The AAAI-17 Workshop on
Computer Poker and Imperfect Information Games
WS-17-06

Combining Incremental Strategy Generation and Branch and Bound
Search for Computing Maxmin Strategies in Imperfect Recall Games

Jifi Cermak,! Branislav Bosansky,! Michal Péchoucek!
1 Agent Technology Center, Faculty of Electrical Engineering, Czech Technical University in Prague
{cermak, bosansky, pechoucek } @agents.fel.cvut.cz

Abstract

Extensive-form games with imperfect recall are an important
model of dynamic games where the players forget previously
known information. Often, imperfect recall games are the re-
sult of an abstraction algorithm that simplifies a large game
with perfect recall. Unfortunately, solving an imperfect recall
game has fundamental problems since a Nash equilibrium
does not have to exist. Alternatively, we can seek maxmin
strategies that guarantee an expected outcome. The only ex-
isting algorithm computing maxmin strategies in imperfect
recall games, however, requires approximating a bilinear pro-
gram that is proportional to the size of the game and thus has a
limited scalability. We propose a novel algorithm for comput-
ing maxmin strategies that combines this approximate algo-
rithm with an incremental strategy-generation technique de-
signed previously for extensive-form games with perfect re-
call. Experimental evaluation shows that the novel algorithm
builds only a fraction of the game tree and improves the scala-
bility by several orders of magnitude. Finally, we demonstrate
that our algorithm can solve an abstracted variant of a large
game faster compared to the algorithms operating on the un-
abstracted perfect-recall variant.

Introduction

Dynamic games with a finite number of moves can be
modeled as extensive-form games (EFGs) that are general
enough to describe scenarios with stochastic events and im-
perfect information. EFGs can model games such as Poker
as well as many real-world scenarios where players have se-
quential strategies and are able to react to information about
the opponent. EFGs are visualized as game trees, where
nodes correspond to states of the game and edges to actions
performed by players. Imperfect information is modeled by
a grouping of indistinguishable states into information sets.

Recent advancements in scalability of algorithms for solv-
ing EFGs has been primarily driven by the research around
Annual Computer Poker Competition' and has led to solving
heads-up limit texas hold’em poker (Bowling et al. 2015).
Most of the algorithms for solving EFGs assume that play-
ers remember all the information gained during the course
of the game (von Stengel 1996; Zinkevich et al. 2007;

Copyright (© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.
"http://www.computerpokercompetition.org/

319

Hoda et al. 2010) — a property denoted as a perfect re-
call. The size of a strategy (a randomized selection of an
action to play in each information set) grows exponen-
tially with the number of moves in the game due to the
perfect memory and can quickly reach intractable propor-
tions. One approach for solving large perfect recall EFGs
is thus to create an abstracted game where certain informa-
tion sets are merged together, solve this abstracted game,
and then translate the strategy from the abstracted game into
the original game (e.g., see (Gilpin and Sandholm 2007;
Kroer and Sandholm 2014; 2016)). However, to sufficiently
reduce the size of the strategy, the assumption of the per-
fect recall might need to be violated in the abstracted game
resulting in imperfect recall.

There are fundamental difficulties when we talk about
solving imperfect recall games. The best known game-
theoretic solution concept, a Nash equilibrium (NE), does
not have to exist even in zero-sum games (see (Wichardt
2008) for a simple example). As a consequence, stan-
dard algorithms (e.g., a Counterfactual Regret Minimization
(CFR) (Zinkevich et al. 2007)) can converge to exploitable
strategies (see Example 1). Practical approaches avoid this
issue by creating very specific abstracted games so that per-
fect recall algorithms are still applicable: e.g., in (skew)
well-formed games (Lanctot et al. 2012; Kroer and Sand-
holm 2016) and normal-form game with sequential strate-
gies (Lisy, Davis, and Bowling 2016). The restrictions posed
by these classes are rather strict, however, and can prevent us
from creating sufficiently small abstracted games and thus
fully exploit the possibilities of abstractions and compact
representation of dynamic games.

An alternative to finding NE is to compute a strategy
that guarantees the best expected outcome for a player — a
maxmin strategy. Koller and Megiddo showed that comput-
ing a maxmin strategy is NP-hard and that maxmin strategies
may require irrational numbers even when the input uses
only rational numbers (1992). The first algorithm computing
maxmin strategies in imperfect recall games uses a mixed-
integer linear program (MILP) that approximates maxmin
strategies and present a branch-and-bound search over lin-
ear relaxations of this MILP (denoted as BNB) (Bosansky et
al. 2017). The main disadvantage of this approach is that it
requires to repeatedly solve a linear program proportional to
the size of the game, resulting in a limited scalability.

g h g h
] [+ [[

Figure 1: An imperfect recall game where CFR can reach a
non-optimal strategy.

We propose a novel algorithm that significantly extends
the BNB algorithm by employing incremental strategy gen-
eration techniques. While such techniques exist for perfect
recall games (Bosansky et al. 2014), transferring the ideas to
imperfect recall games presents a number of challenges that
we address in this paper. We define the restricted EFG that is
a subset of the original EFG and describe how the restricted
game is solved via the BNB search. This corresponds to an
integration of two iterative algorithms. Finally, we must en-
sure the correct expansion of the restricted EFG so that our
algorithm preserves guarantees for approximating maxmin
strategies. The experimental evaluation shows that our al-
gorithm improves the scalability of BNB by several orders
of magnitude. Moreover, we show that we can use our al-
gorithm to solve an abstracted imperfect-recall variant of
Phantom Tic-Tac-Toe faster compared to solving the orig-
inal perfect-recall variant of the game.

Extensive-Form Games with Imperfect Recall

A two-player extensive-form game (EFG, see Figure 1) is a
tuple G = (N, H, Z, A,u,C,T) representing a game tree.
N = {1,2} is a set of players, by i we refer to one of the
players, and by —i to his opponent. A denotes the set of all
actions. H denotes a finite set of histories of actions taken by
all players and the chance player from the root of the game.
Each history corresponds to a node in the game tree; hence,
we use the terms history and node interchangeably. Z C H
is the set of all terminal states of the game. An ordered list
of all actions of player ¢ from root to node A is referred to
as a sequence, o; = seq,(h), ¥; is a set of all sequences
of player ¢. For each z € Z we define a utility function
u : Z — R and assume that player 1 maximizes the util-
ity, while player 2 minimizes it. The chance player selects
actions based on a fixed probability distribution known to
all players. Function C : H — [0, 1] is the probability of
reaching A due to chance.

Imperfect observation of player ¢ is modeled via infor-
mation sets T; that form a partition over h € H where ¢
takes action. Player 7 cannot distinguish between nodes in
any I; € Z;. A(I;) denotes actions available in each h € I;.
We assume that action a uniquely identifies the information
set where it is available. We use seq,(/;) as a set of all se-
quences of player ¢ leading to I;. Finally, we use inf;(o;) to
be a set of all information sets to which sequence o; leads.

320

A behavioral strategy B; € B, is a probability distribu-
tion over actions in each information set I € Z,. We use
up(B) = u1(B;, B—;) for the expected outcome of the game
when players follow 3. A best response of player 1 against
Bo is a strategy PR € BRy(Bs), where u(BPE, By) >
u(py, B2) for all 51 € By (BR1(B2) denotes a set of all
best responses to [32). Best response of player 2 is defined
analogously. 5;(I, a) is the probability of playing a in I.

We say that 3; and 3} are realization equivalent if for any
B_i.Vz € Z f(2) = f(2), where 5 = (B;, f_;) and ' =
(1{7 571)

A maxmin strategy 7 is defined as] = argmaxg, ¢p,
ming, ep, u1(S1, B2). When a Nash equilibrium in behav-
ioral strategies exists in a two-player zero-sum imperfect re-
call EFG, fj is a Nash equilibrium strategy for player 1.

Perfect, Imperfect, and A-loss Recall.

In perfect recall all players remember the history of their
own actions and all information gained during the course
of the game. As a consequence, all nodes in any informa-
tion set I; have the same sequence for player 7. If the as-
sumption of perfect recall does not hold in an EFG, we
talk about games with imperfect recall. In imperfect recall
games, mixed and behavioral strategies are not comparable
in general.

In games where one information set can be reached more
than once during one playthrough (game with absentmind-
edness) the best response of a player might need randomiza-
tion. We restrict to games with no absentmindedness where
it is sufficient to consider pure strategy best responses (see,
e.g., (Bosansky et al. 2017)).

Finding a best response in perfect recall games can be
done by selecting the best action to play in each informa-
tion set. This type of response, termed time consistent strat-
egy, does not have to be an ex ante best response in gen-
eral imperfect recall games (Kline 2002). A class of im-
perfect recall games where it is sufficient to consider only
time consistent strategies when computing best responses
was termed as A-loss recall games (Kaneko and Kline 1995;
Kline 2002).

Definition 1. Player i has A-loss recall if and only if for
every I € T, and nodes h,h' € I it holds either (1)
seq;(h) = seq;(h'), or (2) 3AI' € I; and two distinct ac-
tions a,a’ € A;(I'),a # o such that a € seq,(h) Nd' €
seq, ().

Condition (1) in the definition says that if player ¢ has per-
fect recall then she also has A-loss recall. Condition (2) can
be interpreted as requiring that each loss of memory of A-
loss recall player can be traced back to some loss of memory
of the player’s own previous actions.

The equivalence between time consistent strategies and ex
ante best responses allows us to simplify the best responses
of player 2 in case she has A-loss recall. Formally, it is
sufficient to consider best responses that correspond to the
best response in the coarsest perfect-recall refinement of the
imperfect recall game when computing best response for a
player with A-loss recall. By a coarsest perfect recall refine-
ment of an imperfect recall game G we define a perfect recall

game G’ where we split the imperfect recall information sets
to biggest subsets satisfying the perfect recall assumption.
Finally, we assume that there is a mapping between actions
from the coarsest perfect recall refinement A’ and actions in
the original game A so that we can identify to which actions
from A’ an original action a € .4 maps. We assume this
mapping to be implicit since it is clear from the context.

Lemma 1. Let G be an imperfect recall game where player
2 has A-loss recall and 1 is a strategy of player 1, and let
G’ be the coarsest perfect recall refinement of G for player
2. Let B} be a pure best response in G' and let 35 be a re-
alization equivalent behavioral strategy in G, then (s is a
pure best response to (31 in G.

The proof follows from the A-loss recall property (see
(Bosansky et al. 2017) for more detailed proof).

Notice that the N P-hardness proof of computing maxmin
strategies due to Koller (Koller and Megiddo 1992) still ap-
plies since the reduction provided by Koller is a special case
of the setting assumed in our paper.

Finally let us discuss the CFR in imperfect recall games.
The no-regret learning cannot work in general in imperfect
recall games, since the loss function I*(b;) = u; (b, b ;) —
wi(bs, b ;) used in computation of external regret (see, e.g.,
(Zinkevich et al. 2007)) can be non-convex over the prob-
ability simplex of behavioral strategies (the loss function
must be convex for a no-regret learning to have convergence
guarantees (Gordon 2006)).

Example 1: Consider the game from Figure 1. Lets as-
sume we are in the step 7' of a no-regret learning algorithm
and we evaluate the loss of some strategy 31 in step ¢t < 7.
Assume that 8 (a) = B%(g) = 0.5 and 4(d) = Bi(e) = 1.
Let Bi(a) = Bi(g) = L Al(b) = Bi(h) = 1, and fi-
nally 8Y(a) = BY(g) = 0.5. The losses of these strate-
gies are I'(B1) = —a, I'(B)) = —=, I*(B]) = 0. Since

1 is a convex combination of ($; and] with uniform
weights, it follows that the loss function is non-convex,
hence the convergence guarantees used in CFR due to Gor-
don (2006) no longer apply. This is not the case in perfect
recall games, since the behavior of 7 after any a,a’ € A(I;)
is independent VI € Z;. Furthermore, the guarantee of con-
vergence of CFR to (e-)optimal strategies in (skew) well-
formed games (Kroer and Sandholm 2016) is based on
bounding the non-convexity of the loss function. By increas-
ing x > 2 in the the game from Figure 1, the CFR can con-
verge to a strategy with expected value arbitrarily worse than
the maxmin value -1, since mixing between actions a and
b can yield the expected value strictly worse than the ex-
pected value reached by deterministic samples containing a
and b if player 2 plays d and e with positive probability. The
average strategy, which can mix between actions evaluated
when played deterministically only, has therefore, no guar-
antee for its expected value. The game has A-loss recall and
2 Nash equilibria, namely playing (a, g) or (b, h) determin-
istically for player 1 and (c, f) for player 2 (no mix between
these two strategies for player 1 is a Nash equilibrium). We
empirically demonstrate the strength of strategies the CFR
converges to for this game in the experiments section.

321

Maxmin BNB Algorithm

We base our method on the branch-and-bound algorithm
(denoted BNB) from (Bosansky et al. 2017). BNB algorithm
is based on approximating the following bilinear program.
We assume WLOG that player 1 is the maximizing player.

Constraints (1a)—(1h) represent a bilinear reformulation
of the sequence-form LP (von Stengel 1996) applied to the
information set structure of an imperfect recall game G
where player 2 has A-loss recall.

(1a)

max v(root, 0))
T,V

st. r) =1 (1b)
0<r(o)<1 Vo € 3y (Ic)
> r(ea) =r(0) Vo € $1,VI €infi(o1) (1d)
acA(I)
> x(a)=1 vIe " (le)
ac A(I)
0<a(a)<1 VI € 7{%,Va € A(I) (1f)

VI € 1% Va € A(I),
Vo € seq; (1)

Zg(athQCl)?"l(Ul) +Zv([foza) > v(l,02)
o1€3] I’€infy(o2a)

VI € Iy,Vo2 € seqy(I),Va € A(I)

(1g)

(1h)

The objective of player 1 is to find a strategy that maximizes

the expected utility of the game. The strategy is represented
by variables r that assign probability to a sequence: r(o71) is
the probability that oy € X; will be played assuming that
information sets, in which actions of sequence o; are appli-
cable, are reached due to player 2. Probabilities must sat-
isfy so-called network flow Constraints (1c)—(1d). Finally, a
strategy of player 1 is constrained by the best-responding op-
ponent that selects an action minimizing the expected value
in each I € Z, and for each o2 € seq,(/) that was used to
reach I (Constraint (1h)). These constraints ensure that the
opponent plays the best response in the coarsest perfect re-
call refinement of G and thus also in G by Lemma 1. The
expected utility for each action is a sum of the expected util-
ity values from immediately reachable information sets I’
and from immediately reachable leafs. For the later we use
generalized utility function g : ¥; x 3o — R defined as
g(o1,02) = Ezez|seq1(z):al/\seqz(z):o—z u(z)C(2). In im-
perfect recall games multiple o; can lead to some imperfect
recall information set I; € Iil R C T, hence, realization
plans over sequences do not have to induce the same be-
havioral strategy for I;. Therefore, for each I; € T{% we
define behavioral strategy x(a) for each a € A(l;) (Con-
straints (1e)—(1f)). To ensure that the realization probabili-
ties induce the same behavioral strategy in I, we add bilin-
ear constraint 7(o1a) = z(a) - r(o1) (Constraint (1g)).

Approximating Bilinear Terms

We use Multiparametric Disaggregation Technique (MDT)
(Kolodziej, Castro, and Grossmann 2013) for approximating

bilinear constraints (1g). The main idea of the approximation
is to use a digit-wise discretization of one of the variables
from a bilinear term. The main advantage of this approxima-
tion is a low number of newly introduced integer variables
and an experimentally confirmed speed-up over the standard
technique of piecewise McCormick envelopes (Kolodziej,
Castro, and Grossmann 2013).

9
dwke=1 LEZ (2a)
k=0
0 Wi, ¢ E{O, 1} (2b)
ZZlOZ ck-wke=0> (20)
€7 k=0
wpp<éne <’ owpe VEZVEE0.9 (2d)
9
> ke=c Ve (2e)
9 k=0
SN 10" keére=a (2f)

LEZ k=0

In general, let a = bc be a bilinear term. MDT discretizes
variable b and introduces new binary variables wy, ; that in-
dicate whether the digit on ¢-th position is k. Constraint (2a)
ensures that for each position ¢ there is exactly one digit
chosen. All digits must sum to b (Constraint (2c)). Next, we
introduce variables ¢ ¢ that are equal to ¢ for such k and
¢ where wy,; = 1, and é = 0 otherwise. ¢l and ¢V are
bounds on the value of variable c. The value of a is given by
Constraint (2f).

This is an exact formulation that requires infinite sums
and an infinite number of constraints. However, by re-
stricting the set of all possible positions £ to a finite set
{PL,...,Py} we get a lower bound approximation. Fol-
lowing the approach in (Kolodziej, Castro, and Grossmann
2013) we can extend the lower bound formulation to com-
pute an upper bound:

Constraints (2a), (2d), (2¢)

9

Z Zloz k-wge+Ab=10 (3a)
€{Pp ... Py} k=0 0 < Ab < 107 (3b)

. <A<
Z Zl()e k- Cre+Aa=a (o)
(e{PrLonPUd R=0 L A< Ag <UL Ab (3d)
(c - cU) 107 4V Ab < Aa (e)
(c— cL) 1077 4" Ab > Aa G

Here, Ab is assigned to every discretized variable b allow-
ing it to take up the value between two discretization points
created due to the minimal value of ¢ (Constraints (3a)—
(3b)). Similarly, we allow the product variable a to be in-
creased with variable Aa = Ab-c. To approximate the prod-
uct of the delta variables, we use the McCormick envelope
defined by Constraints (3d)—(3f).

322

Upper Bound MILP Approximation

By applying MDT to Constraint (1g) we represent every
variable z(a) using a finite number of digits. Binary vari-

I .
ables w,';" correspond to wy, ¢ variables from the example
shown in previous subsection and are used for the digit-wise

discretization of x(a). 7(c1)§ , correspond to ¢j, ¢ variables

used to discretize the bilinear term r(o7a). In order to allow
variable z(a) to attain an arbitrary value from [0, 1] interval
using a finite number of digits of precision, we add a real
variable 0 < Az(a) < 10~ that can span the gap between
two adjacent discretization points. Constraints (4d) and (4e)
describe this loosening. Variables Az(a) also have to be
propagated to bilinear terms (o) - 2:(a) involving x(a). We
cannot represent the product Ar(cia) = r(o1) - Az(a) ex-
actly and therefore we give bounds based on the McCormick
envelope (Constraints (41)—(4j)).

max v(root, () (4a)
s.t. Constraints (1b) - (1f), (1h)
wyg € {0,1} VI e T Va € A(I),
. Vk €0.9,¥0 € —P.0 (4b)
Zw,ﬁ? =1 VI € 71", Va € A(I),
k=0 Yl e —P.0 (4c)
0 9
Z ZlO[k- w,ﬁ? + Az(a) = z(a)
{=—P k=0
VI € 1% Va € A(I) (4d)
0< Az(a) <10°F VI € I1% Va € A(I) (4e)
0<#(0)ie < wis VI € Z{" Va € A(I), (4D

Vo € seq,(I),VL € —P..0
VI € 71", Vo € seq, (I)

k=0 vee —P.0 (42
0 9
> D T10" ki (0)i e + Ar(oa) = r(0a)
l=—P k=0
VI € 7% Va € A(I),
Vo € seq, (1) (4h)

(r(o) = 1) -107F 4 Az(a) < Ar(ca) <1077 - 7(0)
VI € 1% Va € A(I),
Vo € seq; (1)

vI € (% Vo € seq, (1),
Va € A(I)

(41)
0 < Ar(ca) < Az(a)
“p

Due to this loose representation of Ar(oqa), the reformu-
lation of bilinear terms is no longer exact and this MILP
therefore yields an upper bound of the bilinear sequence
form program (1). Note that the MILP has both the num-
ber of variables and the number of constraints bounded by
O(|Z| - |£| - P), where |X| is the number of sequences of
both players. The number of binary variables is equal to
10 - |ZFE| . A7ez . P, where AT%* = max;ez, |A1(I)].

The BNB Algorithm

The BNB algorithm works on the linear relaxation of the
Upper Bound MILP and searches the BNB tree in the best
first search manner. In every node n, the algorithm solves the
relaxed LP corresponding to node n, heuristically selects the
information set / and action a contributing to the current ap-
proximation error the most, and creates successors of n by
restricting the probability 51 (I, a) that a is played in I. The
algorithm adds new constraints to LP depending on the value
of 51(I,a) by constraining (and/or introducing new) vari-

ables w,ﬁfl’a and creating successors of the BNB node in the

search tree. Note that wlgl’a variables correspond to binary
variables in the MILP formulation. This way, the algorithm
simultaneously searches for the optimal approximation of
bilinear terms as well as the assignment for binary variables.
The algorithm terminates when e-optimal strategy is found.

Algorithm 1: BNB algorithm

input : Initial LP relaxation L Py of Upper Bound MILP

output : e-optimal strategy for a maximizing player

parameters: Bound on maximum error €, bound P45 for
bilinear term precision approximation

1 fringe < (LPy, —00, 00)
2 opt « (LPy, —00,0)
3 while fringe # @ do

4 (LP,1b, ub) < arg max ub

neEfringe n.

5 fringe < fringe \ (LP, b, ub)

6 if opt.Ilb > ub then

7 | return ReconstructStrategy (opt)
8 if opt.Ib < [b then

9 | opt < (LP,1b,ub)

10 if ub — b < € then

1 | return ReconstructStrategy (opt)
12 (I1,a) < SelectAction (LP)

13 AddSuccessors (LP, 11, a, Prag)
14 return ReconstructStrategy (opt)

More formally, the BNB algorithm (Algorithm 1) main-
tains the fringe of candidates. Each candidate corresponds to
an LP with each bilinear term approximated to some level of
precision (i.e., some number of decimal points). Among re-
laxed binary variables, all but the ones corresponding to the
last level of precision are fixed to some value. The algorithm
always solves the node with the highest upper bound (line
4). It keeps track of the current best solution with the high-
est lower bound, representing the highest guaranteed value
for maximizing player (line 9). In each node, the algorithm
checks the current bounds. If these values differ by more
than the desired approximation ¢, the algorithm generates
new candidates by selecting bilinear term corresponding to
some action and increases its precision (line 12), adds new
variables and constraints into the LP that further restrict the
maxmin strategy, and adds them to the fringe (line 13). The
algorithm calculates an upper bound by solving the relaxed
LP and a lower bound by constructing an imperfect recall
strategy from the current LP and computing a best response
against it. For more detailed description of the heuristics that
can be used for RECONSTRUCTSTRATEGY and SELECTAC-

323

TION see (Bosansky et al. 2017).

In the experimental evaluation BNB often outperforms the
IBM CPLEX MILP solver on this formulation. There are
two reasons for this: (1) BNB algorithm can compute a valid
lower-bound candidate in each node of the search tree (while
this is typically possible only in leaves in standard MILP
search), (2) BNB algorithm can incrementally improve the
precision of approximation of bilinear terms (thus improving
the expected outcome of a maxmin strategy) and at the same
time fix the values of binary variables.

The main disadvantage of BNB is that the LP is linear in
the size of the game and thus the algorithm can refine bilin-
ear terms in parts of the game that may not be relevant for
the final solution. To overcome this disadvantage, an incre-
mental strategy-generation technique can be employed.

Double Oracle for Perfect Recall EFGs

The double oracle algorithm for solving perfect recall EFGs
(DOEFG, (Bosansky et al. 2014)) is the adaptation of col-
umn/constraint generation techniques for EFGs. The main
idea of DOEFG is to create a restricted game where only
a subset of actions is allowed to be played by the play-
ers and then incrementally expand this restricted game by
allowing new actions to be played. The restricted game is
solved as a standard zero-sum extensive-form game using
the sequence-form linear program (Koller, Megiddo, and
von Stengel 1996; von Stengel 1996). Afterward, best re-
sponse algorithms search the original unrestricted game to
find new sequences to add to the restricted game for each
player. The algorithm terminates when the best response cal-
culated on the unrestricted game provides no improvement
to the solution of the restricted game for either of the players.

DOEFG uses two aspects in order to guarantee a linear
number of iterations in the size of the game tree: (1) the al-
gorithm assumes that players play some pure default strategy
outside the restricted game (e.g., playing the first action in
each information set given some orderings), (2) temporary
utility values are assigned for leafs in the restricted game
that correspond to an inner node in the original unrestricted
game (so called temporary leaf), which form an upper bound
on the expected utility.

Towards Double Oracle in Imperfect Recall

Adapting the ideas of DOEFG for games with imperfect re-
call poses several challenges that we need to solve. First, to
solve the restricted game means to compute maxmin strat-
egy for player 1. However, solving the restricted game does
not provide us with a valid upper bound needed in the BNB.

Second, solving the restricted game requires calling BNB
search that iteratively refines the approximation of bilin-
ear terms instead of solving a single (or a pair of) LPs in
DOEEFG for perfect recall games. Our algorithm thus makes
an integration of two iterative methods and decides when to
expand the restricted game and when to refine the approxi-
mation of bilinear terms already in the restricted game.

Double Oracle BNB for Imperfect Recall
EFGs

In this section we first provide a high-level description of
the algorithm, followed by formal definitions of all the nec-
essary components of the algorithm.

Algorithm 2: DOBNB algorithm

input : Initial LP relaxation L Py of Upper Bound
MILP, Initial restricted game G
output : e-optimal strategy for a maximizing player

parameters: Bound on maximum error €, bound P44 for
bilinear term precision approximation

fringe < (LPy, —00,00)
opt < (LPy, —00,0)
while fringe # @ do
(LP,1b,ub) + arg max,, ¢z 7-ub

fringe < fringe \ (LP, b, ub)
if opt.Ib > ub then

| return ReconstructStrategy (opt)
if opt.Ib < b then

| opt < (LP,1b,ub)
if ub — b < € then

| return ReconstructStrategy (opt)
if FromSmallerG (n, G) then
(LP,1b,ub) < Resolve ((LP,1b,ub), G)
Add ((LP, b, ub), G)
else if CanBeExpanded (G, LP) then
G + Expand (G, LP)
(LP,lb,ub) + Resolve ((LP,lb,ub), G)
Add ((LP,1b,ub), G)

e X N AN R W N =

T T e <
X N AN B W N =S

else

[
S ©

(I1,a) + SelectAction (n)
AddSuccessors (n, I1, a, Pmaz, G)

22 function Add ((LP, lb, ub), G)

23 while PendingToAdd (G, LP) do

24 G + AddPending (G, LP)

25 (LP, b, ub) < Resolve ((LP,1b,ub), G)
26 fringe < (LP,1b, ub)

153
-

In Algorithm 2 we present the extension of the BNB al-
gorithm to DOBNB. The algorithm starts with the empty
restricted game G. Lines 1 to 11 are the same as in the BNB
algorithm. There are two differences: (1) all the solution can-
didates use the current restricted game G, and (2) before we
add any candidate to the fringe, we need to make sure that
all the potential deviations of the maximizing player are in
G using function ADD (lines 22 to 26, see Updating the Re-
stricted Game for details). In every iteration of the DOBNB,
we first check whether the bounds of the current node were
computed in some smaller restricted game than the current
G (line 12). If yes we recompute the bounds on the current
restricted game (line 13) to make sure that the bounds are
as precise as possible and return the node to the fringe (line
14). Else, if bounds come from the same game as the current
restricted game, the algorithm checks whether G can be ex-
panded (line 15, see Updating the Restricted Game). If yes,
we expand G, resolve and return the candidate to the fringe
(lines 16 to 18). Otherwise, if G cannot be expanded, the
algorithm continues in the same way as BNB. It generates

324

new candidates by selecting bilinear terms corresponding to
some action from the current restricted game G (line 20),
increases their precision and adds new variables and con-
straints into the LP that further restrict the maxmin strategy.
Next, it adds the resulting candidates to the fringe (line 21)
in the same way as in BNB (note that we add the candidates
to the fringe using the ADD function (lines 22 to 26)).

The Restricted Game

This section formally defines the restricted game G' =
(N,H, 2", A", p,uV B, C,T') as a subset of the original un-
restricted game and G = (N, H, Z, A, p,u, C,).

The restricted game is limited by a set of allowed se-
quences ®’ C ¥, that are returned by the oracle algorithms.
An allowed sequence o; € ® might not be playable to the
full length due to missing compatible sequences of the op-
ponent. Therefore, the restricted game is defined using the
maximal compatible set of sequences ¥’ C ®’. Formally

E; = {0‘»; S q):;BOLi S ‘13'/_1 dheH

Vj €N :seqj(h) =0;},Vie N. (5
The sets H', A’ and Z' are the subsets of H, A and Z reach-
able when playing sequences from Y'. The set of leaves in
G’ is a union of leaf nodes of G present in G’ and inner
nodes from G that do not have a valid continuation in Y’

Z'=ZnHYu{heH \ Z: A(h)=0}. (6)

We refer to the members of Z’ \UZ as temporary leaves and
define a modified utility value u%? such that it ensures that
the maxmin value of the restricted game is higher than the
maxmin value of the original game. Formally,

u/P(z)= max ui(BR{(B2),B2),Vz€ 2'\ Z, (T)

B2eBEPUBER

where 2% is a best response of player 2 in G to be added

in this iteration of the algorithm; BR7(52) here stands for
a best response of player 12, when starting in z against [32;
u§(B1, B2) is the expected value, when playing accoring to
1 and B, and starting in z. Finally BL* is the set of all pos-
sible best responses of player 2 taken from the current LP by
finding actions corresponding to active Constraint (1h). No-
tice that the «{'® might differ in every iteration of the algo-
rithm. This provides guarantees that u{'? is an upper bound
against all possible reactions of the minimizing player. Ad-
ditionally, Vz € Z N Z'uVB(2) = u1(2).

Note that if not stated otherwise, when we operate with a
strategy from the restricted game in the whole unrestricted
game, we automatically assume that it is extended by a de-
fault strategy as in DOEFG.

2Since the maximizing player does not have to have A-loss re-
call, we compute the best response in the coarsest perfect recall
refinement of the solved unrestricted game for player 1. This al-
lows us to efficiently obtain an upper bound on the correct value
(uYB(h) is still an upper bound on the value obtainable in k).

Updating the Restricted Game.

In this section we dicuss the oracles used in the DOBNB and
the way their results are used to expand the restricted game
(lines 16 and 24 in Algorithm 2).

Player 1 oracle. By solving the restricted game we com-
pute a non-exploitable strategy for player 1. Therefore, we
can use a best response algorithm as an oracle for player
2. In every iteration we compute 3P € BRy(p) in G,
where 3; is the maxmin strategy of player 1 in the current
restricted game. We extend $» by all the valid continuations
of o9 € @5 by actions in 42 and update ¥’ accordingly.

Player 2 oracle. On the other hand, the restricted game
does not produce a non-exploitable strategy of player 2. This
poses the most significant challenge in devising the oracle
for the maximizing player since we cannot use a best re-
sponse algorithm for adding sequences for player 1. Instead,
we use a set of pending states

Hy={h € H\ H'|Fh' € H13a € A(K):h'a=h}, (8

as a set of possible extensions of the restricted game by
taking actions in states of the maximizing player 1. We take
a subset H;, C H,, such that all b € H;, are reachable by
some 35 € BEP U BB, where SR € BRy(B1) is the best
response suggested by the minimizing player oracle for the
current restricted game. By Hj; we denote a subset of H,,
where for all h € H holds that uY?(h) > uf{(n’) for
ulB(W) = ming, czLr ul’ (B1, BL), where I is the parent
of h. When expanding, we add to the restricted game all the
sequences leading to all h € H,,.

The function PENDINGTOADD returns true, if H* is
non-empty, false otherwise. ADDPENDING adds all the se-
quences suggested by the oracle for the maximizing player
to the restricted game. CANBEEXPANDED checks whether
the oracle of any player suggests any sequence to be added to
the restricted game. Finally EXPAND adds all the sequences
suggested by both oracles.

Theoretical Properties

Lemma 2. uY?(2) forms an upper bound on the expected
value player 1 can guarantee in all the z € Z' in the original
game against all the BLT " obtained when resolving the LP
after expanding the restricted game.

Proof. uYB(z) inall z € Z’ takes into consideration all the
best responses from the current LP BXF and the 827 ob-
tained from the minimizing player oracle, hence we are sure
that uf ® (2) > maxg, cper ui(BR{(B3), B5), where BLF’
are all the possible best responses occuring in the LP solved
after the restricted game expansion. This holds since the best
responses can only be replaced by the 32 or removed. O

Lemma 3. All the nodes in the fringe in Algorithm 2 have
a valid lower and upper bound on the solution with corre-
sponding precision restrictions in the original game.

325

Proof. The lower bound is valid, since it is computed as
u1(B1, B2), where 1 is the current solution of the corre-
sponding LP applied to the current restricted game G’, ex-
tended by the default strategy and 33 € BR2(f1) in the
whole game. If 3; is not optimal given the current restric-
tions, this value is strictly smaller than optimum, if 3 is
optimal, it is equal to the maxmin value.

To show that the upper bound is valid, first notice that we
make sure that we add a candidate to the fringe in Algo-
rithm 2 only when we are sure that player 1 cannot increase
his value by deviating outside of the restricted game. This is
done in the function ADD by adding h € H, and resolving
the LP, until H, is empty. By doing this, we are sure that
there is no action for the maximizing player, which might
improve the value of the LP by playing outside of the cur-
rent restricted game. Finally, since for all the z € Z’ holds
that {2 () is the upper bound on the expected value the
maximizing player can get in z (Lemma 2), we are sure that
the upper bound obtained in this setting is higher or equal to
the upper bound obtained in the whole game with the same
precision restrictions. O

Theorem 1. If the BNB algorithm is guaranteed to re-
turn e-optimal solution for some precision parameters, the
DOBNB returns e-optimal solution for the same precision
parameters.

Proof. When the upper and lower bound are at most € dis-
tant, we are sure that we have found an e-optimal solution
(due to Lemma 3). We are guaranteed to reach such a can-
didate in the space of precision restrictions since we never
prune it away (again from Lemma 3). When we reach the
precision restrictions guaranteeing an e-optimal solution in
the full game, we might have an upper bound which is higher
due to the fact that we reach temporary leafs with overesti-
mated upper bounds in the restricted game. In this situation,
however, we are guaranteed to continue expanding the game
and therefore increasing the precision of the upper bound,
until the upper bound reaches the ¢ distance from the lower
bound (condition on line 15 in Algorithm 2). This must hap-
pen after a finite number of steps since the algorithm only
expands the restricted game and reaching ¢ distance is guar-
anteed by the correctness of BNB (Bosansky et al. 2017)
when the restricted game is equal to the original game. [

Experiments

In this section, we provide an experimental evaluation of the
DOBNB, BNB and the baseline MILP (BASE) which itera-
tively solves the MILP resulting from the bilinear program
approximation and iteratively increases the approximation
precision. The main experiments are conducted on a set of
Random games, however, we also report results on an im-
perfect recall search game and an imperfect recall variant of
Tic-Tac-Toe. All algorithms were implemented in Java, each
algorithm uses a single thread, 8 GB memory limit and we
use IBM ILOG CPLEX 12.6.2 to solve all LPs/MILPs.
Random Games. Since there is no standardized collec-
tion of benchmark EFGs, we use randomly generated games

Il Base

I BnB

p=06

[] DoOBnB

0.5 0.5

relative # of instances
relative # of instances

1072
time [s]

10°3 10”4 cutoff 1

102
time [s]

relative # of instances

| wil |

1073 1074 cutoff 1 1012 1074 cutoff

time [s]

0.8 0.8

0.6 0.6

0.4 0.4

relative # of instances
relative # of instances

0.2 0.2

1072
time [s]

10"3 1074 cutoff 1

102
time [s]

0.8
0.6
0.4

relative # of instances

0.2

0.5 “
0
1073

10"3 1074 cutoff 1 1072

time [s]

10”3 1074 cutoff

Figure 2: Results showing the relative cumulative number of instances (y-axis) solved under a given time limit (x-axis) and the
relative amount of instances terminated due to the exceeded runtime in bars labeled cutoff. Rows contain results for branching
factor 3 and 4, columns show results for p = 0.3,p = 0.6,p = 0.9.

in order to obtain statistically significant results. We ran-
domly generate a perfect recall game with fixed depth of
6. To control the information set structure, we use observa-
tions assigned to actions — for player i, nodes h with the
same observations generated by all actions in history belong
to the same information set. In order to obtain imperfect re-
call games with a non-trivial information set structure, we
run a random abstraction algorithm which merges informa-
tion sets according to parameter p (p = 0 means no merges,
p = 1 means that all possible information sets, which do not
cause absentmindedness are merged). We generate a set of
experimental instances by varying the branching factor and
the parameter p. Such games are difficult to solve since (1)
information sets can span multiple levels of the game tree
and (2) actions can easily lead to leafs with differing utility
values. The minimizing player always has A-loss recall.

Search Game. Our second domain is an instance of
search (or pursuit-evasion) games, which are commonly
used for evaluating incremental algorithms (McMahan, Gor-
don, and Blum 2003). The game is played on a directed
graph between attacker and defender. The attacker tries to
cross from a starting node to his destination. The defender
operates two units, each moving only in a restricted part of
the graph, trying to intercept the evader by capturing him in
a node. The players move simultaneously. The only infor-
mation available to the defender is the position of both of
his units without remembering the history of moves leading
there. The evader knows only the sequence of his actions in
the past. It is a zero-sum game, where the attacker obtains
utility 1 for reaching his destination and defender obtains
utility 1 for intercepting the attacker. If a given number of
moves is depleted without either of the events happening,
the game is considered a draw and both obtain utility 0. We
assume the defender to be the maximizing player.

Phantom Tic-Tac-Toe. The last domain is a blind vari-
ant of the Tic-Tac-Toe (e.g., used in (Bosansky et al. 2014)).
The game is played on a 3 x 3 board, with standard rules ex-
cept that the players observe only a partial state of the board
and do not remember the history of actions. Players do not

326

o
2 |
[sN
: //J\\
E \
u% /\—\\/ »

Iterations

Figure 3: The expected value of the expected value of the av-
erage strategy computed by the CFR with outcome sampling
against a best response to it (y-axis) with increasing number
of iterations (logarithmic x-axis) for 5 different seeds.

observe the position of opponent’s stones. If a player tries to
place his stone on a position that is occupied by opponent’s
stone the player learns this information and plays again. This
game has A-loss recall for both players since the players for-
get only information about their own moves in the past.

Results

CFR. We first empirically demonstrate the performance of
the outcome-sampling version of CFR (Lanctot 2013) on the
example game from Figure 1. Figure 3 depicts the expected
utility of the average strategy computed by the CFR against
its best response (i.e., the exploitability of the average strat-
egy; logarithmic x-axis shows the number of iterations, the
y-axis shows the expected utility value of player 1, every line
represents one run for a given seed). The algorithm does not
converge to any fixed strategy, moreover, the expected value
differs significantly from the maxmin value of -1 for player
1. Therefore, we focus only on the comparison of the algo-
rithms that guarantee the convergence to the maxmin strate-
gies in the experiments on larger games. Note that vanilla
CFR (see, e.g. (Lanctot 2013) page 22) does not work ei-
ther, since for example when initialized to uniform strategy,
player 1 will never change this strategy since the expected
values after his actions are always equal.

Table 1: Average relative amount of sequences for maxi-
mizing and minimizing player respectively, added to the re-

stricted game by DOBNB.
bf \p | 0.3 \ 0.6 \ 0.9
3 0.468, 0.231 | 0.598, 0.247 | 0.689, 0.248
4 ‘ 0.585, 0.165 ‘ 0.731, 0.163 ‘ 0.780, 0.192

Random Games. In Figure 2 we present the runtime re-
sults in seconds obtained on random games. Every graph de-
picts the cumulative relative number of instances (y-axis)
solved under a given time limit (logarithmic x-axis). The
columns contain results for random games with varying p,
first row for branching factor 3, second for branching fac-
tor 4. The runtime of the algorithms was limited to 2 hours
on every instance, the relative number of instances termi-
nated after this limit is reported in the bars labeled cutoff.
The results show that the DOBNB outperforms the other
two algorithms across all the settings and achieves on aver-
age at least an order of magnitude better performance than
the second best BNB algorithm. This is due to the fact that
the DOBNB limits adjustments to approximation precision
to the relevant parts of the game tree present in the restricted
game while keeping the underlying LP smaller. Addition-
ally, we can see a significant decrease in a number of in-
stances not solved in a given 2 hour limit, compared to Base
and BNB. Note that the random games form an unfavorable
scenario for all the presented algorithms since the construc-
tion of the abstraction is completely random, which makes
conflicting behavior in merged information sets common. As
we can see, however, even in these scenarios the DOBNB is
capable of solving the majority of instances with branching
factor 4 which have ~ 3000 nodes in under 2 hours.

In Table 1 we present the average relative amount of se-
quences for each player needed by DOBNB to solve the
random games for each setting. The relative amount of se-
quences needed by the minimizing player is consistently
smaller because the restricted game is build to compute
maximizing player’s robust strategy, while the minimizing
player only plays best responses during the computation.
Even though the size of the restricted game remains similar
across all values of p, we observe an increase in the relative
size, since the number of sequences decreases as the amount
of imperfect recall increases.

Search game. The DOBNB was able to solve a game
with 6 moves allowed for each player (with 863126 states,
949 sequences for the attacker and 19291 sequences for the
defender) using 19.5% of sequences for the defender and
9.7% sequences for the attacker in 5 minutes, while the rest
of the algorithms did not finish in 48 hours.

Phantom Tic-Tac-Toe. The DOBNB was capable of
solving the Phantom Tic-Tac-Toe in under 3 hours while
building only 0.6% and 0.05% of sequences for the first
and second player (it has ~ 10° states, ~ 1.3 - 10% and
~ 4.4 - 10° sequences for the first and second player). The
rest of the algorithms needs to build the whole game tree,
which is not feasible for this game. Furthermore, this result
shows that DOBNB is capable of outperforming the current

327

state-of-the-art algorithms assuming perfect recall since the
most successful of these algorithms is capable of solving the
Phantom Tic-Tac-Toe in 4.88 hours (Bosansky et al. 2014).

Conclusion

We describe the first scalable algorithm for approximating
maxmin strategies in imperfect recall games. Our approach
is a novel combination of an incremental strategy generation
and a branch-and-bound search. The experimental evalua-
tion shows that our algorithm can solve difficult randomly
generated games and, more importantly, it can solve an ab-
stracted variant of a large game faster than the algorithms
operating on the unabstracted perfect-recall variant.

Our algorithm allows new directions of research on im-
perfect recall abstractions in EFGs and thus can be very
valuable in understanding compact representations of se-
quential games. The algorithm can be modified to find the
best imperfect recall abstractions in EFGs. Similarly, the al-
gorithm can be adapted to operate on existing compact rep-
resentations (e.g., Multi-Agent Influence Diagrams (Koller
and Milch 2003)) to further improve the scalability and al-
low real-world applications. Finally, our algorithm also pro-
vides the baseline for evaluation of the quality of strategies
produced by CFR in practical abstracted imperfect recall
games that we plan to evaluate in the future work.

Acknowledgments

This research was supported by the Czech Science Foun-
dation (grant no. 15-23235S), and by the Grant Agency
of the Czech Technical University in Prague, grant No.
SGS16/235/0HK3/3T/13. Computational resources were
provided by the CESNET LM2015042 and the CERIT Sci-
entific Cloud LM2015085, provided under the programme
"Projects of Large Research, Development, and Innovations
Infrastructures".

References

Bosansky, B.; Kiekintveld, C.; Lisy, V.; and Pechoucek, M.
2014. An Exact Double-Oracle Algorithm for Zero-Sum
Extensive-Form Games with Imperfect Information. Jour-
nal of Artificial Intelligence Research 51:829-866.

Bosansky, B.; Cermak, J.; Horak, K.; and Pechoucek, M.
2017. Computing Maxmin Strategies in Extensive-Form
Zero-Sum Games with Imperfect Recall. In ICAART.

Bowling, M.; Burch, N.; Johanson, M.; and Tammelin, O.
2015. Heads-up limit hold’em poker is solved. Science
347(6218):145-149.

Gilpin, A., and Sandholm, T. 2007. Lossless Abstraction of
Imperfect Information Games. Journal of the ACM 54(5).

Gordon, G. J. 2006. No-regret algorithms for online convex
programs. In NIPS, 489—496.

Hoda, S.; Gilpin, A.; Pefia, J.; and Sandholm, T. 2010.
Smoothing Techniques for Computing Nash Equilibria of

Sequential Games. Mathematics of Operations Research
35(2):494-512.

Kaneko, M., and Kline, J. J. 1995. Behavior Strategies,
Mixed Strategies and Perfect Recall. International Journal
of Game Theory 24:127-145.

Kline, J. J. 2002. Minimum Memory for Equivalence be-
tween Ex Ante Optimality and Time-Consistency. Games
and Economic Behavior 38:278-305.

Koller, D., and Megiddo, N. 1992. The Complexity of Two-
Person Zero-Sum Games in Extensive Form. Games and
Economic Behavior 4:528-552.

Koller, D., and Milch, B. 2003. Multi-agent influence dia-
grams for representing and solving games. Games and Eco-
nomic Behavior 45(1):181-221.

Koller, D.; Megiddo, N.; and von Stengel, B. 1996. Effi-
cient Computation of Equilibria for Extensive Two-Person
Games. Games and Economic Behavior 14(2):247-259.

Kolodziej, S.; Castro, P. M.; and Grossmann, I. E. 2013.
Global optimization of bilinear programs with a multipara-
metric disaggregation technique. Journal of Global Opti-
mization 57(4):1039-1063.

Kroer, C., and Sandholm, T. 2014. Extensive-Form Game
Abstraction with Bounds. In ACM conference on Economics
and computation, 621-638. ACM.

Kroer, C., and Sandholm, T. 2016. Imperfect-Recall Ab-
stractions with Bounds in Games. In EC, 459-476. ACM.

Lanctot, M.; Gibson, R.; Burch, N.; Zinkevich, M.; and
Bowling, M. 2012. No-Regret Learning in Extensive-Form
Games with Imperfect Recall. In ICML.

Lanctot, M. 2013. Monte Carlo sampling and regret mini-
mization for equilibrium computation and decision-making
in large extensive form games. University of Alberta.

Lisy, V.; Davis, T.; and Bowling, M. 2016. Counterfac-
tual Regret Minimization in Sequential Security Games. In
AAAL

McMahan, H. B.; Gordon, G. J.; and Blum, A. 2003. Plan-
ning in the Presence of Cost Functions Controlled by an Ad-
versary. In ICML, 536-543.

von Stengel, B. 1996. Efficient Computation of Behavior
Strategies. Games and Economic Behavior 14:220-246.

Wichardt, P. C. 2008. Existence of nash equilibria in finite
extensive form games with imperfect recall: A counterexam-
ple. Games and Economic Behavior 63(1):366-369.

Zinkevich, M.; Johanson, M.; Bowling, M.; and Piccione,
C. 2007. Regret Minimization in Games with Incomplete
Information. NIPS.

328

