
Trusted Machine Learning:
Model Repair and Data Repair for Probabilistic Models

Shalini Ghosh, Patrick Lincoln, Ashish Tiwari, Xiaojin Zhu
{shalini,lincoln,tiwari}@csl.sri.com jerryzhu@cs.wisc.edu

Abstract

When machine learning algorithms are used in life-critical
or mission-critical applications (e.g., self driving cars, cyber
security, surgical robotics), it is important to ensure that they
provide some high-level correctness guarantees. We introduce
a paradigm called Trusted Machine Learning (TML) with the
goal of making learning techniques more trustworthy. We
outline methods that show how symbolic analysis (specifi-
cally parametric model checking) can be used to learn the
dynamical model of a system where the learned model satis-
fies correctness requirements specified in the form of temporal
logic properties (e.g., safety, liveness). When a learned model
does not satisfy the desired guarantees, we try two approaches:
(1) Model Repair, wherein we modify a learned model di-
rectly, and (2) Data Repair, wherein we modify the data so
that re-learning from the modified data will result in a trusted
model. Model Repair tries to make the minimal changes to the
trained model while satisfying the properties, whereas Data
Repair tries to make the minimal changes to the dataset used
to train the model for ensuring satisfaction of the properties.
We show how the Model Repair and Data Repair problems
can be solved for the case of probabilistic models, specifically
Discrete-Time Markov Chains (DTMC) or Markov Decision
Processes (MDP), when the desired properties are expressed
in Probabilistic Computation Tree Logic (PCTL). Specifically,
we outline how the parameter learning problem in the proba-
bilistic Markov models under temporal logic constraints can
be equivalently expressed as a non-linear optimization with
non-linear rational constraints, by performing symbolic trans-
formations using a parametric model checker. We illustrate
the approach on two case studies: a controller for automobile
lane changing, and query router for a wireless sensor network.

1 Introduction
When machine learning (ML) algorithms are used in mission-
critical domains (e.g., self-driving cars, cyber security) or
life-critical domains (e.g., surgical robotics), it is often impor-
tant to ensure that the learned models satisfy some high-level
correctness requirements — these requirements can be instan-
tiated in particular domains via constraints like safety (e.g.,
a robot arm should not come within five meters of any hu-
man operator during any phase of performing an autonomous
operation). Such constraints are often defined over tempo-
ral sequences (or trajectories) generated by the model, and

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

can be formally described in so-called temporal logics, such
as the Probabilistic Computation Tree Logic (PCTL)(Sen,
Viswanathan, and Agha 2006). Trusted Machine Learning
(TML) refers to a learning methodology that ensures that the
specified properties are satisfied.

We illustrate the need for TML by considering an auto-
matic lane change controller trained to handle a slow-moving
truck in front, which is part of an overall closed-loop au-
tonomous car controller. We provide training data (D) in the
form of example traces of driving in this situation in a simu-
lated environment, and learn a Markov Chain model M of the
controller from D (Sen, Viswanathan, and Agha 2006). In
our application, we want the lane change controller to respect
certain safety properties. For example, we want the con-
troller to ensure that detecting a slow-moving truck in front
causes the car to either change lanes or reduce speed with
very high probability. This can be stated as a PCTL property
Pr>0.99[F (changedLane or reducedSpeed)], where F is
the eventually operator in PCTL logic (Section 3 discusses
how in real applications we would use bounded-time vari-
ants of such a property). Note that PCTL is a probabilistic
temporal logic used widely for formally specifying tempo-
ral properties like safety (a property should always be true)
and liveness (a property should eventually become true) and
their combinations — such temporal logic properties are use-
ful for specifying important requirements of models used in
mission-critical cyber-physical system (CPS) domains, e.g.,
self-driving cars, cyber security.

In this paper, we show how to ensure that a ML model
trained on data (e.g., the one used in the car controller) satis-
fies temporal logic constraints. Putting temporal logic prop-
erties directly into learning algorithms (e.g., maximum likeli-
hood) may not be feasible in the general case. So, we propose
two approaches for TML, Model Repair and Data Repair —
Model Repair modifies a trained model to satisfy a property,
while Data Repair modifies the data so that re-learning from
the modified data results in a trusted model. We consider two
aspects of a trusted ML model — safety and security. Let
us consider that a set of safety properties define the safety
envelope of a ML model. During model training, Model Re-
pair can be used to ensure that the trained model satisfies the
safety properties and stays within the safety envelope. When
the model undergoes data attack, the model trained on the
corrupt data can potentially go outside the safety envelope.

The AAAI-17 Workshop on
Symbolic Inference and Optimization

WS-17-14

909

Data Repair can be used to identify and drop the corrupt data
points, such that the ML model retrained on the “repaired”
data is still within the safety envelope. Thus, Data Repair can
help us detect violations of the safety properties and ensure
that the model is resilient to security attacks.

The key contributions of this paper are:
1. We present Model Repair and Data Repair as two possible

approaches for Trusted Machine Learning (TML). Model
Repair is adapted from (Bartocci et al. 2011), but it gen-
eralizes the original approach (that considered only small
repairs) to handle larger model corrections. We also pro-
pose a novel Data Repair approach for TML, and show how
it can be converted to a standard constrained non-linear
optimization problem.

2. In the particular case when the learned model is either a
Markov Chain (MC) or a Markov Decision Process (MDP),
and the property is specified in PCTL, we theoretically
characterize the Model Repair and Data Repair problems
and show how they can be solved efficiently using sym-
bolic analysis (in particular parametric model checking),
specifically by expressing parameter learning under tem-
poral logic constraints as non-linear optimization with
non-linear rational constraints.

3. We present case-studies showing actual applications of
Model Repair and Data Repair in the domains of auto-
matic car control (using MC) and wireless sensor networks
(using MDP).
As we will show in this paper, the main challenge in putting

PCTL constraints into the ML training procedure is in reduc-
ing the Model and Data Repair problems to an optimization
framework where complex temporal logic properties (e.g.,
safety, liveness) can be satisfied while keeping the optimiza-
tion problems feasible and tractable.

2 Problem Definition

Notation: Let M be a class of models (concept class) and D
be the universe of all data sets. Let ML be a machine learning
procedure that takes D ∈ D and returns M ∈ M. Let φ be
a desired (temporal logic) property that we want the learned
model to possess. We denote the fact that a model M has
the property φ by M |= φ. If a model M = ML(D) (trained
on some data set D) does not satisfy the required (temporal
logic) property φ, then we want to either repair the model M
or the data set D. We do not consider arbitrary “repairs” but
only certain ones that are identified by some given constraints.
Given M , let FeasM ⊆ M denote all “feasible repairs” of
M . Given D, let FeasD ⊆ D denote all “feasible repairs” of
D. Let c(M,M ′) denote the cost (a positive real function) of
changing M to M ′, and c(D,D′) denote the cost of changing
D to D′. Based on these notations, we propose the following
two definitions of ModelRepair and DataRepair.
Definition 1. ModelRepair: Given M , φ, FeasM , and
the function c, the Model Repair problem seeks to find
M∗ ∈ M such that M∗ ∈ FeasM and M∗ |= φ, and
M∗ minimizes the cost c(M,M∗).
Definition 2. DataRepair: Given D, φ, FeasD, and the
function c, the Data Repair problem seeks to find D∗ ∈ D

such that D∗ ∈ FeasD, ML(D∗) |= φ, and D∗ minimizes the
cost c(D,D∗).

Given a dataset D, we first learn a model M = ML(D)
using a learning procedure ML (e.g., maximum likelihood
training). We then check if M |= φ; if it does, we output M .
Otherwise, if we want to modify the model, we run Model
Repair on M to get M ′, where Model Repair makes small
perturbations to M . If M ′ |= φ, we output M ′. Else, if
the Model Repair formulation we consider has no feasible
solution, we relax the “small perturbations” constraint on
Model Repair (and thereby consider a larger feasible set
M), to see if that enables the modified model to satisfy the
property. If we want to modify the data, we perform Data
Repair of the data D using small perturbations on the data
to get D′ and check if M ′′ = ML(D′) |= φ. If it does, we
output M ′′. Otherwise, we relax the constraint of “small
perturbations” on the data, retrain the model and check if
the retrained model satisfies the constraint. If it doesn’t, we
report that φ cannot be satisfied by the learned model using
our formulations of Model Repair or Data Repair.

In this paper, we will solve the two problems outlined
above for specific choices of the concept class (M), the
possible modifications (FeasM , FeasD), and the property
language (used to specify φ). In particular, we will consider
M to be probabilistic models like Discrete-Time Markov
Chains (DTMC) or Markov Decision Processes (MDP), and
φ to be PCTL. The particular types of modifications we will
consider (corresponding to FeasM and FeasD) are outlined
in detail in Section 4.

3 Motivating Example

Let us consider the example of training a probabilistic model
for an autonomous car controller — the underlying model
we want to learn is a DTMC, which is defined as a tuple
M = (S, s0, P, L) where S is a finite set of states, s0 ∈ S
is the initial state, P : S × S → [0, 1] is a transition matrix
such that ∀s ∈ S,

∑
s′∈S Pr(s, s′) = 1, and L : S → 2AP is

a labeling function assigning labels to states, where AP is
a set of atomic propositions. Figure 1 shows a DTMC that
determines the action of an autonomous car controller when
confronted with a slow-moving truck in front, while Figure 1
outlines the semantics of the different states and labels. We
will later perform Model Repair by finding instantiations for
the parameters p and q in the model (details in Section 4).

Let us consider that we have some property φ in PCTL that
we want the model M to satisfy. In PCTL, properties are spec-
ified as φ = Pr∼b(ψ), where ∼∈ {<,≤, >,≥}, 0 ≤ b ≤ 1,
and ψ a path formula. A path formula is defined using the
temporal operators X (next) and ∪≤h (bounded/unbounded
until), where h is an integer. PCTL also uses the eventually
operator F (defined as Fφ = true∪φ), where Fφ means that
φ is eventually true. A state s of M satisfies φ = Pr∼b(ψ),
denoted as M, s |= φ, if Pr(PathM (s, ψ)) ∼ b; i.e., the
probability of taking a path in M starting from s that sat-
isfies ψ is ∼ b, where path is defined as a sequence of
states in the model M . For example, let us consider a
DTMC M in Figure 1 with start state S0. The “reduced-
Speed” predicate is true in the state S4, while “changed-

910

Figure 1: Car controller DTMC.

S Description Labels
0 Initial state keepSpeed, keepLane
1 Moving to left lane keepSpeed,

changingLane
2 Moving to right lane keepSpeed,

changingLane
3 Remain in same lane keepSpeed,

with same speed keepLane
4 Remain in same lane reducedSpeed,

with reduced speed keepLane
5 Moved to left lane changedLane
6 Moved to right lane changedLane

Table 1: DTMC: states and labels.

Lane” predicate is true in states S5 and S6. Now, a prob-
abilistic safety property can be specified as: φ = Pr>0.99

[F (changedLane or reducedSpeed)]. M will satisfy the
property φ only if any path starting from S0 eventually
reaches S4, S5 or S6 with probability > 0.99.

Note that the DTMC lane change controller considered
here is part of an overall autonomous closed-loop car con-
troller. The lane changing DTMC module is triggered when
the car gets too close to a vehicle in front, and hence it is a
feedback controller. These controllers can be learned from
car traces in a vehicle simulator (Sadigh et al. 2014). The
“eventually change lanes or slowdown” property here illus-
trates a “liveness” property — a real controller would use
bounded-time variants of such a property.

4 Repairing Probabilistic Models

In this paper, we consider the model M to be a probabilistic
model — specifically, we consider DTMC and MDP. Specifi-
cally, the class M consists of all DTMCs (or MDPs) with a
fixed (graph) structure, but different transition probabilities.
The property φ is a temporal logic property in PCTL. Effi-
cient solvability of the two problems defined above depends
also on the choice of the “allowed repairs”, given by the
subclass FeasM or FeasD.

For Model Repair, we consider the subclass FeasM to con-
sist of all models M ′ ∈ M such that M ′ and M both have

nonzero transition probabilities on the same set of edges. The
user can additionally constrain (say, using lower and upper
bounds on) the difference in the transition probabilities on
corresponding edges, and thus, only consider “small” per-
turbations. Note that re-parameterizing the entire transition
matrix can be considered as a possibility in Model Repair.
How much of the transition matrix is considered repairable
depends on the application at hand — the domain helps de-
termine which transition probabilities are perturbable and
which are not (e.g., which part of the car controller can be
modified).

For Data Repair, the subclass FeasD consists of all data
sets D′ ∈ D that can be obtained from D by user-specified
operations. For example, in our current formulation, we
consider data points to be dropped from the original dataset
— the number of datapoints dropped from the total dataset
defines the neighborhood of corrections. When we run Model
Repair or Data Repair, we first consider a small correction (to
the model or data, respectively) — if that does not succeed,
we relax the restriction and consider larger corrections.

Model Repair

We first present an approach for solving Model Repair for
probabilistic models. We use the DTMC in Section 3 as our
running example. Given a DTMC M with n states and n×n
transition matrix P , we can get a parametric DTMC MZ

by introducing an n× n matrix Z (of unknowns), such that
P + Z is a stochastic matrix and is the transition matrix of
MZ . The unknown parameters in Z may be constrained: if
∃jZij > 0, then the state i called a controllable state and
the transition between states i and j of M is controllable,
since its probability can be modified. The matrix Z gives a
mechanism for altering or controlling the behavior of M for
repair. The parametric DTMC MZ along with the constraints
on Z defines the set FeasM , as discussed in Proposition 1.
Proposition 1. (Bartocci et al. 2011) If M is a DTMC with
transition matrix P and MZ is a DTMC with transition ma-
trix P + Z, and ∀s∑t∈S Z(s, t) = 0, then M and M ′ are
ε-bisimilar, where ε is bounded by the maximum value in Z.

Note that M ′ ∈ FeasM and M are ε-bisimilar when there
exists an ε-bisimulation between them, i.e., any path proba-
bility in M ′ is within ε of the corresponding path probability
in M . Figure 1 shows an example of a parametric DTMC.

Let us consider the non-zero values in Z to be the vector of
variables v = v1 . . . vk. We solve the Model Repair problem
by solving the following optimization problem:

argminv g(v) (1)
s.t.,MZ |= φ, (2)

P (i, j) + Z(i, j) = 0 iff P (i, j) = 0, 1 ≤ i, j ≤ n.(3)

In Equation 1, g(v) is a cost function that encodes the cost
of making the perturbation to model parameters — a typical
function is the sum of squares of the perturbation variables,
i.e., g(v) = ||v||2 = v21 + . . .+ v2n. The main bottleneck in
the Model Repair formulation in Equations 1-3 is the con-
straint in Equation 2 — it is a temporal logical constraint,
which is difficult to directly handle in a non-linear optimiza-
tion problem. Proposition 2 shows how we can transform the

911

above optimization problem with a “non-standard” tempo-
ral logical constraint to a standard non-linear optimization
problem with non-linear constraints.
Proposition 2. Let us consider a probabilistic model M
and a probabilistic temporal logic formula φ. If M is a
parametric Discrete-Time Markov Chain (DTMC) or para-
metric Markov Decision Process (MDP) and φ is expressed
in Probabilistic Computational Tree Logic (PCTL), then the
ModelRepair problem, specified in Definition 1 and Equa-
tions 1-3, can be reduced to an equivalent set of nonlinear
optimization problems with non-linear rational constraints.

Proof sketch: We give a brief proof sketch of Proposition 2.

Markov Chain: Given a parametric DTMC, properties that
are specified in PCTL, either using intrinsic relations like
X (next) and U (until) or operators like F (eventually) or
G (always)1, can be mapped to the parametric reachability
problem in the parametric DTMC (Ogawa, Nakagawa, and
Tsuchiya 2015). So, any property specified in PCTL logic
can be equivalently expressed as a reachability problem to a
set of target states. The probability of reaching a set of target
states in a parametric DTMC can be computed in the form
of a rational function in the parameters using a parametric
model checker (Hahn, Hermanns, and Zhang 2011). The
main technique used by the parametric model checker is as
follows: in order to succinctly express the probability of
whether a target state is reachable along a path in terms of
a closed-form rational function, it successively considers
state sequences in the path of the form s1 → s → s2 and
eliminates s from the path after suitably accounting for
the probability of self-transition of s in a direct path from
s1 to s2. In the path s1 → s → s2, let the probabilities
of s1 → s, s → s, s → s2 be Pr(s1, s),Pr(s, s),Pr(s, s2)
respectively. We want to eliminate s and replace the path by
a direct connection between s1 and s2. Let Pr′(s1, s2) be the
probability of transitioning from s1 to s2 along any other path.
If we remove s and consider a direct edge from s1 to s2, the
transition probability of this new edge can be equivalently ex-
pressed as Pr′(s1, s2) + Pr(s1, s).Pr(s, s2)/(1−Pr(s, s)),
which is a rational function in the parameters of the model.
Using successive state elimination, the parametric model
checker is able to get an overall non-linear rational function
constraint corresponding to the reachability property in
Equation 2 (Hahn, Hermanns, and Zhang 2011) — as a
result, ModelRepair in Equations 1-3 can be expressed as
the non-linear optimization problem in Equations 4-6.

Markov Decision Process: Let us consider a parametric
Markov Decision Process M = (S, s0, Act, Pp, V), where
S, s0 are same as a DTMC, V is the vector of correction
parameters as outlined in Section 4, and Act is a finite
set of actions of the Markov Decision Process (Puterman
1994) — in a parametric MDP the transition function P
is repaired using the parameters V . Given a parametric
MDP model, we can reduce it to an equivalent parametric
DTMC where each state is created by considering a
corresponding (state, action) pair in the MDP. There exists a

1Where G is defined as follows: Gφ = ¬(F¬φ).

decomposition of the parameter space of the parametric MDP
into hyper-rectangles such that the problem of probabilistic
reachability in the equivalent parametric DTMC for each
hyper-rectangle corresponds to a rational function in the
relevant parameters (Hahn, Han, and Zhang 2011). So for
a MDP, we finally get a disjunction of rational functions
equivalent to a probabilistic reachability property specified
in PCTL. For the disjunct of each rational function constraint
(corresponding to each parameter hyper-rectangle), we
can separately solve the corresponding ModelRepair
non-linear optimization problem — a suitable combination
of the solutions of the different non-linear optimization
problems (e.g., min for argmin problems) will give us the
final result. So for an MDP, the ModelRepair problem
can be equivalently expressed as a set of disjoint non-linear
optimizations problems.

As outlined in Proposition 2, if M is a DTMC or MDP,
parametric model checking can convert Equations 1-3 to the
following constrained optimization problem:

min g(v), (4)
s.t. f(v) ∼ b, (5)

∀vk ∈ v : 0 < vk + P (i, j) < 1. (6)

where P (i, j) in Equation 6 corresponds to Z(i, j) matrix
entries that have non-zero value vk. This reparameterization
of Equation 2, encoding the satisfiability of φ in M , to the
non-linear equation f(v) in Equation 5 can be obtained using
a parametric model checker, e.g., PRISM (Kwiatkowska,
Norman, and Parker 2011). Solving the nonlinear objective
function in Equation 4 with the non-linear constraints in
Equation 5-6 would give us a “local optimum” of Z that
transforms M to M∗ — we can do that using a non-linear
optimization tool, e.g., AMPL (Fourer, Gay, and Kernighan
1989). If the nonlinear optimization problem has a feasible
solution, it gives us the optimal values of Z that makes the
resulting model M∗ satisfy φ.

Data Repair

In some cases, we try to modify the dataset D to D′ so that
the model trained on D′ satisfies φ. For this we need to solve
the Data Repair problem (Definition 2) and is a variant of
machine teaching (Zhu 2015).

Based on the machine teaching formulation (Mei and Zhu
2015), the Data Repair problem can be formalized as:

arg min
D′,Θ∗

ET (D,D′) (7)

s.t. MΘ∗ |= φ (8)
Θ∗ ∈ argmin

Θ
[RL(D

′,Θ) + λΩ(Θ)], (9)

s.t., g(Θ) ≤ 0, h(Θ) = 0. (10)

Here, the inner optimization models the standard machine
learning objective of regularized empirical risk minimization,
consisting of the empirical risk function RL and the regular-
izer Ω. ET is the teaching “effort” function of modifying the
dataset D to D′, MΘ∗ indicates a model that is parameterized
by Θ∗, while g and h are other domain constraints.

912

Let us consider that the dataset D is transformed to D′
using a data perturbation vector p. In this paper, we consider
that a subset of data points need to be dropped from D for
the resulting trained model to satisfy φ (e.g., those points
could have noisy features or labels). So, each datapoint di in
D is multiplied by pi, where pi = 0 indicates that the point
is dropped — in this case, p = {p1 . . . pn}, where n = |D|.
Also, let us consider that the effort function is characterized
by the magnitude of the data perturbation, i.e., ET (D,D′) =
|D| − ||p||2. Using these transforms, Equations 7-10 can be
reformulated as:

arg min
p,Θ∗

|D| − ||p||2 (11)

s.t. MΘ∗ |= φ, (12)
Θ∗ ∈ argmin

Θ
[R′

L(D, p,Θ) + λΩ(Θ)], (13)

s.t., g(Θ) ≤ 0, h(Θ) = 0. (14)

Note that R′
L(D, p,Θ) is a reparameterization of

RL(D
′,Θ), where we use the fact that D′ is obtained by

perturbing D using p. This formulation of Data Repair can
handle the case where we want certain pi values to be 1, i.e.,
the case where we want to keep certain data points because
we know they are reliable. Proposition 3 shows how we can
solve the Data Repair problem.

Proposition 3. Let us consider a probabilistic model M and
a probabilistic temporal logic formula φ. If M is a para-
metric Markov Chain (MC) or parametric Markov Decision
Process (MDP) and φ is expressed in Probabilistic Computa-
tional Tree Logic (PCTL), then the DataRepair problem
in Definition 2, characterized by Equations 11-14, can be
reduced to a set of non-linear optimization problems with
non-linear rational constraints.

Proof sketch: We give a brief proof sketch of Proposition 3.

Markov Chain: Let us consider a parametric DTMC
M . Let us also consider the data dropping model of
DataRepair, where each data point di is multiplied by
the corresponding parameter pi. The maximum likelihood
estimate of the transition probability between any pair of
states s1 to s2 in M would be the ratio of the counts of
data points having that model transition, normalized by the
total count of data points transitioning out of s1. So, each
transition probability in the DTMC model can be expressed
as the ratio of polynomials in p, i.e., a rational function in p.
As a result, Equations 11-14 can be equivalently expressed
as Equations 15-16, which can be then transformed to a
non-linear optimization problem with non-linear constraints.

Markov Decision Process: For parametric Markov De-
cision Process (MDP) models, we assume that the states,
actions and transitions structure are given — we learn the
transition probabilities. Note that we can either assume that
the reward function is provided for all state-action pairs, or
we can learn it using inverse reinforcement learning since it
does not depend on the transition probabilities. For MDP
models too, we can show that the maximum likelihood
transition probabilities are rational functions of the data

Figure 2: Subset of WSN MDP corresponding to node n22

for Model Repair.

Figure 3: Transition weights in DTMC under Data Repair.

repair parameters, so that Equations 11-14 reduces to a set
of non-linear optimization problems of the form Equations
15-16.

As outlined in Proposition 3, to solve the non-linear optimiza-
tion formulation in Equations 11-14, we first solve the inner
optimization in Equations 13-14 using maximum likelihood
— this gives us a DTMC model M(p), where the transition
probabilities are rational functions of the data perturbation
vector p. The outer optimization in Equations 11-12 can then
be reformulated as:

arg max
p

||p||2 (15)

s.t. Mp |= φ. (16)

This can be solved by using symbolic analysis, specifically
parametric model checking, in combination with non-linear
optimization. In this case, we are considering data points
being removed — we can come up with similar formulations
for Data Repair when we consider data points being added or
replaced, or data features or labels being modified.

5 Case Studies

A) Car Controller: DTMC

We first outline Model Repair and Data Repair examples for
the car controller Markov Chain outlined in Section 3.

913

Model Repair in Car Controller We will use the running
example of the car-controller described in Section 3. We
assume that the initial values of the DTMC model in Fig-
ure 1 are learned using maximum likelihood estimation from
simulated car traces. We work through 4 different cases:

Model satisfies property: Consider the property Prop1
= Pr>0.99 [F (changedLane or reduceSpeed)], as de-
scribed in Section 1. We consider a model M in PRISM
corresponding to Figure 1, where we consider two control-
lable correction variables: p and q. Initially we consider
p = q = 0, i.e., we do not consider any Model Repair — in
this case, M satisfies Prop1 without the need for any repair.

Model Repair gives feasible solution: Consider the
property Prop2 = Pr>0.8[F (reduceSpeed)]. When we
run PRISM on M with p = q = 0 for Prop2, PRISM re-
ports that the property is not satisfied from the initial state
S0. We run parametric model checking on M , which con-
verts Prop2 to a non-linear parametric equation: 0.8 <
0.0001(−20000qp + 16700p + 9800q + 1817). Using this
as a constraint in AMPL, we minimize the objective: p2 + q2

and get the Model Repair solution p = 0.3609, q = 0.0601.
Model Repair initially gives infeasible solution: Con-

sider the property Prop3 = Pr<0.1[F (reduceSpeed)].
Parametric model checking and non-linear optimization states
this to be a “infeasible problem”, which indicates that Model
Repair cannot perturb M in order to satisfy Prop3. So,
Model Repair fails to find a solution in the ε-neighborhood
of the original model M to satisfy Prop3, considering the
correction parameters p and q. Subsequently, we consider
relaxing the correction parameters beyond p and q.

Model Repair gives feasible solution with more param-
eters: We increase the number of correction parameters in
the model in Figure 1, such that each edge in the DTMC has
an associated perturbation variable. As expected, with the
extra degrees of freedom Model Repair is able to make make
M satisfy Prop3.

Data Repair in Car Controller We assume that the struc-
ture of the Markov Chain in Example 3 is given, and the
training data is used to learn the transition probabilities. So,
we consider that the data is available in the form of traces of
states We consider a sample dataset with 8 points for the case
study, where each data point is a tuple of the form (pi, di, wi)
— a data trace di has an associated data dropping probability
pi of dropping the trace from the training set, and a weight
wi that indicates the weight given to that data trace during
training the model: { (p0, (0,1,5), 87.22), (p1, (0,1,4), 98),
(p2, (0,1,3), 0.98), (p3, (0,2,6), 76.44), (p4, (0,2,4), 19.6), (p5,
(0,2,3), 1.96), (p6, (0,3,4), 1.8), (p7, (0,3,3), 0.2) }. Figure 3
shows the transition weights of the DTMC, estimated from
the training data using maximum likelihood — in the model,
the transition weights are normalized so that the output prob-
abilities out of each state sum to 1.0.

Data Repair gives feasible solution: We consider the
property Prop3 = Pr<0.1[F (reduceSpeed)]. We run
parametric model checking with PRISM on this model M
to get the following non-linear equation corresponding to
the property: (4900p1 + 49p2 + 980p4 + 98p5 + 90p6 +
10p7)/(4361p0+4900p1+49p2+3822p3+980p4+98p5+

90p6 + 10p7). On running the AMPL non-linear solver,
we get the following solution set for Data Repair: p0 =
1, p1 = 0.18, p2 = 0.00001, p3 = 1, p4 = 0.00001, p5 =
0.00001, p6 = 0.00001, p7 = 1. p0, p3 and p7 are kept
unchanged by Data Repair, implying that the probabilities
of data traces corresponding to right lane change, left lane
change and staying in the same lane without reducing speed
are kept the same, while the probabilities of the other data
traces are reduced. The probability of reducing the speed is
brought down, thereby satisfying the property.

Data Repair becomes infeasible with less parameters:
Note that if we restrict the number of allowable data pertur-
bations such that < 20% of the data points can be dropped,
then Data Repair fails to give a feasible solution. So, we need
≥ 20% of the data to possibly change, in order to satisfy the
property using Data Repair.

B) Wireless Sensor Network: MDP

We next outline Model Repair and Data Repair case stud-
ies on a Markov Decision Process (MDP) model for query
routing in wireless sensor networks (WSN).

Query Routing in Wireless Sensor Network We con-
sider a wireless sensor network (WSN) arranged in a n× n
grid topology (in our case-study n = 3). The n = 3 row
corresponds to “field” nodes that are closer to the field of
deployment, while n = 1 corresponds to “station” nodes
that are closer to the base station — the goal is to route any
message originating from a node to n11 via peer-to-peer rout-
ing in the minimum number of attempts, so that n11 can
forward the message directly to the base station hub (Ghosh
and Lincoln 2012). We model the network as a Markov De-
cision Process (MDP). Figure 2 shows the sub-component
of the overall MDP centered around the states and action-
related transitions corresponding to one node in the network
(node n22 in the Figure). Different node MDPs are connected
through shared actions, e.g., the MDPs of nodes n21 and n22

are connected through the shared action f11_22 of forwarding
a message from node n22 to node n11. A node has a fixed
probability f of forwarding a message to a neighboring node
in the network, and a node-dependent probability of ignoring
the message. A node can be in one of 3 states — (a) S = 0:
on being forwarded a message, the node has decided to ignore
the message; (b) S = 1: node has not ignored the message
and is considering whether or not to forward it; (c) S = 2:
node has forwarded the message. On the action of message
forwarding from a neighbor, a node processes and forwards
it to its neighbors probabilistically.

Model Repair in Wireless Sensor Network The reward
function of the WSN MDP is used to estimate the number
of forwarding attempts to route a message from one end of
the network to another. We assume that the reward corre-
sponding to every forward attempt is 1.0 — the total reward
counts the number of forwarding attempts necessary to route
the message across the network. The structure of the MDP is
decided by the grid structure of the network, and each node
has a state/action transition diagram similar to Figure 2. The
transition probabilities in the MDP model are learned using
maximum likelihood estimation from message routing traces.

914

We work through 3 different cases — in each case, we as-
sume that the message (i.e., query) is initiated at the field node
n33, and the goal is to get the message to the station node
n11. In each case, we check if the learned MDP model sat-
isfies the property R{attempts} ≤ X[F Sn11

= 2], where
R{attempts} is the cumulative reward function value for
message forwarding attempts, and X indicates a particular
number of message forwarding attempts.

Model satisfies property: Consider X = 100, i.e., we
want to ensure that the MDP model can route a message
from field node n33 to station node n11 under 100 attempts.
PRISM indicates that the initial MDP model satisfies this
property without any modifications.

Model Repair gives feasible solution: Consider X =
40: the original MDP model does not satisfy this prop-
erty. We subsequently run parametric model checking of
the model with the two parameters p and q, which are
correction variables added to the ignore probabilities of
field/station nodes and other nodes respectively (which are
considered controllable in this formulation), and plug in the
resulting non-linear equation into AMPL to get the solution
p = −0.045, q = −0.04. So, the property is satisfied by
the model if the node ignore probabilities are lowered, since
in this case there is a higher chance of a node forwarding a
message and hence the number of routing attempts is less.

Model Repair gives infeasible solution: Consider X =
19: in this case parametric model checking and non-linear
optimization states this to be a “infeasible problem”, which
indicates that Model Repair cannot perturb the model in order
to satisfy the property.

Data Repair in Wireless Sensor Network We consider
data traces of message forwarding and traces of query drop-
ping (ignoring) in n11 and a node near the message source,
viz., n32. Let us consider that 40% of the traces involving
message forwarding have a successful forward, while 60%
do not. If we assign probabilities p1 and p2 of dropping
those 2 trace types respectively, we get that the maximum
likelihood forwarding probability = 0.4/(0.4 + 0.6p), where
p = p2/p1. Using a similar approach, we get that the ig-
nore probabilities for n11 = 0.5/(0.5 + 0.5q), and for node
n32 = 0.5/(0.5 + 0.5r).

When we run parametric model checking in PRISM for
the model with these Data Repair transition values, we
get a non-linear equation for the property R{attempts} ≤
19[F Sn11

= 2], which are solved in AMPL to get the values
p = 0.00001, q = 18.8129, r = 18.813 — with these data
corrections, the model learned on the corrected data satisfies
the property. We verified that Data Repair indeed worked by
plugging in these values into the model and checking that the
property is satisfied by Data Repair.

6 Related Work

Machine learning (ML) has a rich history of learning under
constraints (Dietterich 1985; Miller and MacKay 1994) —
different types of learning algorithms have been proposed
for handling various kinds of constraints. Propositional con-
straints on size (Bar-Hillel et al. 2005), monotonicity (Kot-
lowski and Slowiński 2009), time and ordering (Laxton,

Lim, and Kriegman 2007), etc. have been incorporated into
learning algorithms using constrained optimization (Bert-
sekas 1996) or constraint programming (Raedt, Guns, and
Nijssen 2010), while first order logic constraints have also
been introduced into ML models (Mei, Zhu, and Zhu 2014;
Richardson and Domingos 2006). However, to the best of
our knowledge, temporal logic constraints have not been
incorporated into ML models before.

There has been work on training models that capture dy-
namical/temporal behavior, e.g., DBNs (Neapolitan 2003),
LSTMs (Hochreiter and Schmidhuber 1997), and also ef-
forts in learning temporal logic relations (Fern, Givan, and
Siskind 2011; Maggi et al. 2013). Sadigh et al. (Sadigh et
al. 2014) study the problem of human driver behavior using
Convex Markov Chains, and show how we can verify PCTL
properties for these models. (Puggelli et al. 2013) show how
Convex MDPs can be modified to satisfy PCTL formulas.
However, these methods follow techniques different from
Model and Data Repair. We would also like to explore con-
nections between TML and probabilistic CEGAR and CEGIS
algorithms (Hermanns, Wachter, and Zhang 2008).

7 Conclusions and Future Work

Our approach to Trusted Machine Learning (TML) uses sym-
bolic analysis (specifically parametric model checking) for
learning ML models that satisfy properties in temporal logic.
We have developed the techniques of Model Repair and Data
Repair for DTMC and MDP models satisfying PCTL proper-
ties, and discussed a possible application of our approach to
two domains (car controller and sensor networks).

In this paper, we focused on DTMCs and MDPs since
they are commonly used to model controllers. Other types
of models (e.g., continuous-time Markov models, probabilis-
tic timed automata) can also be handled by our approach.
For other probabilistic models that have hidden states (e.g.,
Hidden Markov Models, Dynamic Bayes Nets), we can in-
corporate the temporal constraints into the E-step of an EM
learning algorithm. In the future, we would also like to ex-
tend TML to other types of logical properties (e.g., Linear
Temporal Logic), other mission-critical domains (e.g., robot
control, cyber security), and non-probabilistic models (e.g.,
SVM, regression models). We are working on more scalable
versions of the approaches outlined here, where we restrict
Model Repair to only certain parameters, and restrict Data
Repair to only certain data points (that we know are poten-
tially corrupted/noisy). We plan to use TML for training a
DTMC lane change controller on the Udacity car controller
data (Udacity 2016), and a MDP controller for the SRI UR5
robotic arm. In the future, we also plan to investigate the
connection, tradeoffs and potential synergies between Model
Repair and Data Repair.

Acknowledgments

The authors would like to thank Dr. Rodrigo de Salvo Braz
for his valuable feedback regarding this work, and Dr. Natara-
jan Shankar for helpful discussions.

915

References

Bar-Hillel, A.; Hertz, T.; Shental, N.; and Weinshall, D. 2005.
Learning a Mahalanobis metric from equivalence constraints.
JMLR 6.
Bartocci, E.; Grosu, R.; Katsaros, P.; Ramakrishnan, C. R.;
and Smolka, S. A. 2011. Model repair for probabilistic
systems. In Tools and Algos. for Construction and Analysis
of Systems.
Bertsekas, D. P. 1996. Constrained Optimization and La-
grange Multiplier Methods (Optimization and Neural Com-
putation Series). Athena Scientific.
Dietterich, T. G. 1985. Constraint Propagation Techniques
for Theory-driven Data Interpretation (Artificial Intelligence,
Machine Learning). Ph.D. Dissertation, Stanford University.
Fern, A.; Givan, R.; and Siskind, J. M. 2011. Specific-
to-general learning for temporal events with application to
learning event definitions from video. CoRR abs/1106.4572.
Fourer, R.; Gay, D. M.; and Kernighan, B. 1989. Algorithms
and model formulations in mathematical programming. chap-
ter AMPL: A Mathematical Programming Language.
Ghosh, S., and Lincoln, P. D. 2012. Query routing in wireless
sensor networks: A novel application of social query models.
Technical Report SRI-CSL-12-01, SRI International.
Hahn, E. M.; Han, T.; and Zhang, L. 2011. Synthesis for
PCTL in parametric Markov decision processes. In NFM.
Hahn, E. M.; Hermanns, H.; and Zhang, L. 2011. Probabilis-
tic reachability for parametric Markov models. International
Journal on Software Tools for Technology Transfer 13(1).
Hermanns, H.; Wachter, B.; and Zhang, L. 2008. Probabilis-
tic CEGAR. In CAV.
Hochreiter, S., and Schmidhuber, J. 1997. Long short-term
memory. Neural Comput. 9(8).
Kotlowski, W., and Slowiński, R. 2009. Rule learning with
monotonicity constraints. In ICML.
Kwiatkowska, M.; Norman, G.; and Parker, D. 2011. PRISM
4.0: Verification of probabilistic real-time systems. In CAV.
Laxton, B.; Lim, J.; and Kriegman, D. 2007. Leveraging
temporal, contextual and ordering constraints for recognizing
complex activities in video. In CVPR.
Maggi, F. M.; Burattin, A.; Cimitile, M.; and Sperduti, A.
2013. Online process discovery to detect concept drifts in
LTL-based declarative process models. In OTM.
Mei, S., and Zhu, X. 2015. Using machine teaching to
identify optimal training-set attacks on machine learners. In
AAAI.
Mei, S.; Zhu, J.; and Zhu, J. 2014. Robust RegBayes:
Selectively incorporating first-order logic domain knowledge
into Bayesian models. In ICML.
Miller, K. D., and MacKay, D. J. C. 1994. The role of
constraints in Hebbian learning. Neural Computation 6(1).
Neapolitan, R. E. 2003. Learning Bayesian Networks.
Prentice-Hall, Inc.
Ogawa, K.; Nakagawa, H.; and Tsuchiya, T. 2015. An ex-
perimental evaluation on runtime verification of self-adaptive

systems in the presence of uncertain transition probabilities.
In SEFM.
Puggelli, A.; Li, W.; Sangiovanni-Vincentelli, A.; and Seshia,
S. A. 2013. Polynomial-time verification of PCTL properties
of MDPs with convex uncertainties. In CAV.
Puterman, M. L. 1994. Markov Decision Processes: Discrete
Stochastic Dynamic Programming. John Wiley & Sons, Inc.,
1st edition.
Raedt, L. D.; Guns, T.; and Nijssen, S. 2010. Constraint
programming for data mining and machine learning. In AAAI.
Richardson, M., and Domingos, P. 2006. Markov logic
networks. In Machine Learning.
Sadigh, D.; Driggs-Campbell, K.; Puggelli, A.; Li, W.; Shia,
V.; Bajcsy, R.; Sangiovanni-Vincentelli, A. L.; Sastry, S. S.;
and Seshia, S. A. 2014. Data-driven probabilistic modeling
and verification of human driver behavior. In Formal Verifica-
tion and Modeling in Human-Machine Systems, AAAI Spring
Symposium.
Sen, K.; Viswanathan, M.; and Agha, G. 2006. Tools and
Algorithms for the Construction and Analysis of Systems.
chapter Model-Checking Markov Chains in the Presence of
Uncertainties.
Udacity. 2016. https://www.udacity.com/self-driving-car.
Zhu, X. 2015. Machine teaching: An inverse problem to
machine learning and an approach toward optimal education.
In AAAI.

916

