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Abstract

This paper focuses on modeling ride requests and their vari-
ations over location and time, based on analyzing extensive
real-world data from a ride-sharing service. We introduce
a graph model that captures the spatial and temporal vari-
ability of ride requests and the potentials for ride pooling.
We discover these ride request graphs exhibit a well known
property called “densification power law” often found in real
graphs modelling human behaviors. We show the pattern of
ride requests and the potential of ride pooling for a city can
be characterized by the densification factor of the ride re-
quest graphs. Previous works have shown that it is possible
to automatically generate synthetic versions of these graphs
that exhibit a given densification factor. We present an al-
gorithm for automatic generation of synthetic ride request
graphs that match quite well the densification factor of ride
request graphs from actual ride request data.

1 Introduction

Recent emergence of ride-sharing services is transforming
human mobility and transportation in major cities of the
world (Buzzfeed 2016). In December 2015, Uber Technolo-
gies, Inc. reported completion of a billion rides (Fortune
2015) within five years since it started operations. Didi alone
in China reported 1.4 billion ride requests in 2015 (Wired
2016). There is huge potential for such services to transform
urban transportation, public policies, and city-scale services.

Prior works have assessed the potential benefits of ride
sharing services. More efficient human transportation at the
city scale can play a key role in contributing to sustainabil-
ity. Most previous studies were based on limited amount of
data from a handful of cities over a short span of time. Our
work is based on extensive ride request data from the Uber
ride-sharing service, which has a global footprint covering
several hundred cities. We examine ride request data from 40
cities across the world covering a time span of many weeks.

Examining the extensive ride request data from Uber, we
quickly observed that the ride request patterns exhibit signif-
icant variability from city to city. Furthermore, within each
city, ride requests also vary across regions of the city, on dif-
ferent days of the week, and at different times of the day.
However, we also observed that, for most cities, there is
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Figure 1: Similarity in the weekly pattern of ride requests
for San Francisco for two different weeks.

a strong pattern that tends to repeat on a weekly basis, as
shown for San Francisco in Figure 1. Hence, effective mod-
eling of ride requests must capture the variability in both the
spatial and temporal dimensions, but can use one week as
the representative time period.

Several ride-sharing services have recently introduced the
notion of ride pooling (combining multiple ride requests into
one vehicle) for improving overall service efficiency and at
the same time reducing the number of vehicles on the road
which can potentially help alleviate traffic congestion. Ef-
fective ride pooling requires bundling ride requests that oc-
cur in close proximity in both time and location.

This paper makes the following five key contributions: (1)
We introduce a new graph model of ride-sharing services
that captures both the temporal and spatial attributes of ride
requests; (2) We discover that ride request graphs (RRGs)
from this model exhibit the well known “densification power
law” (DPL) property often found in real graphs modeling
human behaviors (Chakrabarti and Faloutsos 2012); (3) We
show it is possible to automatically generate synthetic ver-
sions of RRGs that exhibit the same DPL degree as the
RRGs extracted from real world data; (4) We introduce a
new concept called “ride poolability” that captures the frac-
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tion of ride requests that can potentially be pooled; and (5)
We show there is a direct correlation between the DPL de-
gree of RRGs and the level of ride poolability of a city.

The paper is organized as follows: In Section 2 we provide
a survey of related work. In Section 3 we present space-time
evolution of ride requests based on extensive ride request
data from cities around the world. We then introduce a con-
cise space-time graph model of ride requests in Section 4.
We show that ride request graphs (RRG) exhibit the well
known densification power law (DPL) often found in real
graphs. In Section 5 we show that it is possible to automat-
ically generate synthetic version of RRGs that exhibit the
same DPL degree as RRGs extracted from actual ride re-
quests. In Section 6 we introduce ride poolability and show
the direct correlation between the DPL degree and the level
of ride poolability. Finally, we summarize our key findings
and suggest promising directions for future work in Section
7.

2 Prior Work

Recent studies looked at different formulations to show the
potential of ride pooling. (Burns, Jordan, and Scarborough
2013) uniformly distribute ride requests in a geographical
area. They model the performance of fleet of vehicles as a
queuing system where vehicles are servers and trip requests
are customers. Using such an analytical model they derive
average capacity utilizations, wait times, and total costs.
(Lu 2014) study optimizing the number of miles driven by
drivers by pooling riders; ride requests are generated uni-
formly over square blocks. (Wang 2013) also simulate data
for ride requests in the city of Atlanta to study benefits of
matching riders. (Knapen et al. 2015) formulate a graph with
nodes as users, and edges indicating whether or not a negoti-
ation between two users is possible to carpool. The data used
for users here was a synthetic population for a geographical
area. (Kamar and Horvitz 2009) use real-world data on trips
from a limited part of a city to highlight significant reduc-
tion of carbon dioxide per year by having multiple riders
share the same vehicle. (Bicocchi and Mamei 2014) devel-
oped a recommender system capable of identifying riders
which could be pooled by looking at users’ location data
when they send or receive calls or text messages. (Stiglic et
al. 2015) study the benefits of meeting points in a ride shar-
ing system from generating synthetic ride requests within
limited distance. (Shmueli et al. 2015) use a graph model
to analyze real data set of taxi trips in New York City for
assessing the potential of ride pooling.

Previous works have used either synthetic models to gen-
erate data or real data which may not accurately represent
locations where ride requests originate or terminate. Even
if it is representative, temporal changes which affect ride
requests have not been considered. For instance, users’ lo-
cations for making phone calls in the afternoon from of-
fices may not necessarily imply people travel often at the
same time from offices. In fact, comparatively low number
of ride requests are associated with afternoons on any week-
day. For ride pooling to be some percentage of total ride
requests such that civic bodies can make decisions, or for

c©OpenStreetMap contributors©©©©©©©©©©©©©©©
(a) Distribution of ride requests

at rush-hour time, 7pm

c©OpenStreetMap contributors©©©©©©©©©©©©
(b) Distribution of ride requests

at non-rush-hour time, 5am

Figure 2: Space-time variability: Each dot represents a
source or destination for a ride request in San Francisco2

ride requests pattern to be studied for its potential of pool-
ing (Huang et al. 2014) and to improve arrival time (Cao et
al. 2016) based on anticipated congestion, we need to under-
stand the laws which govern ride requests at any geographi-
cal area, and at any given time.

This work models ride requests as a graph. Some im-
portant prior works on graphs have helped us to model
and discover properties for ride requests. There is a class
of graphs that models real networks, e.g. social network
graphs and publication citation graphs, that evolve over time.
These graphs become more and more dense as they evolve
in time, i.e. the edge count grows superlinearly relative to
the node count growth. This densification of the graph can
be modeled concisely by a power law relationship between
the edge count and the node count. Graphs for many real
networks all seem to exhibit this densification power law
(DPL) (Newman 2005). For this class of graphs it is pos-
sible to automatically generate synthetic graphs that exhibit
the same densification power law without needing the orig-
inal data (Leskovec, Kleinberg, and Faloutsos 2005). These
graphs also exhibit the attribute of having strongly con-
nected subgraphs or communities (Fortunato 2010). In this
work, we have discovered that our space-time graph model
of ride requests for a city belongs to this class of graphs.
This fact allows us to discover interesting attributes and in-
sights about ride requests and the potential of ride pooling
for ride-sharing services.

3 Space-Time Evolution of Ride Requests

This work is based on extensive real world data from Uber, a
ride-sharing service with global presence in several hundred
cities. We examine data from 40 cities with average daily
city-wide ride requests ranging from 2K to 200K per day. 1

1This paper presents results for only four cities. We have similar
results for all 40 cities based on a total of about 50M ride requests.

2Map data of Figures 2, 3, and 5 are available from Open-
StreetMap under the Open Database License and the cartography is
licensed under the Creative Commons Attribution-ShareAlike 2.0.
http://www.openstreetmap.org/copyright
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Each ride request involves a source location s, destination
location d, and the time of the request t. Both s and d are
represented by their latitude and longitude. Each ride request
is considered independent of any other ride request. In this
study we do not consider the actual navigation path taken
from s to d for a ride request.

Based on examining the ride request data from the 40
cities gathered over several months in the Spring of 2016,
we can make two key observations. For each city, the spatial
and temporal ride request patterns tend to repeat from week
to week. On the other hand, there is significant variability of
ride request patterns from city to city. Furthermore, in each
city there is variability across different days of the week, at
different times of the day, and across different regions of the
city.

Variability in ride request patterns in San Francisco for
two snapshots taken at two different times of the day is
shown in Figure 2. The figure shows the spatial distribu-
tion of ride request density over the Bay Area. San Fran-
cisco downtown (top left cluster of points) is clearly denser
in ride requests. The two figures illustrate two snapshots of
ride request density for two different 5-minute intervals one
at 7:00pm and the other at 5:00am. The temporal and spatial
variations of ride requests can be clearly seen.

4 Space-Time Graph Model

We now introduce a graph model for ride requests. The
graph representing ride requests for a specific time period
is called a Ride Request Graph (RRG). Each RRG captures
the spatial distribution of ride requests across a city within
that time period. The RRG evolves from one time period to
the next, to account for new ride requests initiated in the next
time period. This evolution of the RRG and the resultant se-
quence of RRGs capture the temporal aspect of ride requests
over many time intervals.

Ride Request Graph Generation

For a given time interval we can generate a RRG represent-
ing all the ride requests in that interval. We divide the map
of a city into equal sized cells of 100m× 100m each. Each
cell is considered as a node in the graph only if the source or
destination of a ride request falls within that cell. A directed
edge connects the source and destination cells of a ride. A
directed graph can then be generated to model all the ride
requests in that time interval for a given city.

For illustration, consider the ride requests in Figure 3a for
a given time interval. The four ride requests are shown on a
gridded map (not drawn to scale). The corresponding graph
in Figure 3b is formed by four nodes with node A subsuming
s1, s2, d4; node B subsuming s3; node C subsuming s4, d1;
and node D subsuming d2, d3. All edges in Figure 3a have
unit weights representing single ride requests. Edge weights
represent the number of ride requests from the same source
and destination nodes. In this paper, the term node is always
used in the context of the RRG graph. We use the term point
to refer to a specific location defined by its latitude and lon-
gitude, which could be the source or destination of a ride
request, and is associated with a node of RRG.
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(a) Four ride requests distributed
spatially over a map
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(b) Corresponding Ride Request
Graph with four nodes (marked

by red boxes) and directed edges.

Figure 3: Transformation of ride requests, in a particular
time interval, into a directed ride-request graph (RRG).

Ride Request Graph Densification

A Ride Request Graph is different from conventional graphs:
(1) each node has a geographical area associated with it; (2)
RRG is not fixed in time but evolves in time. Each RRG in-
volves a spatial quantization (into 100m × 100m cells) of
the geographical space of a city, and a temporal quantization
into sequence of time intervals. In this work we use 5-minute
intervals for temporal quantization. As an RRG evolves in
time, it produces a sequence of RRGs that capture the tem-
poral behavior of ride requests.

As we analyze the RRGs extracted from historical data of
ride requests from all the cities, we make an interesting ob-
servation about these RRGs. Densification refers to graphs
that evolve in time, and how the edge count grows relative
to the growth of the node count. Many graphs modeling as-
pects of human behaviors, such as social network graphs and
publication citation graphs, among others, exhibit densifica-
tion over time that follows a power law, i.e. the number of
edges grows as a power of the number of nodes (Leskovec,
Kleinberg, and Faloutsos 2007). We have discovered that the
RRGs for ride requests exhibit the same power law densifi-
cation behavior and belongs to this class of graphs.

We observe RRGs at different snapshots of time, with
each spanning five minutes. For each snapshot, we study the
Densification Power Law plot (DPL plot) (Leskovec, Klein-
berg, and Faloutsos 2005) i.e. log-log plot of the number of
edges e(t) versus number of nodes n(t).

Top row in Figure 4 shows the Densification Power Law
(DPL) plot for four cities based on real data for a typical
week in 2016. It is observed that for every time interval t:

e(t) ∝ n(t)α

= Cn(t)α,
(1)

where e(t) and n(t) are the number of edges and number of
nodes respectively, formed by all ride requests occurring in
the time interval t. C and α are constants. Number of edges
is a good approximation of the number of ride requests. We
observe that all the cities follow the densification power law
but the parameters of the power law vary from city to city.
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Hyderabad Paris New York San Francisco

Figure 4: DPL plots from real data (top row) and synthetic data (bottom row) for four cities. The red line is the least square fit
of the form y = Cxα, where y and x are number of edges and nodes respectively. R2 ≈ 1.00 for all of them.

Characteristic Attributes of RRGs

It appears that the pattern of ride requests for a city can be
characterized concisely by C, and α derived from the power
law of RRGs for that city (see top row of Figure 4). The ex-
ponential α depicts the densification of ride requests within
a city. This densification factor α can range in value from 1.0
to 2.0. If α = 1.0, this means the number of edges is grow-
ing linearly with respect to the number of nodes; if α = 2.0,
then the RRGs become fully connected graphs.

It is interesting to note that all four cities exhibit densifi-
cation factors greater than 1.0. This means the edge count
is growing superlinearly to the node count, implying the
densification of ride requests. We speculate this demon-
strates the human tendency towards the creation of clus-
tered/connected communities, perhaps reflecting the small
world effect (Watts and Strogatz 1998).

DPL graphs exhibit a fascinating attribute. (Leskovec,
Kleinberg, and Faloutsos 2005) and (Chakrabarti and
Faloutsos 2012) have shown that for graphs that evolve ac-
cording to the densification power law, it is possible to auto-
matically generate these graphs that exhibit specific densifi-
cation factors. This means that we can automatically gener-
ate RRGs that exhibit similar densification factor as that of
RRGs extracted from real data. This can potentially allow us
to generate synthetic RRGs, exhibiting similar densification
factor, for a city without needing the real ride request data.

c©OpenStreetMap contributors©©©©©©©©©©©©©©
(a) Real Node Distribution

c©OpenStreetMap contributors©©©©©©©©©©©©
(b) Synthetic Node Distribution

Figure 5: Plots of nodes for San Francisco for a single time
interval of five minutes. On the left, is the real spatial

distribution, and on the right is the synthetically generated.

5 Synthesized Space-Time Graph Model

In this section, we explore the automatic generation of syn-
thesized space-time graph models that mimic the attributes
of RRGs generated using real ride request data. The two at-
tributes of interest are: 1) the spatial distribution of nodes;
and 2) the temporal evolution or the densification factor of
the RRG.
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Figure 6: Random walk starting at node s with three
random steps to reach node rs3. Final point is selected

uniformly random within the blue colored grid.

Spatial Properties

Spatial properties provide information on the source and
destination locations of ride requests as shown in Figure 3a.
The synthesized graph model should capture the spatial dis-
tribution of these ride request locations.

To capture spatial properties, we compute the likelihood
of a node to either possess a source or destination loca-
tion by using geospatial information from OSM’s public
data (OpenStreetMap 2016) on node density3. To avoid con-
fusion with a node of the Ride Request Graph, we shall refer
to an OSM node4 as Point of Interest (PoI). A PoI is defined
by a tuple of latitude and longitude. PoIs are used to de-
fine standalone features such as traffic signals, businesses,
schools, hospitals, and many others. Alternatively, any other
dataset providing a quantitative measure over geographical
space which is correlated with the likelihood of ride requests
can also be used.

Algorithm 1 performs node selection using vector of
probabilities pr ∈ R

n, n = |S|, where S is a subset of nodes
of interest. pr is computed by aggregating all PoIs present
at a RRG node, and then normalizing to get the probability
mass function across nodes in S. Algorithm 1 takes as in-
put the number of synthetic points m to be generated, and
associates each synthetic point to an initial node; this is de-
termined from prior probability vector pr. Once the initial
node is chosen, Algorithm 2 performs a random walk start-
ing from initial node centroid such that the synthetic points
are spread out in the geographical area (Figure 6). Since
PoI data could be sparse, we use a kernel density estima-
tion function K5 over the geographical space to guide the
random walk.

In Algorithm 1 method randomChoice generates m points
with replacement using the prior probabilities vector pr;
geoCoords returns the latitude and longitude associated with
the node label; perturb performs a uniform random selection
within the final node (blue area in Figure 6) to determine the
final location of the newly generated point.

In Algorithm 2, method randomStep chooses a node
amongst the neighbouring eight nodes (or less) of the cur-

3OSM data is publicly available at http://download.geofabrik.
de/

4http://wiki.openstreetmap.org/wiki/Node
5We used Gaussian Kernel Density Estimation library

http://statsmodels.sourceforge.net/devel/generated/statsmodels.
nonparametric.kernel density.KDEMultivariate.html

Algorithm 1 To capture spatial properties. Inputs: Kernel
density estimation function K, number of synthetic points
m ∈ N, prior probability vector pr ∈ R

n

1: procedure SPATIALPROPGEN(K,m, pr)
2: labels = randomChoice([0, . . . , len(pr)],m, pr)
3: pts = []
4: for each point i ∈ [0,m) do

5: l = labels[i]
6: s = geoCoords(l)
7: p = RANDOMWALK(K, s,maxr,maxs)
8: add(pts, perturb(p))
9: end for

10: return pts
11: end procedure

Algorithm 2 Random Walk. Inputs: Kernel density esti-
mation function K, start location s, maximum reward, and
maximum number of steps maxr & maxs

1: procedure RANDOMWALK(K, s,maxr,maxs)
2: let totr = 0
3: let nsteps = 0
4: let curr = s
5: while totr ≤ maxr and nsteps ≤ maxs do

6: curr , r = randomStep (curr,K)
7: nsteps = nsteps + 1

8: totr = totr + r
9: end while

10: return curr
11: end procedure

rent node, curr, by normalizing the probabilities returned
by the kernel density estimates; it returns the new node new,
and a reward r. We kept reward equal to the probability es-
timate for current node, r = K(curr). Note that every node
is defined by latitude, longitude coordinates of its centroid.

Densification Properties

In the previous subsection, we only distribute points spa-
tially such that they are either source or destination loca-
tions. Our model to connect these points such that they be-
come concrete ride requests is described in Algorithm DEN-
SPROPGEN. This model allows us to capture the densifica-
tion property observed in RRGs from real data. Algorithm 3
requires three parameters: (1) number of points to generate
m; (2) the probability of choosing a point which has not been
visited before p; (3) number of outlinks nedges from a source
point is defined by geometrically distributed random number
with mean 1/q. 1 − p is the probability of choosing a pre-
viously visited source point as destination (variation of the
preferential attachment technique described in (Chakrabarti
and Faloutsos 2012)) which captures the idea of rich getting
richer.

In Algorithm 3, uniformRandomChoice uniformly at ran-
dom selects a point from the set points. geometricRandom
generates values from a geometrically distributed random
variable with success probability q. uniformRandom gener-
ates a uniformly random value ∈ [0, 1).

Synthesized RRG Model

Our complete model which embodies all aspects of the syn-
thesized RRGs is as follows:

Step 1: Use OSM data to aggregate PoI count for each node.

29



Algorithm 3 To capture densification properties. Inputs:
m ∈ N , p & q ∈ [0, 1]

1: procedure DENSPROPGEN(m,p,q)
2: let M = [0, . . . ,m − 1]
3: let R = []
4: let rides = []
5: while length(M) > 1 do

6: s = uniformRandomChoice(M)
7: remove(M, s)
8: nedges = geometricRandom(q)

9: for each edge e ∈ [0, nedges) do

10: if uniformRandom() < p then

11: d = uniformRandomChoice(M)
12: remove(M,d)
13: else

14: d = uniformRandomChoice(R)
15: end if

16: r = connect(s, d)
17: add(rides, r)
18: end for

19: add(R, s)
20: end while

21: return rides
22: end procedure

Step 2: Choose a subset of nodes of interest S 6.
Step 3: Calculate prior probabilities based on PoI count to

get vector pr on the subset of nodes.
Step 4: Compute Gaussian kernel density function K using

centroids of nodes in S.
Step 5: Use SPATIALPROPGEN with prior probabilities,

number of points to be generated, and the kernel function
K to generate synthetic points over space.

Step 6: Use synthetic points to generate synthetic ride re-
quests using DENSPROPGEN with parameters p and q.

Step 7: Create the Ride Request Graph using the synthetic
ride requests returned by DENSPROPGEN.

One can repeat the steps above for consecutive time inter-
vals.

Comparison of Graph Models

Figure 4 (bottom row) provides plots for the synthesized
graph model with densification factors very similar to those
from RRGs generated from real data in Figure 4 (top row).
Figure 5 shows the spatial distribution produced by Algo-
rithms SPATIALPROPGEN and RANDOMWALK for the city
of San Francisco. The plots show nodes (aggregation of
points) in an RRG for a single time interval for both the real
RRG (left) and the synthesized RRG (right). The nodes are
more closely packed in the synthetic plot which is due to bias
induced by the prior probability distribution using PoI den-
sity. Certain geographical areas in Figure 5b have no nodes
in comparison to Figure 5a, also due to the prior PoI density
distribution being low in sparse areas.

6 Ride Request Poolability

Recently, ride-sharing services have started offering the op-
tion of ride pooling by matching similar ride requests in real
time. Such ride or rider matching problem is similar to the

6For our experiments we selected the nodes from historical data
where ride requests happened.

Hyderabad
Real LS fit: slope=0.01

Synthetic LS fit: slope= 0.018

Paris
Real LS fit: slope=0.038

Synthetic LS fit: slope= 0.046

New York
Real LS fit: slope=0.088

Synthetic LS fit: slope= 0.088

San Francisco
Real LS fit: slope=0.096

Synthetic LS fit: slope= 0.084

Figure 7: Scatter plots of poolable rides vs. total rides for
2016 5-minute intervals in a week, based on the RRGs from

real data (left) and the synthesized RRGs (right).

well studied combinatorial problem commonly referred to as
the Vehicle Routing Problem (Laporte 1992). An interesting
and powerful approach to maximize pooling and minimize
costs is by advanced scheduling, wherein a rider provides a
time period in the future for pick-up, and the ride-sharing
service performs matching within the time period.

In this work, we instead consider the potential for on-
demand ride pooling, i.e. pooling rides not scheduled in ad-
vance. We first focus on assessing the potential of ride pool-
ing based on historical data. We examine all the ride requests
in a city and attempt to bundle ride requests within certain
proximity constraints in both space and time. For example,
we can pool ride requests initiated within a 5 minute win-
dow, with requesting locations less than 100m apart.

Consider a set of rides P ordered by time of request, such
that |P | = p, p > 1; the first ride to occur in time in P is
referred to as the master ride. Then master is poolable with
any request ∈ P \ {master} if the following constraints are
satisfied:

1. both ride requests are requested within Δt minutes.
2. source locations of both requests are within Δs meters

radius.
3. destination locations of both requests are within Δd me-

ters radius.
All rides in such proximity with master, and master itself
are removed from P , and the above steps are repeated with
a new master being the next earliest ride request in P . Any
requests that remain unmatched are considered not poolable.
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Hyderabad Paris New York San Francisco

Figure 8: Poolability metric for four cities for a week of data with Δt = 5min,Δs = 100m,Δd = 1000m. Time is in GMT.

City Mean Minimum Maximum
Hyderabad 2.23 0.84 7.41

Paris 2.39 0.79 4.22
New York 4.48 1.70 7.84

San Francisco 5.48 2.50 9.16

Table 1: Overall mean, minimum, and maximum poolability
for four cities for a week of data with Δt = 5min,Δs =
100m,Δd = 1000m

We define poolability as the percentage of rides that can
be pooled. In Figure 8 we plot the poolability (z-axis) for
four cities. The poolability data is shown for each day of the
week. Summary of poolability metric for four cities is pro-
vided in Table 1. Poolability in Hyderabad shows maximum
variability with minimum of 0.84, and maximum of 7.41.

Paris and San Francisco exhibit quite different degrees
of poolability. San Francisco consistently exhibits higher
poolability, with a consistent daily pattern for weekdays. For
each day there are two time periods, matching the morn-
ing and evening rush hours, that exhibit significantly higher
poolability. We suspect the key difference between Paris and
San Francisco is due to the topology and terrain of the two
cities. This is a very interesting area for future research.

Ride Poolability Attributes

We also observe that the poolability of a city is di-
rectly correlated with its densification factor. Cities with
higher α always exhibit higher poolability. Comparing Fig-
ure 8 with the top row of Figure 4 we see that α =
1.031, 1.054, 1.098, 1.104, for Hyderabad, Paris, New York,
and San Francisco, respectively. This ordering matches ex-
actly the ordering of poolability in Figure 8 and Table 1
(mean poolability).

Synthesized RRG Poolability

Figure 7 provides a comparison of poolability obtained us-
ing real data and randomly generated data. The slope of the
straight line fitted to real and synthetic plots suggests that the
synthesized graph model is a relatively good fit to the real
poolability. There are instances where the synthesized ver-
sion over or under predicts poolability. This is most likely
due to the lack of spatial information of ride requests dis-
tributed over time. Node density information from OSM is

Figure 9: Comparison of Poolability generated by synthetic
(red line) and real (dotted blue line) models for New York.
RMSE: 1.54, abs. delta min=0.02, abs. delta max=3.17

not dynamic relative to the time of day, hence there is a bias
towards generating points in high PoI density regions which
may not hold for consecutive time intervals.

Figure 9 shows how the poolability metric varies over
168 hours (starting with 8pm on Friday) of a typical week.
The synthetic model captures the temporal variations and
matches well with the poolability from the real ride request
data. For the synthetic model, the total number of ride re-
quests were kept equal to the number of ride requests in real
data. The first three peaks in the plot depict evening hours for
Friday, Saturday, and Sunday which on average are higher
than the remaining four peaks in the plot.

7 Conclusion

The emergence of ride sharing services and the availabil-
ity of extensive data from such services is creating unprece-
dented opportunities for: doing large scale data analytics on
urban transportation; gaining new insights on human mobil-
ity; and facilitating new public services for societal benefit.
This work is an initial attempt at this. The key contributions
of this paper include:

• Based on extensive real world data, we introduce a space-
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time framework for modeling ride requests in a city, and
the notion and analysis of ride poolability.

• We introduce a space-time graph model for modeling ride
requests in a city and show that these graphs exhibit power
law densification as they evolve in time.

• Based on the densification power law, we show that the
pattern of ride requests and ride poolability for a city can
be concisely characterized by the densification factor of
its ride request graphs.

• We further show that the degree of ride poolability of a
city is directly correlated to the densification factor of its
ride request graphs.

• Using previous work, we show the space-time ride request
graph model for a city can be automatically generated.

• We further show the attributes of the generated synthetic
graphs match quite well the attributes of graphs extracted
from real ride request data.

We have only scratched the surface in this paper. There are
many promising avenues for further research. Some open
research questions include:

1. If the ride pooling proximity constraints, both temporal
and spatial can be relaxed, is it possible to significantly
improve ride poolability?

2. Can the temporal and spatial variation of ride poolability
be leveraged to create intelligent ride pooling algorithms?

3. Is it possible to significantly reduce the number of vehi-
cles needed on the road through aggressive ride pooling?

4. Can we rigorously characterize the relationship between
the degree of ride poolability and the densification factor
of ride request graphs?

5. Is it possible to use insights from historical ride request
data for real-time traffic congestion prediction and poten-
tially alleviation?

6. Comparison of RRG generation with existing graph gen-
erators over space and time.
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