The AAAI-17 Workshop on
Human-Machine Collaborative Learning
WS-17-11

Active Preference Elicitation for Planning

Mayukh Das Md. Rakibul Islam Janardhan Rao (Jana) Doppa
School of Informatics & Computing EECS EECS
Indiana University, Bloomington, IN Washington State University Washington State University
Pullman, WA Pullman, WA

Dan Roth

Department of Computer Science

University of Illinois at Urbana-Champaign, Urbana, IL

Abstract

We consider the problem of actively eliciting preferences
from a human by a planning system. While prior work in
planning have explored the use of domain knowledge and
preferences, they assume that the knowledge must be pro-
vided before the planner starts the planning process. Our
work is in building more collaborative systems where a sys-
tem can solicit advice as needed. We verify empirically that
this approach lead to faster and better solutions, while reduc-
ing the burden on the human expert.

Introduction

Planning under uncertainty has been augmented with hu-
man input in several different directions (Tan and Pearl
1994; Dean et al. 1995; Boutilier, Dean, and Hanks 1995;
Myers 1996; Huang et al. 1999; Allen and Ferguson 2002;
Brafman and Chernyavsky 2005; Sohrabi and Mcllraith
2008). One key research thrust in this direction is that of
specifying preferences to the planner in order to reduce the
search over the space of plans. While successful, most of the
preference specification approaches required that the human
input be provided in advance before planning commences.

We propose a framework in which the planner actively
solicits preferences as needed. More specifically, our pro-
posed planner computes the uncertainty in the plan explic-
itly and then queries the human expert for advice based
on this uncertainty as needed. This approach not only re-
moves the burden on the human expert to provide all the
advice/suggestions/preferences upfront but also allows the
planner to focus on the most uncertain regions of the plan
space and query accordingly. Thus it avoids the humans
from providing advice about trivial/most obvious regions of
the plan space and instead focus on the harder part of the
search from the planner’s perspective.

In this work-in-progress paper, we present our initial al-
gorithm for active preference elicitation in planning. As far
as we are aware, this is the first work in this direction for
planning. We consider the hierarchical task network plan-
ner for this task as it allows for seamless interaction with
the humans who solve problems by decomposing them into

Copyright (© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

651

Sriraam Natarajan
School of Informatics & Computing
Indiana University, Bloomington, IN

smaller problems. We evaluate our algorithm on free cell do-
main where we compare against several baselines. Our ini-
tial results show that this collaborative approach allows for
more efficient and effective problem solving compared to
the standard approaches and to the approach of providing all
the inputs in advance.

Background and related work

Preference elicitation (Boutilier et al. 1997; 2004; My-
ers 1996; Huang et al. 1999; Brafman and Chernyavsky
2005; Sohrabi and Mcllraith 2008) has been explored in-
side automated planning, in reinforcement learning and in-
verse reinforcement learning (Maclin and Shavlik 1994;
1996; Torrey et al. 2005; Natarajan and Tadepalli 2005;
Judah et al. 2010; Kunapuli et al. 2013). Most of the above
approaches, though effective, require upfront encoding of
knowledge/preference/advice. Recently, Odom et al.’s work
on active advice seeking in IRL (Odom and Natarajan 2016),
presented a framework to actively query for advice from hu-
man on uncertain states.

Preference based HTN planning (Sohrabi, Baier, and Mcll-
raith 2009) relate closely to the HTN based framework we
adopt and how the decision making process utilizes the pref-
erences, but differ on how such preferences are acquired and
encoded. Our work, is sort of an initial step towards a ro-
bust human-agent collaborative planner as conceptualized
by Allen et. al.(2002).

Active preference elicitation

Previous approaches to active advice seeking have been ex-
plored in the context of inverse RL where a set of demon-
strations are provided along with access to the human ex-
pert. The agent then learns the reward function from the
combination of trajectories and advice. In a planning prob-
lems, however, there are no demonstrations available from
which we can learn policies and get policy level uncertainty.
Hence, for uncertainty based querying in planning, we must
go beyond learning from demonstrations. As the goal here
is not of recovering the underlying reward function, human
suggestion/feedback acts as a way to prune the search space
(see Figure 1). This is in contrast to Odom et al.’s active ad-
vice seeking, where the effect of the advice is included as an
induced bias in the optimization function.

J

N ——

Expert’s suggestion
to explore this part
of state space

Constraint on part
of state space

Figure 1: Decision making as search space pruning

Preference on HTN planning

We used a Hierarchical Task Network (HTN), as the under-
lying planner (Ghallab, Nau, and Traverso 2004). It is a for-
ward search planner which searches in the space of tasks and
subtasks. It proceeds by decomposing a task, in its current
list of tasks, into possible subtasks based on the methods de-
fined in its domain knowledge. If a task is primitive (solvable
by an atomic action) it is removed from the list of tasks, the
action applied to the state and is added as a step in the current
partial plan. Other non-primitive tasks are then decomposed
further. It implicitly allows for several levels of abstraction,
which would otherwise have be achieved via state clustering,
since tasks are nothing but an abstraction for a sub-sequence
of actions. Hence, preferences in an HTN planner results in
pruning of the task decomposition tree. Hierarchical decom-
position is closer to human reasoning and thus allows for
seamless interactions.

Sohrabi et al., (2009) pruned the task decomposition tree
by scoring the quality of decomposition using the hard-
coded metric function, which just measures how well the
task decompositions adhere to the preferences (Figure 2).
Our approach evaluates the quality of the decomposition not
just based on adherence to preferences but optimality of the
partial plan as well.

1 (defun metric (state)

‘ (setg x 0)

1(if

(null (find-satisfiers '(preference_plb_satisfied) state))
(setqg x (+ x)))

(if

(null (find-satisfiers '(preference plal satisfied) state))
(setg x (+ x)))

2 (1if

(null (find-satisfiers '(preference pla2_satisfied) state))

(setq x (+ x)))

(if

(null (find-satisfiers '(preference_pla3_satisfied) state))
(setq x (+ x)))

Figure 2: Hard coded metric in problem definition

Uncertainty in HTN

Uncertainty in HTN planning can be expressed via a distri-
bution over methods (i.e. over the alternatives of decompos-
ing a task) (Li et al. 2010). We induce a distribution over
possible methods by using a sum of 3 different heuristics,
post an n-step look-ahead in the decomposition tree.

1. D,,, - Distance to goal from the current state, post look-
ahead

2. Cy,, - Cost of the partial plan after look-ahead.

3. Agf{fef) _ Adherence to the current set of preferences.

Assume M, = {m;}*_, be the set of k legal methods that
can decompose a given task 7. For every method m;, roll-
out of decompositions is perfomed till a depth cutoff n (tun-
able parameter). Note that the state and partial plan may also
have changed after rollout if primitive tasks were encoun-
tered. Post roll-out, we calculate the quantities D,,,, C,,

and A7) However, D,,, and C,,,, are quantities we wish

to minimize and A% is somthing we wish to maximize.
Hence, to establish uniformity one of them needs to be in-
verted. In our case, we use the inverse of D,,, and C),,. So
the final score of m; becomes,

Spm; = inv (D, + Cyn,) + ALTD (1)

Thus for a given task we get k-length vector of scores
[Simys- -5 Sm,]- We convert this set of scores into a prob-
ability distribution Ppr. = [P, - - - Pm,]- TO get the un-
certainty we measure entropy of the distribution,

UM;) =Y pm-log(1/pm))

meM,

The heuristic has a few interesting properties - (1) Plan
Cost Cyy, is equal to plan length when each action is of unit
cost. Over estimation is impossible since partial plans are
stored at each step. (2) Distance to goal D,,, is the only
domain-dependent component of the entire framework. Do-
main independence is achievable just by counting the num-
ber of goal state literals that are unsatisfied by the current
state, but that is an extremely rough estimate. This is an ad-
missible heuristic since we always take the least number of
steps a particular object might take to be in its final state. (3)

APrH s just an adherence metric to current preferences.

Unlike, Sohrabi’s work (2009), there is no weight on the
preferences. Hence the final score is an admissible heuris-
tic owing to its components being admissible.

Uncertainty based active preference elicitation

Given that we can measure uncertainty over the methods
that decompose a particular task, our active preference elic-
itation framework UAct will query a human for sugges-
tions/preferences when the uncertainty is above a certain
threshold e. The architecture is presented in figure 3. In brief,
the HTN planner picks a task 7 to process. Then, Vm € M.
where M is the set of possible legal methods that can de-
compose T it rolls-out the decomposition to a depth of n. The
roll-out policy is uniform random. Then it gets the score for
every m, calculates the uncertainty and decides whether to
ask for preference. Then it poses the following query:

<Planner>:Trying to solve Task T (Ground task atom)
Decomposition options:

x : [(subtaskl), (subtask2),..., (subtaskj)]
y : [(subtaskl), (subtask2),..., (subtaskj)]
z : [(subtaskl), (subtask2),..., (subtaskj)]

Choose or provide any other suggestion.

HTN Planner
- Taskz ||
Yes| f| UM, P(Me)|
- ~N [< m2

| —] Yk

Query |
Engine ‘

Preference/ Suggestion |

Depth=n

Y

Plan Cost C,,, Goal Distance D,,,, & Adherence A7)/

Figure 3: Architecture of UAct Framework

x,y, z are option numbers and j is the number of subtasks
that might vary across options. Preference can be a particu-
lar method choice or text (with limited vocabulary), which is
parsed into a horn clause, since they closely model IF-THEN
rules, and the method satisfying the clause is executed. If
that does not work, method with highest score is used. The
system is able to solicit suggestions and preferences in dif-
ferent forms from the humans,

e Low level preferences - that asks the planner to perform
a particular action. (Example: “Move the seven of hearts
to the top of the three of clubs”). This move is executed if
the planner finds it legal.

e High level preferences - that suggests the planner on what
the priorities are and how the game should be played. (Ex-
ample: “Try getting rid of Aces first”). These kinds of
preferences end up pruning the task decomposition tree.

e Decomposition choices - where the human chooses
among potential decomposition alternatives. This results
in hard pruning of the decomposition tree.

The formal algorithm for UAct is present in Algorithm 1

Implementation & Experiments

We have used the Java based implementation of the SHOP2
(Nau et al. 2003) architecture (JSHOP) as the base HTN
planner. We have extended it to - (1) expose the task be-
ing processed at the current step to the human, (2) find and
evaluate all viable alternatives/methods for decomposing the
same and (3) elicit human feedback/preference based on un-
certainty over the alternatives. All the extensions are imple-
mented in Java. In our experiments we aim to answer the
following questions, (Q1): How does actively seeking pref-
erence affect solvability, against baselines? (Q2): Does our
approach affect performance in terms of optimality of so-
lutions? and (Q3): Ease of use for a human giving sugges-
tion/preference as opposed to other techniques?

We compared UAct against several alternate approaches
for preference elicitation such as (1) Upfront preference en-
coded as knowledge (2) Random querying with probability
‘P, which is tunable (3) Planning with no preferences. The
last one, though seems to be trivial as a baseline, yet is nec-
essary since we do not assume the expertise of the human.
Consequently, human preferences can potentially push the
search process away from optimality. Hence, in some prob-
lems planning with preferences performs worse than without

653

Algorithm 1 Uncertainty based active pref (UAct)
1: procedure UACT(Task 7, Current State G)

2: Input: Task 7
3: Output: Query Q
4: Initialization: M, < methods(t, &)
5: U(M;) < EntropyCalc(M,,&,n)
6: if U(M;) > € then
7: Q < 7 + M (options) + “Any suggestion?”’
8: else
9: Q + null
10: end if
11: return Q
12: end procedure
13:
14: procedure ENTROPYCALC(Methods M, State &, RollOut
Depth n)
15: Initialize: S(M-) a list for scores of methods
16: for each m in M, do
17: while depth < n do
18: Decompose [update Curr Plan and G]
19: depth < depth + 1
20: end while
21: C <+ cost(CurrPlan) ; D + §(6, goal)
22: A+—ng—np
23: put (S(M;),m :inv(D + C) + A)
24: end for
25: Compute P(M;)
26: Compute U(M,) < 3% pm,;.log(1/pm,)

27: return U(M;)
28: end procedure

any. While our longer-term plan is to evaluate our strategy
in several well known planning domains, we now present
results for one of them, namely Freecell.

Results with Freecell We chose Freecell owing to its pop-
ularity in several International Planning Competitions and
its interesting state and action dynamics. Also, being a well
known game, any arbitrary human can solicit potentially
useful suggestion/preference without requiring to be a do-
main expert. Briefly, a complete freecell game has a tableau
with 8 columns which can hold at most 7 cards (face up),
4 home cells one for each suit, where the cards are sup-
posed to go in order of their ranks (Ace to King) and 4
free cells, which act as the overflow spaces that are used for
game playing. A card can be moved between columns, from
columns to free cell or vise versa. A card can only be moved
to the home cell (finished) if the immediately lower card of
the same suit has already been finished. Several other con-
straints/rules exist that determine legal actions and are en-
coded in the domain definition. At the initial state, a deal is
chosen and cards are laid out in the columns of the tableau.
The goal, always, is to finish the highest ranked card in every
suit (the kings in a complete domain) Games can be relaxed
either by increasing the number of free cells or by taking less
that 13 cards per suit. Note that the planner and the pref-
erence framework are independent of such customizations,
since the game itself is encoded as a set of ground literals.
To evaluate the effectiveness of our approach against
all baselines, we experimented with 20 different problems

3 (e VARO VARY)
1. [(Imove VARD VAR
o e

/AR NIL NIL) (immediate
VARO VAR1)]

VAR VARY)]

1
1

[(Mnish VARD VAR1)]
hoasa any aption or praids any ather suggestion”

0 VAR

(a) With active preference

(b) With active preference (After completion)

(c) No preference (After completion)

Figure 4: Planning on freecell (with and without preference)

(freecell games), 10 complete and 10 relaxed (5 with 8 cards
per suit and 5 free cells and the other 5, 10 cards per suit with
4 free cells). Figure 5 shows a comparison of different ap-
proaches for the percentage of problems solved (plan is gen-
erated), in a given time constraint. We chose the time bound
to be 10 minutes for every problem. The green bar in the
plot proves that our method allows for fast plan generation
in almost 100% of the problems in a given time constraint.

The time constraint is reasonable since, (1) planning prob-
lems are motivated by the need for fast generation of op-
timal or near-optimal solutions, and (2) relaxing the time
constraint may increase performance of the baseline ap-
proaches, but will similarly push ours to 100%. Our ap-
proach never falls short in terms of efficiency since active
preferences always prunes the search space effectively, thus
successfully answering Q1.

UAct

Active pref.
(Random Qry)

Upfront
preference

No
preference

10 20 30 40 50 60 70 80 9‘0 160

o

% Problems solved (10 minutes)
Figure 5: % Problems solved in 10 Minutes

We further compared the performance of the several ap-
proaches in terms of the optimality of the generated plans,
using only 50% of the problems - the ones that are solv-
able without any preference. Table 1 compares the our ap-
proach, (UAct) against all other baselines. The values indi-
cate the percentage of problems in which our proposed ap-
proach produced better (or at least equivalent) plans than the
approach compared against. Here better implies lower plan
length/cost. Clearly our approach outperforms baselines in
terms of optimality of solutions, hence successfully answer-
ing Q2. As an example, figures 4(b) & 4(c) demonstrate
that, for a certain problem (deal 122), planning with no pref-

654

erence performs worse (plancost = 89) than our framework
(plancost = 83)

%o >
UAct vs No Pref 80
UAct vs Active Pref (Random) | 50
UAct vs Upfront Preference 60

Table 1: Percentage of problems, in freecell, in which one
performed better than the other (Lower plan length = Better)

Answering Q3 is trickier. Evaluating and quantifying ease
of preference giving needs an extensive survey. We may at-
tempt that at a later stage, but presently, we try to argue our
case with the interface that we built. Figures 4(a) & 4(b)
demonstrate how a human is able to provide different types
of suggestions as discussed in earlier sections. More impor-
tantly the human is not burdened with the preference giving
process. The planner decides where it needs one and queries
the human. Unlike, Sohrabi et al.’s (2009) work where all
the preferences are encoded upfront into the domain and the
problem descriptions, our framework may start with no pref-
erence at all and query for it as the planning proceeds.

Observe that upfront preference approach is the closest
in performance and may prove to be as good as ours with
careful encoding. However, exhaustively encoding knowl-
edge without observing planner’s current state is difficult
even for an expert, since (s)he is unaware of the parts of
the state space that require additional knowledge (Odom and
Natarajan 2016). Consequently, active elicitation, where hu-
man can decide on what to suggest based on the query and
state, is provably more effective.

Conclusion

We presented our work on active preference elicitation in Hi-
erarchical Task Network planning. The initial results demon-
strate that our approach performs better compared to stan-
dard baselines. Evaluation on several other domains and a
robust collaborative planning framework are our future re-
search directions.

Acknowledgement

We gratefully acknowledge the support of DEFT program
Contract FA8750-13-2-0039 and CwC Program Contract
WO1INF-15-1-0461 with the US Defense Advanced Re-
search Projects Agency (DARPA) and the Army Research
Office (ARO). Any opinions, findings and conclusion or rec-
ommendations expressed in this material are those of the au-
thors and do not necessarily reflect the view of the DARPA,
ARO or the US government.

References

Allen, J., and Ferguson, G. 2002. Human-machine collab-
orative planning. In Proceedings of the Third International
NASA Workshop on Planning and Scheduling for Space.

Boutilier, C.; Brafman, R.; Geib, C.; and Poole, D. 1997. A
constraint-based approach to preference elicitation and de-
cision making. In AAAI spring symposium on qualitative
decision theory.

Boutilier, C.; Brafman, R. I.; Domshlak, C.; Hoos, H. H.;
and Poole, D. 2004. Preference-based constrained optimiza-

tion with cp-nets. Computational Intelligence 20(2):137—-
157.

Boutilier, C.; Dean, T.; and Hanks, S. 1995. Planning un-
der uncertainty: Structural assumptions and computational
leverage. In Proceedings of the Second European Workshop
on Planning.

Brafman, R. L., and Chernyavsky, Y. 2005. Planning with
goal preferences and constraints. In JCAPS, 182-191.

Dean, T.; Kaelbling, L. P.; Kirman, J.; and Nicholson, A.
1995. Planning under time constraints in stochastic domains.
Artificial Intelligence 76(1):35-74.

Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated
planning: theory & practice. Elsevier.

Huang, Y.-C.; Selman, B.; Kautz, H.; et al. 1999. Con-
trol knowledge in planning: benefits and tradeoffs. In
AAAI/IAAIL 511-517.

Judah, K.; Roy, S.; Fern, A.; and Dietterich, T. G. 2010.
Reinforcement learning via practice and critique advice. In
AAAL

Kunapuli, G.; Odom, P.; Shavlik, J.; and Natarajan, S. 2013.
Guiding autonomous agents to better behaviors through hu-
man advice. In /ICDM.

Li, N.; Cushing, W.; Kambhampati, S.; and Yoon, S. 2010.
Learning probabilistic hierarchical task networks to capture
user preferences. arXiv preprint arXiv:1006.0274.

Maclin, R., and Shavlik, J. W. 1994. Incorporating advice
into agents that learn from reinforcements. In AAAL

Maclin, R., and Shavlik, J. W. 1996. Creating advice-taking
reinforcement learners. Machine Learning 22(1):251-281.

Mpyers, K. L. 1996. Advisable planning systems. Advanced
Planning Technology 206-209.

Natarajan, S., and Tadepalli, P. 2005. Dynamic Preferences
in Multi-Criteria Reinforcement Learning. In /CML.

655

Nau, D. S.; Au, T.-C.; Ilghami, O.; Kuter, U.; Murdock,
J. W.; Wu, D.; and Yaman, F. 2003. Shop2: An htn plan-
ning system. J. Artif. Intell. Res. (JAIR) 20:379-404.
Odom, P, and Natarajan, S. 2016. Active advice seeking for
inverse reinforcement learning. In AAMAS.

Sohrabi, S., and Mcllraith, S. A. 2008. On planning with
preferences in htn. In (NMR).

Sohrabi, S.; Baier, J. A.; and Mcllraith, S. A. 2009. Htn
planning with preferences. In IJCAI

Tan, S.-W., and Pearl, J. 1994. Specification and evaluation
of preferences for planning under uncertainty. In KR.
Torrey, L.; Walker, T.; Shavlik, J.; and Maclin, R. 2005. Us-

ing advice to transfer knowledge acquired in one reinforce-
ment learning task to another. In ECML, 412-424.

