
5: C ← empty option candidate set
6: L ← set of source policies π∗ learned for M
7: while |L| > 0 and |O| < n do
8: for each element l of the power set of L do
9: c ←mrg(l)

10: C ← C∪ c
11: end for
12: c∗ ← argmax

c∈C
score(c)

13: O ← O ∪ c∗
14: for each element l of the power set of L do
15: subtract(l, c∗) //subtract c∗ from l
16: end for
17: end while
18: return O

The PolicyBlocks Algorithm (described in algorithm 1) is
decomposed in a three step process: (1) Firstly it generates a
set of option candidates by finding where the sample solu-
tions match, in other words, here occurs the merge process
between a pair of partial policies, (mrg(π1∩π2∩···, πn)). (2)
After that, it scores the candidates based on the match and
then chooses the highest scoring option. (3) Finally, sub-
tracts this option from a source set of optimal policies L.
Then, we have a set of options o that have been learned
with the algorithm and can be used to accelerate the learn-
ing. However, the PolicyBlocks Algorithm is single-objective
and unable to solve multiobjective problems and even more,
obey the user preferences or priorities.

Hence, our proposed approach aims at discovering op-
tions for TL to accelerate learning in MORL problems.

Multiobjective Options

Most of previously proposed option-based methods are fo-
cused on single-objective problems (Thrun and Schwartz
1995; Bowling and Veloso 1998; Bernstein 1999; Mcgov-
ern and Barto 2001). Notwithstanding, MORL approaches
attained good results in tasks that have more than one ob-
jective, pondering tasks and these objectives (Khamis and
Gomaa 2014; Ngai and Yung 2011; Silva and Costa 2015).
However, the state-of-the-art option-based methods do not
work in such multiobjective scenarios.

Aiming at accelerating learning in MORL problems, we
here introduce MO-Opt, an approach based in the Options
Framework for options-discovery and for TL with fixed state
variables and actions (Taylor and Stone 2009) in multiobjec-
tive tasks according to humans preferences. The main idea of
MO-Opt is firstly to learn options for each of the objectives
separately (for which the PolicyBlocks algorithm, for exam-
ple, can be used) and apply these options in the multiobjec-
tive problem, and secondly transfer the obtained knowledge
to a new and different tasks, reusing the acquired knowl-
edge in previous tasks. The learned options are intended to
optimize a single objective, but may maximize the reward
function of multiple objectives for some situations, or guide
the agent towards trajectories which prioritize one objective
without hampering the others, according to a human setting.
The RL algorithm is able to identify when each option is
useful, and we argue that these options can accelerate the
learning process, guiding the agent’s exploration to learn a
given task faster.

There are many TL methods that can transfer knowledge
between MDPs where the type of knowledge transferred can
be primarily characterized by its specificity. We here assume
that the state and action spaces are fixed for the source and
target tasks, but the state transition function may vary (Tay-
lor and Stone 2009).

Algorithm 2 describes our proposal. Firstly we initialize a
set of options φ. Then, we learn a set of optimal policies Li

for each objective i ∈ θ by using a standard RL algorithm,
where θ is the set of objectives. After that, we use the stan-
dard PolicyBlocks Algorithm (any other options-discovery
algorithm could also be used) to learn a set of options for
each objective separately (including them in φ as common
options, i.e. partial policies, to accelerate the learning of the
new task). Then, the Multiobjective learning algorithm is ex-
ecuted in the new tasks using φ ∪A, to finally learn the pol-
icy for the MORL domain.

Algorithm 2 MO-Opt for Transfer Learning

1: φ ← ∅
2: for each objective i ∈ θ do
3: learn in h episodes a set of policies Li for i
4: φ ← φ ∪ PolicyBlocks(Li, n,M)
5: end for
6: transfer options to a target task Mtarget

7: run MORL in the new task using φ ∪A

646

Experimental Evaluation

Problem Domain

We evaluated our proposal in a task designed to show how
to make the machine provide a route more quickly satisfying
the preferences of a particular traveler through learning from
past experiences, representing situations where MO-Opt can
solve a MORL problem through the use of options. In or-
der to evaluate the effectiveness of our proposal, we imple-
mented the Tourist World Domain (illustrated in Figure 1),
where we have a tourist (represented by a car) and points
of interest (represented by the statues of liberty), in which
the tourist can pass or not according to her preference. The
main challenge in this problem is to maximize the amount
of points of interest at the same time minimizing the time
(number of steps) until the tourist reaches her goal, but al-
ways respecting the tourist will. Notice that points of interest
are often outside the optimal path towards the goal position,
then the agent must balance the two objectives and reason
over the objective to be pursued at a certain moment.

In order to evaluate our proposal, we also implemented
another instance(task) of the Tourist World Domain (Fig-
ure 2), implemented using BURLAP (MacGlashan 2015),
in which we expect that the agent will learn faster through
the reuse of knowledge from the first map.

In these tasks, the action set of the car is A =
{north, south, east, west}, and a point of interest visit is
counted when the agent is in the same position of it. Poste-
rior visits on the same spot will not be counted again, and
a point of interest visit awards a reward of +1 in the second
reward function. Besides that, a reward of +1 is awarded in
the first reward function when the agent achieves the goal
position. Otherwise, the reward is 0 for both objectives. In
the case of the agent perform some action that would hit a
wall, she remains at the same state, and episodes end when
the agent reaches the goal position.

Experiments

Firstly, we performed in the Task 1 (see Figure 1) of our
Tourist World Domain 5 iterations of the Q-learning algo-
rithm for each objective separately, with each iteration dur-
ing 100 episodes, each one providing an optimal policy to
PolicyBlocks, which chooses for each objective the 3 best
scored options between the power set of the 5 initially ob-
tained, as indicated by (Pickett and Barto 2002).

Then, we applied the learned options to a different task
(Figure 2), executing 100 learning episodes using the Scalar-
ized Q-Learning algorithm (Silva and Costa 2015) twice: the
first time with a standard Q-Learning without options; and
the second using MO-Opt, in order to evaluate the relative
effectiveness of the learned options to the learning process.

In the first scenario, the scalarized algorithm was config-
ured with the weights w1 = 0.75 and w2 = 0.25 to simulate a
tourist in a hurry to get to its goal without caring too much
to go through points of interest. Then, we evaluate the sce-
nario w1 = 0.5 and w2 = 0.5, where a touristic is not in a
hurry but cannot expend too much time, and finally w1 =
0.25 and w2 = 0.75, where the tourist is willing to visit as
many places of interest as possible. The reward functions are

Figure 1: Task 1 of Tourist World Domain for learn op-
tions in Multiobjective Reinforcement Learning. The tourist
aims at passing through all points of interest (represented by
statues of liberty) in the environment while minimizing its
amount of steps until it reaches its goal (represented by the
target).

combined using a linear combination of the aforementioned
weights(equation 4), where the w1 represents the weight of
the objective 1 and w2 the weight of the objective 2. We
also set the learning rate α = 0.2 and the discount rate γ =
0.9. The observed performances are averages over 100 exe-
cutions of this procedure.

Results and Discussion

We here presents the results of our experiments

Scenario I - Tourist in a Hurry

Figure 3 shows the average cumulative reward achieved by
our proposal and the plain scalarized Q-learning in this sce-
nario. The cumulative rewards codify the agent performance
for that user preference, where the agent is expected to
achieve a higher reward as fast as possible. MO-Opt learns
faster at the beginning of the learning process, achieving an
average reward of 0.16 after roughly 20 learning episodes,
while Q-Learning did not achieve this result until the train-
ing ended. We observed that, in this experiment, the car usu-
ally visited 2 points of interest (that were closer to the fastest
path), prioritizing the amount of steps.

The difference between the average cumulative reward in-
dicates that MO-Opt provides both a better jump-start and
asymptotic performance in this scenario.

Scenario II - Balanced Situation

Figure 4 shows the performances in the second scenario.
MO-Opt was again better than Q-Learning, but because of
the greater importance to the objective 2, the car spent more

647

Figure 2: Task 2 of Tourist World Domain with the use of op-
tions learned from task 1. The tourist aims at passing through
all points of interest (represented by statues of liberty) in the
environment while minimizing its amount of steps until it
reaches its goal (represented by the target)

Figure 3: The average cumulative reward (linear combina-
tion of the two objectives) for 150 episodes after the transfer
learning process from the task 1 to the task 2 with w1 = 0.75
and w2 = 0.25.

steps to learn how to prioritize both objectives. In this sce-
nario, the car usually visited 3 points of interest, aiming at
visit more points without delaying the travel too much.

Again, the final performance of our algorithm was slightly
better.

Scenario III - Unhurried Tourist

Finally, Figure 5 shows the results of the last scenario. In
order to visit as many points of interest as possible, the car
spent more steps until reaching the goal. In average, 4 points
of interest in average were visited in this scenario.

In this scenario, we can see that our algorithm again

Figure 4: The average cumulative reward (linear combina-
tion of the two objectives) for 150 episodes after the transfer
learning process from the task 1 to the task 2 with w1 = 0.5
and w2 = 0.5.

learned faster and better.

Figure 5: The average cumulative reward (linear combina-
tion of the two objectives) for 150 episodes after the transfer
learning process from the task 1 to the task 2 with w1 = 0.25
and w2 = 0.75.

As a conclusion for our experiments, the asymptotic func-
tion was better for MO-Opt in all cases, reaching a higher
average reward earlier than the standard Q-Learning with all
evaluated cases.

These results show that our approach can be successfully
used to accelerate MORL learning according to human pref-
erences, without breaking them and without having in per-
formance.

Conclusion and Further Works

We here proposed the MO-Opt option-discovery algorithm
to accelerate learning in MORL tasks, while obeying user
preferences. The option-based method helped the machine
to give a solution faster while providing solutions according
to multiple human preferences.

Our experiments in the Tourist World Domain showed that
our options-discovering method outperformed regular learn-
ing by succesfully transferring knowledge from similar tasks

648

taking into account several user profiles. This result shows
that our approach works faster than classical RL techniques
and can be adapted according to user preferences.

MO-Opt is a promising algorithm which allows knowl-
edge reuse and generalization, thus accelerating learning in
multiobjective tasks. The next step of our research is to in-
vestigate some methods to estimate weights (human prefer-
ences) without user direct inputs. An adaptation of the W-
Learning (Liu, Xu, and Hu 2015) algorithm might be a way
to do this.

In this way, our approach may be used to set criterion-
based priorities (such as importance, relevance, urgency,
personal enjoyment) to properly consider specific attributes
to each task. We believe that it may also works for support
decision-making for interventions (such as crime, traffic, ac-
cidents, emergency hospitals, and meteorological phenom-
ena) in an autonomous manner, assisting and improving peo-
ple lives.

A possible way to autonomously discovering human pref-
erences is through the integration of approaches that reflect
the human cognitive process. For this purpose, studies must
be carried out in order to check how the machine may work
collaboratively with humans to solve problems with multiple
conflicting objectives in real and large-scale domains. We
intend to perform experiments in more complex and realis-
tic scenarios, such as Smart Grids, Autonomous Vehicles,
Flow Shop Machines, Social Media, Video Game Playing,
and Travelling Salesman Problems.

Another possible approach to be analyzed is how to build
options from human input in mutiobjective problems, veri-
fying how it can affect the human decision-making and ac-
celerate the learning process in several systems.

Finally, we also intend to improve our methods by al-
lowing the use of options with stochastic policies(Koga, da
Silva, and Costa 2015), aiming at improving and accelerat-
ing the knowledge generalization provided by our approach.

Acknowledgements

We are grateful for the support from the CEST Group, CNPq
(grant 311608/2014-0), and São Paulo Research Foundation
(FAPESP), grant 2015/16310-4.

References

Agichtein, E.; Castillo, C.; Donato, D.; Gionis, A.; and
Mishne, G. 2008. Finding high-quality content in social me-
dia. In Proceedings of the 2008 International Conference on
Web Search and Data Mining, 183–194.
Bernstein, D. S. 1999. Reusing old policies to accelerate
learning on new mdps. Technical report, University of Mas-
sachusetts, Amherst.
Bowling, M., and Veloso, M. 1998. Reusing learned policies
between similar problems. In Proceedings of the AI* AI-98
Workshop on New Trends in Robotics.
Brys, T.; Harutyunyan, A.; Vrancx, P.; Taylor, M. E.; Ku-
denko, D.; and Nowé, A. 2014. Multi-objectivization of
reinforcement learning problems by reward shaping. In In-
ternational Joint Conference on Neural Networks (IJCNN),
2315–2322. IEEE.

Erharuyi, N., and Fairbairn, D. 2003. Mobile geographic
information handling technologies to support disaster man-
agement. Geography 88(4):312–318.

Hinze, A., and Voisard, A. 2003. Location-and time-based
information delivery in tourism. In International Symposium
on Spatial and Temporal Databases, 489–507. Springer.

Khamis, M. A., and Gomaa, W. 2014. Adaptive multi-
objective reinforcement learning with hybrid exploration
for traffic signal control based on cooperative multi-agent
framework. Engineering Applications of Artificial Intelli-
gence 29:134–151.

Koga, M. L.; da Silva, V. F.; and Costa, A. H. R. 2015.
Stochastic Abstract Policies: Generalizing Knowledge to
Improve Reinforcement Learning. IEEE Transactions on
Cybernetics 45(1):77–88.

Liu, C.; Xu, X.; and Hu, D. 2015. Multiobjective reinforce-
ment learning: A comprehensive overview. Systems, Man,
and Cybernetics: Systems, IEEE Transactions on 45(3):385–
398.

MacGlashan, J. 2015. Brown-UMBC rein-
forcement learning and planning (BURLAP),
http://burlap.cs.brown.edu/index.html.

Mcgovern, A., and Barto, A. G. 2001. Automatic discovery
of subgoals in reinforcement learning using diverse density.
In ICML, 361–368.

Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Ve-
ness, J.; Bellemare, M. G.; Graves, A.; Riedmiller, M.;
Fidjeland, A. K.; Ostrovski, G.; et al. 2015. Human-
level control through deep reinforcement learning. Nature
518(7540):529–533.

Ng, A. Y.; Coates, A.; Diel, M.; Ganapathi, V.; Schulte, J.;
Tse, B.; Berger, E.; and Liang, E. 2006. Autonomous in-
verted helicopter flight via reinforcement learning. In Ex-
perimental Robotics IX. Springer. 363–372.

Ngai, D. C. K., and Yung, N. H. C. 2011. A multiple-goal
reinforcement learning method for complex vehicle overtak-
ing maneuvers. Intelligent Transportation Systems, IEEE
Transactions on 12(2):509–522.

Pickett, M., and Barto, A. G. 2002. Policyblocks: An al-
gorithm for creating useful macro-actions in reinforcement
learning. In ICML, 506–513.

Puterman, M. L. 1994. Markov Decision Processes: Dis-
crete Stochastic Dynamic Programming. New York, NY,
USA: John Wiley & Sons, Inc., 1st edition.

Rinner, C., and Malczewski, J. 2002. Web-enabled spatial
decision analysis using ordered weighted averaging. Journal
of Geographical Systems 4(4):385–403.

Roijers, D. M.; Vamplew, P.; Whiteson, S.; and Dazeley,
R. 2014. A survey of multi-objective sequential decision-
making. Journal of Artificial Intelligence Research (JAIR)
48:67–113.

Seo, Y.-W., and Zhang, B.-T. 2000. A reinforcement learn-
ing agent for personalized information filtering. In IUI, 248–
251.

649

Silva, F. L., and Costa, A. H. R. 2015. Multi-objective rein-
forcement learning through reward weighting. In TRI 2015,
joint with IJCAI, 25 – 36.
Singh, S.; Litman, D.; Kearns, M.; and Walker, M. 2002.
Optimizing dialogue management with reinforcement learn-
ing: Experiments with the njfun system. Journal of Artificial
Intelligence Research 16:105–133.
Smith, J.; Mackaness, W.; Kealy, A.; and Williamson, I.
2004. Spatial data infrastructure requirements for mobile lo-
cation based journey planning. Transactions in GIS 8(1):23–
22.
Sutton, R. S., and Barto, A. G. 1998. Reinforcement Learn-
ing: An Introduction. Cambridge, MA, USA: MIT Press, 1st
edition.
Sutton, R. S.; Precup, D.; and Singh, S. 1999. Between mdps
and semi-mdps: A framework for temporal abstraction in
reinforcement learning. Artificial intelligence 112(1):181–
211.
Taylor, M. E., and Stone, P. 2009. Transfer learning for rein-
forcement learning domains: A survey. Journal of Machine
Learning Research 10:1633–1685.
Tesauro, G. 1995. TD-Gammon: A Self-Teaching Backgam-
mon Program. Boston, MA: Springer US. 267–285.
Thrun, S., and Schwartz, A. 1995. Finding structure in re-
inforcement learning. In Advances in Neural Information
Processing Systems 7. MIT Press. 385–392.
Triantaphyllou, E. 2013. Multi-criteria decision making
methods: a comparative study, volume 44. Springer Science
& Business Media.
Van Moffaert, K.; Drugan, M. M.; and Nowé, A. 2013.
Scalarized multi-objective reinforcement learning: Novel
design techniques. In ADPRL, 191–199. IEEE.
van Treeck, T., and Ebner, M. 2013. How useful is twitter for
learning in massive communities? an analysis of two moocs.
Twitter & Society 411–424.
Watkins, C. J., and Dayan, P. 1992. Q-learning. Machine
learning 8(3):279–292.
Zeng, F.; Zong, Q.; Sun, Z.; and Dou, L. 2010. Self-adaptive
multi-objective optimization method design based on agent
reinforcement learning for elevator group control systems.
In WCICA, 2577–2582. IEEE.

650

