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Abstract

Stochastic search algorithms are black-box optimizer of an
objective function. They have recently gained a lot of at-
tention in operations research, machine learning and policy
search of robot motor skills due to their ease of use and
their generality. However, when the task or objective function
slightly changes, many stochastic search algorithms require
complete re-learning in order to adapt thesolution to the new
objective function or the new context. As such, we consider
the contextual stochastic search paradigm. Here, we want to
find good parameter vectors for multiple related tasks, where
each task is described by a continuous context vector. Hence,
the objective function might change slightly for each parame-
ter vector evaluation. In this paper, we investigate a contextual
stochastic search algorithm known as Contextual Relative En-
tropy Policy Search (CREPS), an information-theoretic algo-
rithm that can learn from multiple tasks simultaneously. We
show the application of CREPS for simulated robotic tasks.

Introduction

Stochastic search algorithms are gradient-free black-box
optimizers of some performance function dependent on a
high-dimensional parameter vector. They directly evalu-
ate the execution of a parameter vector by using the re-
turn of an episode. Stochastic search algorithms (Hansen,
Muller, and Koumoutsakos 2003; Sun et al. 2009; Stulp and
Sigaud 2012; Rückstieß, Felder, and Schmidhuber 2008)
typically maintain a search distribution over the parame-
ters that we want to optimise, which is used to create sam-
ples of the parameter vector. Subsequently, the performance
of the sampled parameters is evaluated. Using the sam-
ples and their evaluations, a new search distribution is com-
puted by computing gradient based updates (Sun et al. 2009;
Rückstieß, Felder, and Schmidhuber 2008), evolutionary
strategies (Hansen, Muller, and Koumoutsakos 2003), the
cross-entropy method (Mannor, Rubinstein, and Gat 2003),
path integrals (Stulp and Sigaud 2012; Theodorou, Buchli,
and Schaal 2010), or information-theoretic policy updates
(Kupcsik et al. 2013; Abdolmaleki et al. 2015a). However,
many of the previously mentioned algorithms cannot be ap-
plied to multi-task learning. In other words, if the task setup
or objective function changes slightly, re-learning is needed

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

to adapt the solution to the new situation or the new con-
text. For example, consider optimising the parameters of a
humanoid robot controller to kick a ball. Once the charac-
teristics of the ball, such as weight or material, or objective
function, such as desired kick distance, change, re-learning
is needed. One could independently optimize for several
target contexts in order to generalize a task, for example
optimizing to kick the ball for different distances(context).
Subsequently, when a new unseen context is presented, the
optimized contexts can be generalized through regression
methods (Niehaus, Röfer, and Laue 2007; Wang, Fleet, and
Hertzmann 2009). However now optimizing for different
contexts and then generalizing between the optimized pa-
rameters for different unseen contexts are two independent
processes. Therefore, even though such approaches have
been used successfully, they are time consuming as well as
inefficient in terms of the number of needed training sam-
ples. In other words, we cannot reuse data-points obtained
from optimizing a task with context s to improve and ac-
celerate the optimization of a task with context s′. As such,
it is desirable to learn the selection of the parameters for
multiple tasks at once without restarting the learning process
once we see a new task. This problem setup is also known
as contextual policy search (Kupcsik et al. 2013; Kober, Oz-
top, and Peters 2010). Recently, such multi-task learning
capability was established for information-theoretic policy
search algorithms (Peters, Mülling, and Altun 2010), such
as the episodic Contextual Relative Entropy Policy Search
(CREPS) algorithm (Daniel, Neumann, and Peters 2012;
Kupcsik et al. 2013). In (Abdolmaleki et al. 2015c), CREPS
was successfully used to optimize a walking controller for
different speeds. Despite its advantages, CREPS has a major
set-back that does not allow it to perform favourably. Like
many other stochastic search algorithms, CREPS maintains
a Gaussian search distribution and it updates the mean and
covariance matrix of its search distribution iteratively. How-
ever due to the covariance matrix update rule of CREPS,
we will show that, search distribution might collapse pre-
maturely to a point-estimate before finding a good solution,
resulting in a premature convergence which is highly unde-
sirable. Although, this multi-task learning capability is not
found in other stochastic search algorithms (Hansen, Muller,
and Koumoutsakos 2003; Sun et al. 2009), such as CMA-
ES and NES, or commonly used policy search methods

The AAAI-17 Workshop on  
Human-Machine Collaborative Learning 

WS-17-11

636



(Stulp and Sigaud 2012; Kober and Peters 2010), they typi-
cally don’t suffer from premature convergence. Therefore, to
solve premature convergence problem of CREPS we use the
rank-μ covariance matrix update rule of CMA-ES (Hansen,
Muller, and Koumoutsakos 2003) along with CREPS. Now
we combine the old coavarinace matrix with the estimated
coavariance matrix from samples. We call the resulting algo-
rithm Contextual Relative Entropy Policy Search with Co-
variance Matrix Adaptation (CREPS-CMA). We evaluate
CREPS-CMA on standard functions and simulated robotic
tasks including a complex humanoid robot kicking task. We
will show that CREPS-CMA works favourbly.

Problem Statement

Given a context vector s with m dimensions that defines a
task, we want to find a function m(s) : R

m → R
n that

outputs a parameter vector θ with n dimensions such that it
maximizes an objective function R(θ, s) : {Rn,Rm} → R.
The only accessible information on R(θ, s) are evaluations
{R[k]}k=1...N of samples {s[k],θ[k]}k=1...N , where k is the
index of the sample and N is number of samples. We main-
tain a search distribution π(θ|s) over the parameter space
θ of the objective function R(θ, s). The search distribution
π(θ|s) is modeled as linear Gaussian policy, i.e.,

π(θ|s) = N
(
θ|mπ(s) = AT

πϕ(s),Σπ

)
,

where ϕ(s) is an arbitrary feature function of context s.
In each iteration, a new coefficient matrix Aπ and a new

covariance matrix Σπ is obtained. Typically, ϕ(s) = [1 s],
which results in a linear generalization over contexts. How-
ever, one could use non-linear feature functions such as ra-
dial basis functions (RBF) (Broomhead and Lowe 1988) for
non-linear generalization over contexts. RBF features have
been shown to enable algorithms to learn non-linear policies
which greatly outperform their linear counterparts on non-
linear tasks, such as humanoid walking or humanoid kicking
(Abdolmaleki et al. 2015c).

In each iteration, given context samples1 s[k], the cur-
rent search distribution q(θ|s) is used to create sam-
ples θ[k] of the parameter vector θ. Subsequently, the
evaluation R[k] of {s[k],θ[k]} is obtained by query-
ing the objective function R(θ, s). In many algorithms,
the samples {s[k],θ[k], R[k]}k=1...N are used to compute
a weight d[k] for each sample k. Subsequently, using
{s[k],θ[k], d[k]}k=1...N , a new Gaussian search distribution
π(θ|s) is estimated. This process will run iteratively until
the algorithm converges to a solution. Algorithm 1 shows
a compact representation of contextual stochastic search
methods.

Contextual Stochastic Search

The Relative Entropy Policy Search (REPS) algorithm was
originally proposed as a step-based policy search algorithm

1Please note that the way we sample contexts s[k] depends on
the task. Throughout this paper we use a uniform distribution to
sample contexts s[k].

Algorithm 1 Contextual stochastic search algorithm
Repeat

Set q(θ|s) to π(θ|s)
Generate context samples {s[k]}k=1...N

Sample parameters {θ[k]}k=1...N from cur-
rent search distribution q(θ|s) given context samples

{s[k]}k=1...N

Evaluate the reward R[k] of each sample in the sam-
ple set {s[k], θ[k]}k=1...N

Use the data set {s[k], R[k]}k=1...N to compute a

weight d[k] for each sample

Use the data set {s[k], θ[k], d[k]}k=1...N to update the
new search distribution π(θ|s)
Until search distribution π(θ|s) converges.

(Peters, Mülling, and Altun 2010). Recently, an information-
theoretic stochastic search algorithm was presented as a
modification of REPS (Kupcsik et al. 2013). However, as
we will show, the algorithm suffers from premature conver-
gence. In order to solve this problem, we will extend the
algorithm by using the rank-μ covariance matrix adaptation
method of CMA-ES algorithm resulting to CREPS-CMA al-
gorithm. The CMA-ES algorithm doesn’t work for contex-
tual setting.

Given a dataset {s[k],θ[k], R[k]}k=1...N and the current
distribution q(θ|s) that has been used to generate the un-
weighed samples {θ[k]}k=1...N , CREPS-CMA first com-
putes a weight d[k] for each sample and subsequently, us-
ing these weights, a new search distribution π(θ|s) is com-
puted. Therefore, we start by explaining how the weights are
computed and, after that, we explain the search distribution
update rules.

Weight Computation

The weight computation for CREPS-CMA is essentially the
same as for CREPS (Kupcsik et al. 2013). The key idea be-
hind CREPS is to ensure a smooth and stable learning pro-
cess by bounding the relative entropy between the old search
distribution q(θ|s) and the newly estimated policy π(θ|s).
To do so, we want to optimize the following performance
criteria

max
π

∫∫
μ(s)π(θ|s)Rsθdθds,

s.t.
∫

μ(s)KL
(
π(θ|s)||q(θ|s))ds ≤ ε, (1)

∀s : 1 =

∫
π(θ|s)dθ,

where μ(s) denotes the distribution over the context which
is specified by the task and Rsθ denotes the expected per-
formance when evaluating parameter vector θ in context s.
This optimization problem can be solved efficiently by the
method of Lagrangian multipliers (Boyd and Vandenberghe
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2004). The closed form solution for policy π(θ|s) is given
by

π(θ|s) ∝ q(θ|s) exp (Rsθ/η) ,

where η is a Lagrangian multiplier that sets the temperature
of the soft-max distribution given in the previous equation.
The temperature parameter η can be found efficiently by op-
timizing the dual function

g(η) = ηε+η

∫
μ(s) log

(∫
q(θ|s) exp

(Rsθ

η

)
dθ

)
ds.

(2)
The optimal value for η can be obtained by minimizing the
dual function g(η) such that η > 0, see (Boyd and Vanden-
berghe 2004). However, approximating the log integral in
the dual function (Equation 2) is not feasible as we would
need a lot of samples θi,k for each context sk. As the con-
text can often not be directly controlled, we have only access
to a single action θk per context sk.

In order to achieve this requirement, the performance cri-
teria is reformulated. CREP optimizes for the joint probabil-
ities p(s,θ) instead of for the policy π(θ|s). Additionally,
CREPS enforces that p(s) =

∫
θ
p(s,θ)dθ still reproduces

the correct context distribution μ(s) by using the constraints
∀s : p(s) = μ(s). However, there are now an infinite num-
ber of constraints. In order to avoid this, these constraints are
approximately fulfilled by matching feature expectations, in-
stead of matching single probabilities, i.e.,∫

s

p(s)φ(s)ds = φ̂,

where φ̂ =
∫
s
μ(s)φ(s)ds is the expected feature vector for

the given context distribution μ(s) and a given feature space
φ. For example, if the feature vector φ(s) contains all linear
and squared terms [s, s2] of the context vector s, these con-
straints correspond to matching the first and second moment
of p(s) with the moments of μ(s).2 Note that φ is typically
different from ϕ. The resulting optimization program yields

max
p

∫∫
p(s,θ)Rsθdsdθ

s.t. ε ≥ KL(p(s,θ)||μ(s)q(θ|s)),
φ̂ =

∫∫
p(s,θ)φ(s)dsdθ, (3)

1 =

∫∫
p(s,θ)dsdθ.

The solution for p(s,θ) is now given by

p(s,θ) ∝ q(θ|s)μ(s) exp ((Rsθ − V (s))/η) ,

where V (s) = φ(s)Tw is a context dependent baseline
which is subtracted from the return Rsθ . The parameters w
and η are again Lagrangian multipliers that can be obtained
by optimizing the dual function, given as

2In this paper, in all experiments φ(s) = [s, s2], therefore we
will always match the first and second moment of p(s) with the
moments of μ(s).

g(η,w) =ηε+ φ̂
T
w (4)

+ η log

(∫∫
μ(s)q(θ|s) exp

(Rsθ − φ(s)Tw

η

)
dθds

)
.

This policy update results in a weight

d[k] = exp ((Rsθ − V (s))/η)

for each sample [s[k],θ[k]], which we can use to estimate a
new search distribution ππ(θ|s).
Search Distribution Update Rule

Given dataset {s[k],θ[k], d[k]}k=1...N and the old Gaussian
search distribution

q(θ|s) = N
(
θ|mq(s) = AT

q ϕ(s),Σq

)
,

we want to find the new search distribution

π(θ|s) = N
(
θ|mπ(s) = AT

πϕ(s),Σπ

)
,

by finding Aπ and Σπ . Therefore we need two update rules,
one for updating the context-dependent mean function mπ

of the search distribution and another one for updating the
covariance matrix of the distribution Σπ .

Context-Dependent Mean-Function Update Rule In or-
der to find mπ , the parameters A can be obtained by the
weighted maximum likelihood

A = (ΦTDΦ+ λI)
−1
ΦTDU , (5)

where ΦT = [ϕ[1], ..., ϕ[N ]] contains the feature vector for
all samples, U = [θ[1], ..., θ[N ]] contains all the sample pa-
rameters and D is the diagonal weighting matrix containing
the weightings d[k].

Covariance Matrix Update Rule Standard CREPS di-
rectly uses the weighted sample covariance matrix S as Σπ

which is obtained by

S =

∑N
k=1 d

[k]
(
θ[k] −ATϕ(s[k])

)(
θ[k] −AT

πϕ(s
[k])

)T
Z

,

(6)

Z =
(
∑N

k=1 d
[k])2 −∑N

k=1(d
[k])2∑N

k=1(d
[k])

.

Typically, the number of samples used for the estimated
sample covariance matrix S is much smaller than number
of free parameters of the covariance matrix. In this case,
it has been shown that the sample covariance matrix from
Equation 6 is not a good estimate of the true covariance ma-
trix (Abdolmaleki et al. 2015b) and biases the search distri-
bution towards a specific region of the search space. Due
to this effect, the search distribution uncontrollably loses
its exploration entropy along many dimensions of the pa-
rameter space which causes premature convergence. Such
loss of exploration is a highly unwanted effect in stochastic
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Figure 1: The performance comparison of stochastic search methods for optimising contextual version of standard functions (a)
Sphere, (b) Rosenbrock and (c) Rastrigin. The results show that while CREPS-CMA performs well, Contextual REPS suffers
from premature convergence.

search. In order to alleviate this problem, inspired by CMA-
ES (Hansen, Muller, and Koumoutsakos 2003), which is not
a contextual algorithm, we combine the old covariance ma-
trix and the sample covariance matrix from Equation 6, i.e.,

Σπ = (1− λ)Σq + (λ)S.

There are different ways to determine the interpolation
factor λ ∈ [0, 1] between the sample covariance matrix S
and the old covariance matrix Σq . For example, in (Abdol-
maleki et al. 2015b), the factor λ ∈ [0, 1] is chosen in such
a way that the entropy of the new search distribution is re-
duced by a certain amount, while also being scaled with the
number of effective samples. For CREPS-CMA, we use the
rank-μ update in CMA-ES algorithm (Hansen, Muller, and
Koumoutsakos 2003), i.e.,

φeff =
1∑N

k=1(d
[k])2

, λ = min

(
1,

φeff

p2
,

)

where φeff is the number of effective samples and p is the
dimension of the parameter space θ. See Algorithm 2 for a
compact representation of the CREPS-CMA algorithm.

Experiments

In this section, We evaluate CREPS-CMA algorithm.3 We
chose three series of optimization tasks for comparisons. In
the first series, we use standard optimization test functions
(Molga and Smutnicki 2005), such as the Sphere, the Rosen-
brock and the Rastrigin (multi-modal) functions. We extend
these functions to be applicable on the contextual setting.
The task is to find the optimum 15 dimensional parameter
vector θ for a given 1 dimensional context s.

For the second series of optimization tasks, we use a 5-
link planar robot that has to reach a given point, which is
varied by the context. We used dynamic movement primi-
tives (DMPs) (Ijspeert and Schaal 2003) as the underlying
policy representation with 25 parameters (5 basis functions

3Matlab source-code is available on-line at https://dl.
dropboxusercontent.com/u/16387578/ContextualREPSCMA.zip

per dimension). The context is the two dimensional posi-
tion of the via-point to reach with the end-effector. Figure 2
shows the setup of the robot.

For the third series of optimization tasks, we used a sim-
ulated humanoid robot that has to kick a ball with a certain
distance, which is varied by the context. We used a simple
linear model as a controller, which takes as input the start-
ing and end joint positions of the robot’s legs and the time
the movement is intended to take. The model linearly in-
terpolates the starting and end positions through time. The
context is the distance that the ball should reach. Figure 3
shows an example of the robot movement.

In Figures 1 and 2, we show the average, as well as two
times the standard deviation of the results, over 10 trials for
each experiment. Note that the y-axis of all plots is in a log-
arithmic scale. Figure 3(c) shows the average and two times
the standard deviation of the results over 10 trials for several
contexts of the humanoid kick.

Standard Optimization Test Functions

We chose three standard optimization functions, which are
the Sphere function

f(s, θ) =

p∑
i=1

x2
i ,

the Rosenbrock function

f(s, θ) =

p−1∑
i=1

[100(xi+1 − x2
i )

2 + (1− xi)
2],

and also a multi-modal function, known as the Rastgirin
function

f(s, θ) = 10p+

p∑
i=1

[x2
i − 10 cos(2πxi)],

where x = θ +As. The matrix A is a constant matrix that
was chosen randomly. In our case, because the context s is 1
dimensional, A is a p× 1 dimensional vector. Our definition
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Figure 2: (a) Algorithmic comparison for a planar reaching task (5 joints, 25 parameters). In this task, CREPS-CMA has
converged faster and learned the task well. Contextual REPS suffers from premature convergence and cannot learn the task. (b)
The planar reaching task used for our comparisons. A 5-link planar robot has to reach a via-point v50 = [1, 1] in task space.
The via-point position is the 2 dimensional context vector and is given. The via-point is indicated by the red cross. The postures
of the resulting motion are shown as overlay, where darker postures indicate a posture which is close in time to the via-point.

for x means the optimum θ for these functions is linearly
dependent on the given context s. The initial search area of
θ for all experiments is restricted to the hypercube −5 ≤
θi ≤ 5, i = 1, . . . , p and contexts are uniformly sampled
from the interval 0 ≤ si ≤ 3, i = 1, . . . , z where z is the
dimension of the context space s. In our experiments, the
mean of the initial distributions has been chosen randomly
in the defined search area.

We compared CREPS-CMA with the standard Contextual
REPS. In each iteration, we generated 50 new samples. The
results in Figure 1 show that CREPS-CMA could success-
fully learn the contextual tasks while standard Contextual
REPS suffers from premature convergence.

Planar Reaching

In this task, we used a 5-link planar robot with DMPs
(Ijspeert and Schaal 2003) as the underlying control policy.
Each link had a length of 1m. The robot is modelled as a
decoupled linear dynamical system. The robot has to reach
a via-point v50 = [1, 1] at time step 50 with its end effector
and, at the final time step T = 100, the point v100 = [5, 0].
We varied the first via-point from 0 to 2 in both dimensions.

The reward was given by a context-dependent quadratic
cost term for the two via-points as well as quadratic costs
for high accelerations. Note that this performance function
is highly non-linear in the parameters as the via-points are
defined in end effector space. We used 5 basis functions per
degree of freedom for the DMPs while the goal attractor for
reaching the final state was assumed to be known. Hence,
our parameter vector had 25 dimensions.

We generated 100 new samples in each iteration. The re-
sults in Figure 2(a) shows that CREPS-CMA successfully
learned the task while contextual REPS cannot complete it.

Humanoid Kick

In this task, roobot should learn to kick the ball to different
distances. The context here is the distance that ball travels

which varies from 3m to 12m. The robot kick controller is a
simple linear model with three input groups: the action time
t, the initial position of the robot, represented as a vector of
joint angles with dimension l, and the final robot position,
also represented as a vector of joint angles with dimension
l. The action time is the amount of time the robot takes to
move from the initial to the final position. The joint angles
are linearly interpolated across t to create the corresponding
movement.

Our humanoid robot has l = 6 joints in each leg, and
other remaining joints (arms and head) are ignored. In
other words, the joint angles are 12-dimensional vectors and
the controller receives a 25-dimensional parameter vector,
which is then interpolated and coded into motor commands.
Figures 3(a) and 3(b) show the initial and final positions of
an exemplary kick.

The reward was based on the reward function

R(s, θ) = −(x− s)2 − y2,

where x and y are the distances between the target point
and the ball along the x and y axes. We use CREPS-CMA to
optimise this reward function and similar to (Abdolmaleki et
al. 2015c) we use radial basis feature function for non-linear
generalization over contexts. After 1000 iterations with 20
new samples per iteration, the robot could kick the ball with
a good accuracy shown on Figure 3(c).4 The average error
distance of the ball to the target was 0.34± 0.11m.

Conclusion

Many optimization algorithms have been proposed by the
scientific community. However, these algorithms usually op-
timize for a single context of a task, like the ideal gait for
the highest speed, the lowest energy consumption, or both.

4Demonstration video is available on-line at https:
//dl.dropboxusercontent.com/u/16387578/ICARSC16kick.mp4.
The robot is placed at several points and kicks the ball to the centre
of the field using the learned policy.

640



(a) Initial position of kick movement. (b) Final position of kick movement.

3 4 5 6 7 8 9 10 11 12
0
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(c) Accuracy of the kick.

Figure 3: (a) The initial position of an exemplary humanoid kick. (b) The final position of an exemplary humanoid kick. (c)
The results of the task. The y-axis represents the distance at which the ball was from the intended target, in meters, while the
x-axis represents the distance at which the ball was being kicked from, also in meters.

Algorithm 2 CREPS-CMA

Input : Data Set D{s[k],θ[k], R[k]}k=1...N and the old
covariance matrix Σq

Compute the weights d[k] for each sample:
1- Optimize the dual function g and find optimum η and
w

g(η,w) =ηε+ φ̂
T
w

+ η log

(
N∑

K=1

1

N
exp

(
R[k] − φ(s[k])Tw

η

))
.

2- Compute weights d[k] = exp

(
R[k] − φ(s[k])Tw

η

)
.

3- Normalize d[k] such that
∑N

k=1 d
[k] = 1.

Compute the new mean function mπ(s):
Use weighted maximum likelihood to estimate parame-
ters Aπ of the new mean function

Aπ = (ΦTDΦ+ λI)
−1
ΦTDU ,

where ΦT = [ϕ[1], ..., ϕ[N ]] contains the feature vector
for all samples, U = [θ[1], ..., θ[N ]] contains all the sam-
ple parameters and D is the diagonal weighting matrix
containing the weights d[k].
Compute the sample covariance S:

S =

N∑
k=1

d[k]
(
θ[k]−AT

πϕ(s
[k])

)(
θ[k]−AT

πϕ(s
[k])

)T
/Z,

Compute the number of effective samples φeff and λ:

φeff =
1∑N

k=1(d
[k])2

, λ = min

(
1,

φeff

p2

)

Compute the new covariance matrix Σ:

Σπ = λΣq + (1− λ)S.

Therefore, in this paper, we investigated contextual stochas-
tic search methods for multi-task learning. We alleviated the
premature convergence problem of contextual REPS, which
resulted in the CREPS-CMA algorithm. The results show
that the algorithm performs favourably and solves the pre-
mature convergence issue. We also show its applicability in
practical situations, such as a humanoid robot kick task. Re-
garding future work, it is worthwhile to incorporate the step-
size control feature of CMA-ES into CREPS-CMA. This
step-size control aims to make consecutive movements of
the distribution mean orthogonal in expectation. It effec-
tively prevents premature convergence while allowing fast
convergence to an optimum.
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