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Abstract

Unlike perfect-information games, imperfect-information
games cannot be decomposed into subgames that are
solved independently. Thus more computationally intensive
equilibrium-finding techniques are used, and abstraction—
in which a smaller version of the game is generated and
solved—is essential. Endgame solving is the process of com-
puting a (presumably) better strategy for just an endgame
than what can be computationally afforded for the full game.
Endgame solving has many benefits, such as being able to
1) solve the endgame in a finer information abstraction than
what is computationally feasible for the full game, and 2) in-
corporate into the endgame actions that an opponent took that
were not included in the action abstraction used to solve the
full game. We introduce an endgame solving technique that
outperforms prior methods both in theory and practice. We
also show how to adapt it, and past endgame-solving tech-
niques, to respond to opponent actions that are outside the
original action abstraction; this significantly outperforms the
state-of-the-art approach, action translation. Finally, we show
that endgame solving can be repeated as the game progresses
down the tree, leading to significantly lower exploitability.
All of the techniques are evaluated in terms of exploitabil-
ity; to our knowledge, this is the first time that exploitability
of endgame-solving techniques has been measured in large
imperfect-information games.

Introduction

Imperfect-information games model strategic settings that
have hidden information. They have a myriad of applications
such as negotiation, shopping agents, cybersecurity, physical
security, and so on. In such games, the typical goal is to find
a Nash equilibrium, which is a profile of strategies—one for
each player—such that no player can improve her outcome
by unilaterally deviating to a different strategy.

Endgame solving is a standard technique in perfect-
information games such as chess and checkers (Bellman
1965). In fact, in checkers it is so powerful that it was used
to solve the entire game (Schaeffer et al. 2007).

In imperfect-information games, endgame solving is dras-
tically more challenging. In perfect-information games it
is possible to solve just a part of the game in isolation,
but this is not generally possible in imperfect-information
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games. For example, in chess, determining the optimal re-
sponse to the Queen’s Gambit requires no knowledge of the
optimal response to the Sicilian Defense. To see that such
a decomposition is not possible in imperfect-information
games, consider the game of Coin Toss shown in Figure 1.
In that game, a coin is flipped and lands either Heads or Tails
with equal probability, but only Player 1 sees the outcome.
Player 1 can then choose between actions Left and Right,
with Left leading to some unknown subtree. If Player 1
chooses Right, then Player 2 has the opportunity to guess
how the coin landed. If Player 2 guesses correctly, Player 1
receives a reward of −1 and Player 2 receives a reward of 1
(the figure shows rewards for Player 1; Player 2 receives the
negation of Player 1’s reward). Clearly Player 2’s optimal
strategy depends on the probabilities that Player 1 chooses
Right with Heads and Tails. But the probability that Player 1
chooses Right with Heads depends on what Player 1 could
alternatively receive by choosing Left instead. So it is not
possible to determine what Player 2’s optimal strategy is in
the Right subtree without knowledge of the Left subtree.

Figure 1: The example game of Coin Toss. “C” represents a
chance node. S is a Player 2 (P2) information set. The dotted
line between the two P2 nodes means P2 cannot distinguish
between the two states.

Thus imperfect-information games cannot be solved via
decomposition as perfect-information games can. Instead,
the entire game is typically solved as a whole. This is a prob-
lem for large games, such as No-Limit Texas Hold’em—
a common benchmark problem in imperfect-information
game solving—which has 10165 nodes (Johanson 2013).
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The standard approach to computing strategies in such large
games is to first generate an abstraction of the game, which
is a smaller version of the game that retains as much as pos-
sible the strategic characteristics of the original game (Sand-
holm 2010). This abstract game is solved (exactly or ap-
proximately) and its solution is mapped back to the original
game. In extremely large games, a small abstraction typi-
cally cannot capture all the strategic complexity of the game,
and therefore results in a solution that is not a Nash equi-
librium when mapped back to the original game. For this
reason, it seems natural to attempt to improve the strategy
when a sequence farther down the game tree is reached and
the remaining subtree of reachable states is small enough to
be represented without any abstraction (or in a finer abstrac-
tion), even though—as explained previously—this may not
lead to a Nash equilibrium. While it may not be possible
to arrive at an equilibrium by analyzing subtrees indepen-
dently, it may be possible to improve the strategies in those
subtrees when the original (base) strategy is suboptimal, as
is typically the case when abstraction is applied.

We first review prior forms of endgame solving for
imperfect-information games. Then we propose a new form
of endgame solving that retains the theoretical guarantees of
the best prior methods while performing better in practice.
Finally, we introduce a method for endgame solving to be
nested as players descend the game tree, leading to substan-
tially better performance.

Notation and Background for

Imperfect-Information Games

In an imperfect-information extensive-form game there is a
finite set of players, P . H is the set of all possible histo-
ries (nodes) in the game tree, represented as a sequence of
actions, and includes the empty history. A(h) is the actions
available in a history and P (h) ∈ P ∪ c is the player who
acts at that history, where c denotes chance. Chance plays
an action a ∈ A(h) with a fixed probability σc(h, a) that is
known to all players. The history h′ reached after an action
is taken in h is a child of h, represented by h·a = h′, while h
is the parent of h′. If there exists a sequence of actions from
h to h′, then h is an ancestor of h′ (and h′ is a descendant
of h). Z ⊆ H are terminal histories for which no actions are
available. For each player i ∈ P , there is a payoff function
ui : Z → �. If P = {1, 2} and u1 = −u2, the game is
two-player zero-sum.

Imperfect information is represented by information sets
(infosets) for each player i ∈ P by a partition Ii of h ∈ H :
P (h) = i. For any infoset I ∈ Ii, all histories h, h′ ∈ I are
indistinguishable to player i, so A(h) = A(h′). I(h) is the
infoset I where h ∈ I . P (I) is the player i such that I ∈ Ii.
A(I) is the set of actions such that for all h ∈ I , A(I) =
A(h). |Ai| = maxI∈Ii |A(I)| and |A| = maxi |Ai|.

A strategy σi(I) is a probability vector over A(I) for
player i in infoset I . The probability of a particular action
a is denoted by σi(I, a). Since all histories in an infoset
belonging to player i are indistinguishable, the strategies
in each of them must be identical. That is, for all h ∈ I ,
σi(h) = σi(I) and σi(h, a) = σi(I, a). A full-game strat-

egy σi ∈ Σi defines a strategy for each infoset belonging to
Player i. A strategy profile σ is a tuple of strategies, one for
each player. ui(σi, σ−i) is the expected payoff for player i
if all players play according to the strategy profile 〈σi, σ−i〉.

πσ(h) = Πh′·a�hσP (h)(h, a) is the joint probability of
reaching h if all players play according to σ. πσ

i (h) is the
contribution of player i to this probability (that is, the prob-
ability of reaching h if all players other than i, and chance,
always chose actions leading to h). πσ

−i(h) is the contribu-
tion of all players other than i, and chance. πσ(h, h′) is the
probability of reaching h′ given that h has been reached, and
0 if h 	� h′. In a perfect-recall game, ∀h, h′ ∈ I ∈ Ii,
πi(h) = πi(h

′). In this paper we focus specifically on
two-player zero-sum perfect-recall games. Therefore, for
i = P (I) we define πi(I) = πi(h) for h ∈ I . Moreover,
I ′ � I if for some h′ ∈ I ′ and some h ∈ I , h′ � h. Simi-
larly, I ′ · a � I if h′ · a � h. We also define πσ(I, I ′) as the
probability of reaching I ′ from I according to the strategy
σ.

For convenience, we define an endgame. If a history is in
an endgame, then any other history with which it shares an
infoset must also be in the endgame. Moreover, any descen-
dent of the history must be in the endgame. Formally, an
endgame is a set of histories S ⊆ H such that for all h ∈ S,
if h � h′, then h′ ∈ S, and for all h ∈ S, if h′ ∈ I(h) for
some I ∈ IP (h) then h′ ∈ S. The head of an endgame Sr is
the union of infosets that have actions leading directly into
S, but are not in S. Formally, Sr is a set of histories such
that for all h ∈ Sr, h 	∈ S and either ∃a ∈ A(h) such that
h → a ∈ S, or h ∈ I and for some history h′ ∈ I , h′ ∈ Sr.

A Nash equilibrium (Nash 1950) is a strategy profile
σ∗ such that ∀i, ui(σ

∗
i , σ

∗
−i) = maxσ′i∈Σi

ui(σ
′
i, σ

∗
−i).

An ε-Nash equilibrium is a strategy profile σ∗ such that
∀i, ui(σ

∗
i , σ

∗
−i) + ε ≥ maxσ′i∈Σi

ui(σ
′
i, σ

∗
−i). In two-player

zero-sum games, every Nash equilibrium results in the same
expected value for a player. A best response BRi(σ−i)
is a strategy for player i such that ui(BRi(σ−i), σ−i) =
maxσ′i∈Σi

ui(σ
′
i, σ−i). The exploitability exp(σ−i) of a

strategy σ−i is defined as ui(BRi(σ−i), σ−i) − ui(σ
∗),

where σ∗ is a Nash equilibrium.
A counterfactual best response (Moravcik et al. 2016)

CBRi(σ−i) is similar to a best response, but additionally
maximizes counterfactual value at every infoset. Specifi-
cally, a counterfactual best response is a strategy σi that is a
best response with the additional condition that if σi(I, a) >
0 then vσi (I, a) = maxa′ v

σ(I, a′).
We further define counterfactual best response

value CBV σ−i(I) as the value player i expects
to achieve by playing according to CBRi(σi)
when in infoset I . Formally CBV σ−i(I, a) =∑

h∈I
(
π
σ−i

−i (h)
∑

z∈Z
(
π〈CBRi(σ−i),σ−i〉(h · a, z)ui(z)

))

and CBV σ−i(I) = maxa∈A(I) CBV σ−i(I, a).

Prior Approaches to Endgame Solving in

Imperfect-Information Games

In this section we review prior techniques for endgame solv-
ing in imperfect-information games. Our new algorithm then

296



builds on some of the ideas and notation.
Throughout this section, we will refer to the Coin Toss

game shown in Figure 1. We will focus on the Right
endgame. If P1 chooses Left, the game continues to a much
larger endgame, but its structure is not relevant here.

We assume that a base strategy profile σ has already been
computed for this game in which P1 chooses Right 3

4 of the
time with Heads and 1

2 of the time with Tails, and P2 chooses
Heads 1

2 of the time, Tails 1
4 of the time, and Forfeit 1

4 of the
time after P1 chooses Right. The details of the base strategy
in the Left endgame are not relevant in this section, but we
assume that if P1 played optimally then she would receive
an expected payoff of 0.5 for choosing Left if the coin is
Heads, and −0.5 for choosing Left if the coin is Tails. We
will attempt to improve P2’s strategy in the endgame that
follows P1 choosing Right. We refer to this endgame as S.

Unsafe Endgame Solving

We first review the most intuitive form of endgame solving,
which we refer to as unsafe endgame solving (Billings et
al. 2003; Gilpin and Sandholm 2006; 2007; Ganzfried and
Sandholm 2015). This form of endgame solving assumes
that both players will play according to their base strategies
outside of the endgame. In other words, all nodes outside
the endgame are fixed and can be treated as chance nodes
with probabilities determined by the base strategy. Thus, the
different roots of the endgame are reached with probabili-
ties determined from the base strategies using Bayes’ rule. A
strategy is then computed for the endgame—independently
from the rest of the game. Applying unsafe endgame solving
to Coin Toss (after P1 chooses Right) would mean solving
the game shown in Figure 2.

Figure 2: The game solved by Unsafe endgame solving to
determine a P2 strategy in the Right endgame of Coin Toss.

Specifically, we define R as the set of earliest-reachable
histories in S. That is, h ∈ R if h ∈ S and h′ 	∈ S for
any h′ � h. We then calculate πσ(h) for each h ∈ R. A
new game is constructed consisting only of an initial chance
node and S. The initial chance node reaches h ∈ R with
probability πσ(h)∑

h′∈R πσ(h′) . This new game is solved and its
strategy is then used whenever S is encountered.

Unsafe endgame solving lacks theoretical solution quality
guarantees and there are many situations where it performs
extremely poorly. Indeed, if it were applied to the base strat-
egy of Coin Toss, it would produce a strategy in which P2

always chooses Heads—which P1 could exploit severely by

only choosing Right with Tails. Despite the lack of theo-
retical guarantees and potentially bad performance, unsafe
endgame solving is simple and can sometimes produce low-
exploitability strategies in large games, as we show later.

We now move to discussing safe endgame solving tech-
niques, that is, ones that ensure that the exploitability of the
strategy is no higher than that of the base strategy.

Re-Solve Refinement

In Re-solve refinement (Burch, Johanson, and Bowling
2014), a safe strategy is computed for P2 in the endgame
by constructing an auxiliary game, as shown in Figure 3,
and computing an equilibrium strategy σS for it. The aux-
iliary game consists of a starting chance node that connects
to each history h in Sr in proportion to the probability that
player P1 could reach h if P1 tried to do so (that is, in pro-
portion to πσ

−1(h)). Let aS be the action available in h such
that h · aS ∈ S. At this point, P1 has two possible actions.
Action a′S , the auxiliary-game equivalent of aS , leads into
S, while action a′T leads to a terminal payoff that awards
the counterfactual best response value from the base strat-
egy CBV σ−1(I(h), aS). In the base strategy of Coin Toss,
the counterfactual best response value of P1 choosing Right
is 0 if the coin is Heads and 1

2 if the coin is Tails. Therefore,
a′T leads to a terminal payoff of 0 for Heads and 1

2 for Tails.
After the equilibrium strategy σS is computed in the auxil-
iary game, σS

2 is copied back to S in the original game (that
is, P2 plays according to σS

2 rather than σ2 when in S). In
this way, the strategy for P2 in S is pressured to be similar
to that in the original strategy; if P2 were to choose a strat-
egy that did better than the base strategy against Heads but
worse against Tails, then P1 would simply choose a′T with
Heads and a′S with Tails.

Figure 3: The auxiliary game used by Re-solve refinement to
determine a P2 strategy in the Right endgame of Coin Toss.

Re-solve refinement is safe and useful for compactly stor-
ing strategies and reconstructing them later. However, it may
miss out on opportunities for improvement. For example, if
we apply Re-solve refinement to our base strategy in Coin
Toss, we may arrive at the same strategy as the base strat-
egy in which Player 2 chooses Forfeit 25% of the time,
even though Heads and Tails dominate that action. The next
endgame solving technique addresses this shortcoming.

297



Maxmargin Refinement

Maxmargin refinement (Moravcik et al. 2016) is similar to
Re-solve refinement, except that it seeks to improve the
endgame strategy as much as possible over the alternative
payoff. While Re-solve refinement seeks a strategy for P2

in S that would simply dissuade P1 from entering S, Max-
margin refinement additionally seeks to punish P1 as much
as possible if P1 nevertheless chooses to enter S. A sub-
game margin is defined for each infoset in Sr, which repre-
sents the difference in value between entering the subgame
versus choosing the alternative payoff. Specifically, for each
infoset I ∈ Sr and action aS leading to S, the subgame mar-
gin M(I, aS) = vσ

S

(I, a′T ) − vσ
S

(I, a′S), or equivalently
M(I, aS) = CBV σ−1(I, a) − vσ

S

(I, a′S). In Maxmargin
refinement, a Nash equilibrium strategy is computed such
that the minimum margin over all I ∈ Sr is maximized.

Given our base strategy in Coin Toss, Maxmargin refine-
ment would result in P2 choosing Heads with probability 3

8 ,
Tails with probability 5

8 , and Forfeit with probability 0.
Maxmargin refinement is safe. Furthermore, it guarantees

that if every Player 1 best response reaches the endgame
with positive probability through some infoset(s) that have
positive margin, then exploitability is strictly lower than that
of the base strategy.

Still, none of the prior techniques consider that in Coin
Toss P1 can achieve a payoff of 0.5 by choosing Left with
Heads, and thus has more incentive to reach S when in the
Tails state. The next section introduces our new technique,
Reach-Maxmargin refinement, which solves this problem.

Reach-Maxmargin Refinement

In this section we introduce Reach-Maxmargin refinement, a
new method for refining endgames that considers what pay-
offs are achievable from other paths in the game. We first
consider the case of refining a single endgame in a game tree.
We then cover independently refining multiple endgames.

Refining a Single Endgame

All of the endgame-solving techniques described in the pre-
vious section only consider the target endgame in isolation.
This can be improved by incorporating information about
what payoffs the players could receive by not reaching the
endgame. For example in Coin Toss (Figure 1), P1 can re-
ceive payoff 0.5 by choosing Left in the Heads state, and
−0.5 in the Tails state. The solution that Maxmargin refine-
ment produces would result in P1 receiving payoff − 1

4 by
choosing Right in the Heads state, and 1

4 in the Tails state.
Thus, P1 could simply always choose Left in the Heads state
and Right in the Tails state against P2’s strategy and receive
expected payoff 3

8 . Reach-Maxmargin improves upon this.
The auxiliary game used in Reach-Maxmargin refinement

requires additional definitions. Define the path QS(I) to an
infoset I ∈ Sr to be the set of infosets I ′ such that I ′  I
and I ′ is not an ancestor of any other information set in Sr.
We also define CBR1(σ

′
−1)

→I·a′S as the P1 strategy that
plays to reach I · a′S in all infosets I ′  I , and elsewhere
plays identically to CBR1(σ

′
−1).

We now describe the auxiliary game used in Reach-
Maxmargin. The auxiliary game begins with a chance node
that leads to h′ ∈ I ′ in proportion to πσ

−1(h
′), where I ′ is

the earliest infoset such that I ′ ∈ QS(I) for some I ∈ Sr.
P1 then has a choice between actions a′T and a′S . Action a′T
in Reach-Maxmargin refinement leads to a terminal payoff
of CBV σ−1(I ′). P1 can instead take action a′S , which can
be viewed as P1 attempting to reach I · aS from I ′. Since
there may be P2 nodes and chance nodes between I ′ and
I , P1 may not reach I from I ′ with probability 1. If P1

reaches an infoset I ′′ 	∈ QS(I) that is “off the path” from
I , then we assume P1 plays according to a counterfactual
best response from that point forward and receives a payoff
of CBV σ−1(I ′′). However, with probability πσ

−1(h
′, h), P1

can reach history h · a′S for h ∈ I . From this point on, the
auxiliary game is identical to that in Re-solve and Maxmar-
gin refinement.

Formally, let σ′ be the strategy that plays according to
σS in S and otherwise plays according to σ. For an infoset
I ∈ Sr and action aS leading to S, let I ′ be the earliest
infoset such that I ′  I and I ′ cannot reach an infoset in Sr

other than I . We define a reach margin as

Mr(I, σ, σS) = CBV σ−1(I ′)− CBV σ′−1→I·a′S (I ′)

Reach-Maxmargin refinement finds a Nash equilibrium
σS in the auxiliary game such that the minimum margin
minI Mr(I, σS , S) is maximized. Theorem 1 shows that
Reach-Maxmargin refinement results in a combined strategy
with exploitability lower than or equal to the base strategy. If
the opponent reaches a refined endgame with positive prob-
ability and the margin of the reached infoset is positive, then
exploitability is strictly lower than that of the base strategy.
This theorem statement is similar to that of Maxmargin re-
finement (Moravcik et al. 2016), but the margins here are
higher than (or equal to) those in Maxmargin refinement.

Theorem 1. Given a strategy σ2, an endgame S for P2,
and a refined endgame Nash equilibrium strategy σS

2 , let
σ′2 be the strategy that plays according to σS

2 in endgame
S and σ2 elsewhere. If minI Mr(I, σ, σS) ≥ 0 for S, then

exp(σ′2) ≤ exp(σ2). Furthermore, if π〈BRσ′2 ,σ′2〉(I) > 0
for some I ∈ Sr for an endgame S, then exp(σ′2) ≤
exp(σ2)− π

σ′2
−1(I)minI M(I, σ′2, S).

The auxiliary game can be solved in a way that maximizes
the minimum margin by using a standard LP solver. In order
to use iterative algorithms such as the Excessive Gap Tech-
nique (Nesterov 2005; Gilpin, Peña, and Sandholm 2012) or
Counterfactual Regret Minimization (CFR) (Zinkevich et al.
2007), one can use the gadget game described by Moravcik
et al. (2016). Details on the gadget game are provided in the
Appendix. In our experiments we used CFR.

Refining Multiple Endgames Independently

Other endgame solving methods have also considered the
cost of reaching an endgame (Waugh, Bard, and Bowl-
ing 2009; Jackson 2014). However, those approaches (and
the version of Reach-Maxmargin refinement we described
above) are only correct in theory when applied to a
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single endgame. Typically, we want to refine multiple
endgames independently—or, equivalently, any endgame
that is reached at run time. This poses a problem because
the construction of the auxiliary game assumes that all P2

nodes outside the endgame have strategies that are fixed ac-
cording to the base strategy. If this assumption is violated by
refining multiple endgames, then the theoretical guarantees
of Reach-Maxmargin refinement no longer hold.

To address this issue, we first add a constraint that
CBV σ′−1(I) ≤ CBV σ−1(I) for every P1 infoset. This triv-
ially guarantees that exp(σ′2) ≤ exp(σ2). We also modify
the Reach-Maxmargin auxiliary game. Let σ′ be the strategy
profile after all endgames are solved and recombined. Ide-
ally, when solving an endgame S we would like any P1 ac-
tion leading away from S (that is, any action a belonging to
an infoset I ′ ∈ QS(I) such that I ′ ·a 	∈ QS(I)∪S) to lead to
a terminal payoff of CBV σ′

1 (h ·a) rather than CBV σ
1 (h ·a).

However, since we are solving the endgames independently,
we do not know what σ′ will be. Nevertheless, we can have
h · a lead to a lower bound on CBV σ′

1 (h · a). In our ex-
periments we use the minimum reachable payoff as a lower
bound.1 Tighter upper and lower bounds, or accurate esti-
mates of CBV σ′

1 (I) for an infoset I , may lead to even better
empirical performance.

Theorem 2 shows that even though the endgames are
solved independently, if an endgame has positive minimum
margin and is reached with positive probability then the final
strategy will have lower exploitability than without Reach-
Maxmargin endgame solving on that endgame.

Theorem 2. Given a strategy σ2, a set of disjoint endgames
S for P2, and a refined endgame Nash equilibrium strat-
egy σS

2 for each endgame S ∈ S, let σ′2 be the strat-
egy that plays according to σS

2 in each endgame S, re-
spectively, and σ2 elsewhere. Moreover, let σ−S

2 be the
strategy that plays according to σ′2 everywhere except for
P2 nodes in S, where it instead plays according to σ2. If
π〈BRσ′2 ,σ′2〉(I) > 0 for some I ∈ Sr, then exp(σ′2) ≤
exp(σ−S

2 )− π
σ′2
−1(I)minI M(I, σS

2 , S).

We now introduce an improvement to Reach-Maxmargin
refinement. Let I ′ be an infoset in QS(I). Let aO be an ac-
tion leading away from S and let aQ be an action leading
toward S. If the lower bound for CBV σ′S (I ′, aO) is higher
than CBV σS (I ′, aQ) then S will never be reached through
I ′ in a Nash equilibrium. Thus, there is no point in fur-
ther increasing the margin of I . This allows other margins
to be larger instead, leading to better overall performance.
This applies even when refining multiple endgames indepen-
dently. We use this improvement in our experiments.

Nested Endgame Solving

As we have discussed, large games must be abstracted to
reduce the game to a tractable size. This is particularly
common in games with large or continuous action spaces.

1While this may seem like a loose lower bound, there are many
situations where the off-path action simply leads to a terminal node.
For these cases, the lower bound we use is optimal.

Typically the action space is discretized by action abstrac-
tion so only a few actions are included in the abstraction.
While we might limit ourselves to the actions we included
in the abstraction, an opponent might choose actions that
are not in the abstraction. In that case, the off-tree action
can be mapped to an action that is in the abstraction, and
the strategy from that in-abstraction action can be used. This
is certainly problematic if the two actions are very differ-
ent, but in many cases it leads to reasonable performance.
For example, in an auction game we might include a bid
of $100 in our abstraction. If a player bids $101, we can
probably treat that as a bid of $100 without major problems.
This is referred to as action translation (Gilpin, Sandholm,
and Sørensen 2008; Schnizlein, Bowling, and Szafron 2009;
Ganzfried and Sandholm 2013). Action translation is the
state-of-the-art prior approach to dealing with this issue. It is
used, for example, by all the leading competitors in the An-
nual Computer Poker Competition (ACPC). The leading ac-
tion translation mapping—i.e., way of mapping opponent’s
off-tree actions back to actions in the abstraction—is the
pseudoharmonic mapping (Ganzfried and Sandholm 2013);
it has an axiomatic foundation, plays intuitively correctly in
small sanity-check games, and is used by most of the lead-
ing teams in the ACPC. That is the action mapping that we
will benchmark against in our experiments.

In this section, we develop techniques for applying
endgame solving to calculate responses to opponent’s off-
tree actions, thereby obviating the need for action transla-
tion. We present two methods that dramatically outperform
the leading action translation technique. The same tech-
niques can also be used more generally to calculate finer-
grained card or action abstractions as play progresses down
the game tree. In this section, for exposition, we assume that
P2 wishes to respond to P1 choosing an off-tree action.

The first method, which we refer to as the inexpensive
method, begins by calculating a Nash equilibrium σ within
the abstraction, and calculating CBV σ−1(I, a) for each in-
foset I ∈ I1 and action a in the abstraction. When P1

chooses an off-tree action a in infoset I , an endgame S
is generated such that I ∈ Sr and I · a leads to S. This
endgame may be an abstraction. S is solved using any of the
safe endgame solving techniques discussed earlier, except
that we use CBV σ−1(I) in place of CBV σ−1(I, a) (since
a is not a valid action in I according to σ). The solution σS

is combined with σ to form σ′. CBV σ′−1(I ′, a) is then cal-
culated for each infoset I ′ ∈ S and each I ′ ∈ QS(I) (that
is, on the path to I). The process repeats whenever P1 again
chooses an off-tree action in S.

By using CBV σ−1(I) in place of CBV σ′−1(I ′, a), we
can retain some of the theoretical guarantees of Reach-
Maxmargin refinement and Maxmargin refinement. Intu-
itively, if in every information set I P1 is better off tak-
ing an action already in the game than the new action that
was added, then the refined strategy is still a Nash equilib-
rium. Specifically, if the minimum reach margin Mmin of
the added action is nonnegative, then the combined strategy
σ′ is a Nash equilibrium in the expanded game that contains
the new action. If Mmin is negative, then the distance of σ′
from a Nash equilibrium is proportional to −Mmin.
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This “inexpensive” approach does not apply with Unsafe
endgame solving because the probability of reaching an ac-
tion outside of a player’s abstraction is undefined. That is,
πσ(h · a) is undefined when a is not considered a valid ac-
tion in h according to the abstraction. Nevertheless, a sim-
ilar but more expensive approach is possible with Unsafe
endgame solving (as well as all the other endgame-solving
techniques) by starting the endgame solving at h rather than
at h ·a. In other words, if action a taken in history h is not in
the abstraction, then Unsafe endgame solving is conducted
in the smallest endgame containing h (and action a is added
to that abstraction). This increases the size of the endgame
compared to the inexpensive method because a strategy must
be recomputed for every action a′ ∈ A(h) in addition to a.
For example, if an off-tree action is chosen by the opponent
as the first action in the game, then the strategy for the entire
game must be recomputed. We therefore refer to this method
as the expensive method. We present experiments with both
methods.

Experiments
We conducted our experiments on a poker game we call No-
Limit Flop Hold’em (NLFH). NLFH is similar to the popu-
lar poker game of No-Limit Texas Hold’em except that there
are only two rounds, called the pre-flop and flop. At the be-
ginning of the game, each player receives two private cards
from a 52-card deck. Player 1 puts in the “big blind” of 100
chips, and Player 2 puts in the “small blind” of 50 chips.
A round of betting then proceeds starting with Player 2, re-
ferred to as the preflop, in which an unlimited number of bets
or raises are allowed so long as a player does not put more
than 20,000 chips (i.e., her entire chip stack) in the pot. Ei-
ther player may fold on their turn, in which case the game
immediately ends and the other player wins the pot. After the
first betting round is completed, three community cards are
dealt out, and another round of betting is conducted (start-
ing with Player 1), referred to as the flop. At the end of this
round, both players form the best possible five-card poker
hand using their two private cards and the three community
cards. The player with the better hand wins the pot.

For equilibrium finding, we used a version of CFR called
CFR+ (Tammelin et al. 2015) with the speed-improvement
techniques introduced by Johanson et al. (2011). There is no
randomness in our experiments.

Our first experiment compares the performance of un-
safe, re-solve, maxmargin, and reach-maxmargin refinement
when applied to information abstraction (which is card ab-
straction in the case of poker). Specifically, we solve NLFH
with no information abstraction on the preflop. On the flop,
there are 1,286,792 infosets for each betting sequence; the
abstraction buckets them into 30,000 abstract ones (using
a leading information abstraction algorithm (Ganzfried and
Sandholm 2014)). We then apply endgame solving imme-
diately after the preflop ends but before the flop commu-
nity cards are dealt. We experiment with two versions of the
game, one small and one large, which include only a few of
the available actions in each infoset. The small game has 9
non-terminal betting sequences on the preflop and 48 on the
flop. The large game has 30 on the preflop and 172 on the

flop. Table 1 shows the performance of each technique. In all
our experiments, exploitability is measured in the standard
units used in this field: milli big blinds per hand (mbb/h).

Small Game Large Game
Base Strategy 9.128 4.141
Unsafe 0.5514 39.68
Resolve 8.120 3.626
Maxmargin 0.9362 0.6121
Reach-Maxmargin 0.8262 0.5496

Table 1: Exploitability (evaluated in the game with no infor-
mation abstraction) of the endgame-solving techniques.

Despite lacking theoretical guarantees, Unsafe endgame
solving outperformed the safe methods in the small game.
However, it did substantially worse in the large game. This
exemplifies its variability. Among the safe methods, our
Reach-Maxmargin technique performed best on both games.

The second experiment evaluates nested endgame solving
using the different endgame solving techniques, and com-
pares them to action translation. In order to also evaluate
action translation, in this experiment, we create an NLFH
game that includes 3 bet sizes at every point in the game
tree (0.5, 0.75, and 1.0 times the size of the pot); a player
can also decide not to bet. Only one bet (i.e., no raises) is
allowed on the preflop, and three bets are allowed on the
flop. There is no information abstraction anywhere in the
game. 2 We also created a second, smaller abstraction of
the game in which there is still no information abstraction,
but the 0.75x pot bet is never available. We calculate the
exploitability of one player using the smaller abstraction,
while the other player uses the larger abstraction. When-
ever the large-abstraction player chooses a 0.75x pot bet, the
small-abstraction player generates and solves an endgame
for the remainder of the game (which again does not in-
clude any 0.75x pot bets) using the nested endgame solving
techniques described above. This endgame strategy is then
used as long as the large-abstraction player plays within the
small abstraction, but if she chooses the 0.75x pot bet later
again, then the endgame solving is used again, and so on.
Table 2 shows that all the endgame solving techniques sub-
stantially outperform action translation. Resolve, Maxmar-
gin, and Reach-Maxmargin use inexpensive nested endgame
solving, while Unsafe and “Reach-Maxmargin (expensive)”
use the expensive approach. Reach-Maxmargin refinement
performed the best, outperforming maxmargin refinement

2There are no chip stacks in this version of NLFH. Chip stacks
pose a considerable challenge to action translation, because the op-
timal strategy in a poker game can change drastically when any
player has bet almost all her chips. Since action translation maps
each bet size to a bet size in the abstraction, it may significantly
overestimate or underestimate the number of chips in the pot, and
therefore perform extremely poorly when near the chip stack limit.
Refinement techniques do not suffer from the same problem. Con-
ducting the experiments without chip stacks is thus conservative
in that it favors action translation over the endgame solving tech-
niques. We nevertheless show that the latter yield significantly bet-
ter strategies.
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and unsafe endgame solving. These results suggest that
nested endgame solving is preferable to action translation
(if there is sufficient time to solve the endgame).

Exploitability
Randomized Pseudo-Harmonic Mapping 146.5
Resolve 15.02
Reach-Maxmargin (Expensive) 14.92
Unsafe (Expensive) 14.83
Maxmargin 12.20
Reach-Maxmargin 11.91

Table 2: Comparison of the various endgame solving tech-
niques in nested endgame solving. The performance of
the pseudo-harmonic action translation is also shown. Ex-
ploitability is evaluated in the large action abstraction, and
there is no information abstraction in this experiment.

Conclusion

We introduced an endgame solving technique for imperfect-
information games that has stronger theoretical guarantees
and better practical performance than prior endgame-solving
methods. We presented results on exploitability of both safe
and unsafe endgame solving techniques. We also introduced
a method for nested endgame solving in response to the op-
ponent’s off-tree actions, and demonstrated that this leads to
dramatically better performance than the usual approach of
action translation. This is, to our knowledge, the first time
that exploitability of endgame solving techniques has been
measured in large games.
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Appendix: Supplementary Material

Description of Gadget Game

Solving the auxiliary game described in Maxmargin Refine-
ment and Reach-Maxmargin Refinement will not, by itself,
maximize the minimum margin. While LP solvers can easily
handle this objective, the process is more difficult for itera-
tive algorithms such as Counterfactual Regret Minimization
(CFR) and the Excessive Gap Technique (EGT). For these
iterative algorithms, the auxiliary game can be modified into
a gadget game that, when solved, will provide a Nash equi-
librium to the auxiliary game and will also maximize the
minimum margin (Moravcik et al. 2016).

The gadget game differs from the auxiliary game in two
ways. First, all P1 payoffs that are reached from the ini-
tial information set of I ′ are shifted by CBV σ−1(I ′, a)
in Maxmargin refinement and by CBV σ−1(I ′) in Reach-
Maxmargin refinement. Second, rather than the game start-
ing with a chance node that determines P1’s starting state,
P1 will get to decide for herself which state to begin the
game in. Specifically, the game begins with a P1 node where
each action in the node corresponds to an information set
I in Sr for Maxmargin refinement, or the earliest infoset
I ′ ∈ QS(I) for Reach-Maxmargin refinement. After P1

chooses to enter an information set I , chance chooses the
precise history h ∈ I in proportion to π

σ−1

−1 (h).
By shifting all payoffs by CBV σ−1(I ′, a) or

CBV σ−1(I ′), the gadget game forces P1 to focus on
improving the performance of each information set over
some baseline, which is the goal of Maxmargin and Reach-
Maxmargin refinement. Moreover, by allowing P1 to choose
the state in which to enter the game, the gadget game forces
P2 to focus on maximizing the minimum margin.

Figure 4 illustrates the gadget game for Maxmargin re-
finement.

Proof of Theorem 1

Proof. Assume Mr(I, σ, σS) ≥ 0 for every information set
I in Sr for an endgame S and let ε = minI Mr(I, σ, σS).

For an information set I ∈ Sr, let I ′ be the ear-
liest information set in QS(I). Then CBV σ−1(I ′) ≥
CBV σ′−i→I·a′S (I ′) + ε.

First suppose that π〈BR(σ′2),σ
′
2〉(I) = 0. Then either

π〈BR(σ′2),σ
′
2〉(I ′) = 0 or π〈BR(σ′2),σ

′
2〉(I ′, I) = 0. If it is the

Figure 4: An example of a gadget game in Maxmargin re-
finement. P1 picks the initial information set she wishes
to enter Sr in. Chance then picks the particular history
of the information set, and play then proceeds identi-
cally to the auxiliary game. All P1 payoffs are shifted by
CBV σ−1(I ′, a).

former case, then CBV σ−1(I ′) does not affect exp(σ′2). If it
is the latter case, then since I is the only information set in
Sr reachable from I ′, so in any best response I ′ only reaches
nodes outside of S with positive probability. The nodes out-
side S belonging to P2 were unchanged between σ and σ′,
so CBV σ′−1(I ′) ≤ CBV σ−1(I ′).

Now suppose that π〈BR(σ′2),σ
′
2〉(I) > 0.

Since BR(σ′2) already reaches I ′ on its own,
so CBV σ′−i(I ′) = CBV σ′−i→I·a′S (I ′). Since
CBV σ−1(I ′) ≥ CBV σ′−i→I·a′S (I ′) + ε, so we get
CBV σ−1(I ′) ≥ CBV σ′−i(I ′) + ε. This is the condition
for Theorem 1 in Moravcik et al. (2016). Thus, from that
theorem, we get that exp(σ′2) ≤ exp(σ2)− επ

σ′2
−1(I).

Now consider any information set I ′′ � I ′. Before en-
countering any P2 nodes whose strategies are different in
σ′ (that is, P2 nodes in S), P1 must first traverse a I ′ in-
formation set as previously defined. But for every I ′ in-
formation set, CBV σ′−1(I ′) ≤ CBV σ−1(I ′). Therefore,
CBV σ′−1(I ′′) ≤ CBV σ−1(I ′′).

Proof of Theorem 2

Proof. Let S ∈ S be an endgame for P2 and as-
sume π〈BRσ′2 ,σ′2〉(I) > 0 for some I ∈ Sr. Let ε =
minI Mr(I, σ, σS) and let I ′ be the earliest information set
in QS(I). Since we added the constraint that CBRσ′−1(I) ≤
CBRσ−1(I) for all P1 information sets, so ε ≥ 0. We
only consider the non-trivial case where ε > 0. Since
BR(σ′2) already reaches I ′ on its own, so CBV σ′−i(I ′) =

CBV σ′−i→I·a′S (I ′).
Let σ′S2 represent the strategy which plays according to

σS
2 in P2 nodes of S and elsewhere plays according to

σ. Since ε > 0 and we assumed the minimum payoff
for every P1 action in QS(I) that does not lead to I , so
CBV σ′S−1→I·a′S (I ′) ≤ BRV σ−S

−1 (I ′)− ε.
Moreover, since σ′S−1 assumes a value of CBV σ−1(h) is

received whenever a history h 	∈ QS(I) is reached due
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to chance or P2, and CBV σ−1(h) is an upper bound on
CBV σ′−1(h), so CBV σ′S−1→I·a′S (I ′) ≥ CBV σ′−1→I·a′S (I ′).

Thus, CBV σ′−1→I·a′S (I ′) ≤ BRV σ−S
−1 (I ′) − ε. Finally,

since I ′ can be reached with probability πσ−1(I ′), so
exp(σ′2) ≤ exp(σ−S

2 )− π
σ′2
−1(I)minI M(I, σS

2 , S).
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