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Abstract

In recent years, Counterfactual Regret Minimization (CFR)
has emerged as the standard technique for computing near-
equilibrium solutions to large games of imperfect informa-
tion. This paper describes a new sampling variant of Counter-
factual Regret Minimization, called Targeted CFR. We com-
pare with other sampling variants including Outcome Sam-
pling and External Sampling, and present experimental re-
sults on poker. We find that Targeted CFR outperforms other
sampling variants on certain types of large games.

Counterfactual Regret Minimization

Counterfactual regret minimization (CFR) (Zinkevich et al.
2007) is a technique for solving large games of imperfect
information that has become the dominant approach in the
field of computer poker. It takes regret minimization tech-
niques that have traditionally been applied to normal-form
games and adapts them to work efficiently on extensive-form
games like poker.

Below we briefly recap the key elements of CFR. For a
fuller exposition, the reader is invited to consult the prior
literature such as (Zinkevich et al. 2007). For background
on extensive-form games, the reader can consult a text such
as (Osborne and Rubenstein 1994). Familiarity with terms
such as information set, history and abstraction is assumed
below.

Through a form of self-play, CFR computes (behavioral)
strategies that provably converge to a Nash equilibrium for
two-player zero-sum extensive-form games with perfect re-
call. CFR maintains a quantity known as “regret” for ev-
ery action. Regret is a measure how much the player could
have gained over previous iterations by playing that action
as opposed to playing the actual sequence of actions that he
did. At each iteration we compute a current strategy for each
player from the regrets. We also maintain the cumulative
profile for each player which sums the probabilities assigned
to each action over the entire sequence of iterations. The cu-
mulative profile allows us to compute the average strategy;
it is this average strategy which can be shown to converge to
equilibrium.

To compute regrets, a quantity known as “counterfactual
value” is computed for actions at an information set. Given
a current strategy profile σ for the two players, the counter-
factual value vi(σ, I) of an information set for player i is the
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expected utility at that information set, assuming that player
i plays to that information set:

vi(σ, I) =
∑

z∈ZI

(ui(z)π
σ
−i(z[I])π

σ(z[I], z)) (1)

Here ZI is the set of terminal histories passing through I ,
and z[I] is the prefix of z contained in I . πσ(h) is the prob-
ability of history h occurring if all players play according
to σ. πσ

−i(h) only incorporates the probabilities of players
other than i (including chance). πσ(h1, h2) is the product of
the probabilities along the path between h1 and h2. ui(z) is
the utility accruing to player i at terminal history z.

The counterfactual regret at iteration t of an action a is
how much player i could have gained by playing a as op-
posed to the current strategy that he actually employed.

rti(I, a) = vi(σ
t
I→a, I)− vi(σ

t, I) (2)

Here σt
I→a is the strategy profile identical to σt except

that at information set I action a is selected with probability
1.

We maintain the sum of the regrets across all iterations:

RT
i (I, a) =

T∑

t=1

rti(I, a) (3)

The current strategy for iteration T +1 is calculated from
the regrets at iteration T using an approach known as “regret
matching” (Hart and Mas-Colell 2000) in which probabili-
ties are proportional to positive regret:

σT+1(I, a) =
RT,+

i (I, a)
∑

b∈A(I) R
T,+
i (I, b)

(4)

x+ means max{x, 0}.
The original version of CFR is known as “Vanilla” CFR.

In Vanilla CFR, on each iteration an exhaustive traversal of
the game tree is performed, with exact counterfactual values
being computed at every information set. Likewise regrets
and the cumulative profile are updated at each information
set. We alternate between iterations on which we are up-
dating player 1’s regrets and iterations on which we are up-
dating player 2’s regrets. On each iteration we say that one
player is the “target player” and the other player is the oppo-
nent.
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Sampling Variants

Numerous sampling variants of CFR have been introduced
over the last several years including External Sampling and
Outcome Sampling (Lanctot et al. 2008) and Average Strat-
egy Sampling (Gibson et al. 2012a). Sampling variants of
CFR traverse only a small fraction of the game tree on each
iteration, and replace an exact computation of the coun-
terfactual value v(σ, I) with an unbiased estimate v̂(σ, I).
We often find faster convergence to near-equilibrium solu-
tions, especially for large games. One reason for the suc-
cess of these sampling variants may be that they spend more
time updating the important parts of the strategy, specifically
those areas that get played to more frequently.

In the framework of (Gibson et al. 2012b), sampling vari-
ants of CFR must satisfy a couple of requirements. The
first is that the estimate of counterfactual value they produce,
v̂(σ, I), be an unbiased estimate. The second, which we will
term the “reachability requirement”, requires that all por-
tions of the game tree that the opponent plays to be sampled
with some non-zero probability 1

Sampling variants of CFR have been employed with good
results in the Computer Poker Competition. The top three
competitors from the 2014 competition all employed some
variation on External Sampling. On the other hand, Heads-
Up Limit Texas Hold’em was recently solved (Tammelin et
al. 2015) with CFR+, a variant of Vanilla CFR that employs
no sampling. It seems likely that games that can be solved
very exactly (to a very low exploitability, and using no card
abstraction) will be best tackled with CFR+. But games that
are too large to solve with CFR+ will still best be attacked
using some form of sampling.

Outcome Sampling

In Outcome Sampling, a single action is sampled at every
information set. At an information set where chance acts,
we sample according to the fixed chance distribution. At an
information set where the opponent acts, we sample accord-
ing to the opponent’s current strategy. At an information
set where the target player acts, we sample approximately
according to the target player’s current strategy. The com-
plication is that we require some “exploration” to ensure that
the reachability requirement is satisfied. For example, with
some small probability ε we may sample an action according
to the uniform distribution.

A single iteration of Outcome Sampling involves follow-
ing a single trajectory from the root of the game tree to a
terminal history z. This is depicted in figure 1.

External Sampling

External Sampling is like Outcome Sampling at information
sets where chance acts or where the opponent acts; i.e., we

1The “reachability requirement” is not explicitly stated in (Gib-
son et al. 2012b), but arises from the fact that the estimated coun-
terfactual value is scaled up by 1/qi(I) where qi(I) is player i’s
contribution to the probability of sampling information set I . If
qi(I) were zero, this estimated counterfactual value would be un-
defined.

Figure 1: Outcome Sampling

Figure 2: External Sampling

sample a single action according to the current strategy pro-
file. External Sampling differs at information sets where the
target player acts. At these information sets we evaluate all
actions. Since we evaluate all of the target player actions we
meet the reachability requirement.

External Sampling is depicted in figure 2.

Average Strategy Sampling

Average Strategy Sampling is identical to External Sam-
pling for information sets where chance or the opponent
acts. Where the target player acts, we sample more or less
according to the average strategy up to this point in time. As
with Outcome Sampling, the catch is that we must ensure
some exploration to ensure that the reachability condition is
satisfied. In Average Strategy Sampling, we achieve this by
always evaluating a target player action with at least proba-
bility ε. See(Gibson et al. 2012a) for more details.

Probes

In (Gibson et al. 2012b), a new wrinkle is introduced. Imag-
ine we are at an information set and we wish to perform an
update. In Outcome Sampling, we would sample one action
according to the current strategy, but no others. Gibson et al.
observe that this is effectively estimating a zero counterfac-
tual value for all the unsampled actions at that information
set. They propose instead computing a rough estimate of
the counterfactual value of those unsampled actions with a
“probe”. A probe is a walk down a single trajectory from the
current information set to a terminal history according to the
current strategy profile. It produces an unbiased estimate of
the counterfactual value, as desired.

A probe is depicted in figure 3. Here we have reached
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Figure 3: A probe

Figure 4: Targeted CFR

information set I and we choose to estimate the value of
action a0 with a probe. Instead of fully evaluating it, we
follow a single on-policy trajectory to the terminal history z
which is represented by the dashed line.

One interesting thing about probes is that we calculate
counterfactual values in a portion of the game tree in which
we do not update regrets (nor the cumulative profile). (In fig-
ure 3 we do not update regrets along the path marked by the
dashed line.) In this respect incorporating probes takes us
outside the family of sampling algorithms defined in (Lanc-
tot et al. 2008).

Targeted CFR

The new approach described in this paper, Targeted CFR,
takes some inspiration from all of the above approaches. It
can be viewed as falling somwhere between Outcome Sam-
pling and External Sampling on the spectrum of sampling
algorithms, in the sense that a single iteration of Targeted
CFR will typically visit more of the game tree than Outcome
Sampling, but less than External Sampling.

In Targeted CFR, we divide the game tree into a number of
partitions. On a single iteration, one or more partitions will
be “targeted”. When within a targeted partition, sampling
and regret updates are performed as in External Sampling.
When not within an targeted partition, we essentially per-
form a probe. That is, we follow a single trajectory sampling
a single action at every information set according to each
player’s current strategy. We do not perform any updates (of
regrets or the cumulative profile) in the non-targeted regions,
but we do return an unbiased estimate of the counterfactual
value.

Targeted CFR is depicted in figure 4.

The choice of how to partition the game tree and how of-
ten to target each partition is a design choice that the imple-
menter must make. In Texas Hold’em poker, there are four
betting rounds, which provides us with a natural way to par-
tition the game tree. We may elect to target either a single
betting round or a combination of betting rounds.

In order to satisfy the reachability requirement, Targeted
CFR requires occasional iterations on which all partitions
are targeted. We refer to these as “full” iterations. Full it-
erations are identical to External Sampling iterations. Since
External Sampling satisfies the reachability constraint, Tar-
geted CFR, which performs these iterations with non-zero
probability also satisfies the reachability constraint.

We use a parameter τ to designate the distribution that
determines how often each combination of partitions — bet-
ting rounds, in the case of poker — is targeted.

Pseudocode

Algorithm 1 Targeted CFR
Require: Parameters τ
Require: Initialize regrets: ∀a, I : r(I, a) ← 0
Require: Initialize cumulative profile: ∀a, I : s(I, a) ← 0

1: function ITERATION(player i)
2: Sample targeted partitions R ∼ τ
3: Targeted(∅, i)
4: function TARGETED(history h, player i)
5: r ← index of partition
6: I ← information set containing h
7: σ(I, ·) ← RegretMatching(r(I, ·))
8: if h ∈ Z then
9: return ui(h)

10: else if h ∈ P (c) then
11: Sample action a ∼ σc(h, ·)
12: return Targeted(ha, i)
13: else if h /∈ P (i) then
14: if R contains all partitions then
15: for a ∈ A(I) do
16: s(I, a) ← s(I, a) + σ(I, a)

17: Sample action a ∼ σ(I, ·)
18: return Targeted(ha, i)
19: else
20: if r ∈ R then
21: for a ∈ A(I) do
22: v̂(a) ← Targeted(ha, i)
23: ĉ ← ∑

a∈A(I) σ(I, a)v̂(a)

24: for a ∈ A(I) do
25: r(I, a) ← r(I, a) + v̂(a)− ĉ

26: return ĉ
27: else
28: Sample action a ∼ σ(I, ·)
29: return Targeted(ha, i)

Pseudocode for Targeted CFR is shown in Algorithm 1.
A reader familiar with Monte Carlo CFR (MCCFR) meth-

ods will recall that in MCCFR quantities often need to be
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Figure 5: Targeting Important Information Sets

scaled by 1/q where q is the probability of the given infor-
mation set having been sampled. This eliminates biases that
would result from certain information sets being sampled
more often than others. But there is no such rescaling in the
pseudocode above.

With respect to the cumulative profile, we make the expe-
dient choice of updating it only during the “full” iterations.
(Gibson et al. 2012b) shows how the cumulative profile can
be updated during the opponent phase of External Sampling.
It turns out that no rescaling is needed when you do this.

For updating regrets, it is theoretically required to scale
counterfactual values by 1/q as is done in other MCCFR
variants. However, perhaps surprisingly, we have found em-
pirically that such weighting actually hurts the rate of con-
vergence. We speculate that these rescaling factors (which
will be quite large when q is small) introduce a lot of vari-
ance into the regrets as compared to the unscaled values.

Extensions

So far we have discussed targeting entire betting rounds on
each iteration. A somewhat different type of approach is
to identify specific information sets that are important, and
to fully explore all actions at those information sets. This
is depicted in figure 5. The figure depicts only information
sets at which the target player acts. The ones in red are those
deemed important. (As usual, where chance or the opponent
act, we always sample a single action.)

There are many ways one could define which information
sets are most important. We have typically defined them as
information sets in which the gap in regrets between the top
two actions is less than some threshold. Important informa-
tion sets are thus identified as those where there is a close
decision. This threshold is likely game-dependent, but in
our experiments on poker a value of around one thousand
big blinds has worked well.

Generally we find it advantageous to combine this form
of targeting with the targeting of betting rounds described
earlier.

Discussion

Targeted CFR is in a certain sense between Outcome Sam-
pling and External Sampling on the spectrum of sampling
algorithms. Outcome Sampling employs the fastest but least
accurate iterations in that each iteration follows only a sin-
gle trajectory from root to leaf. External Sampling traverses

much more of the game tree on each iteration because it eval-
uates all actions for the target player. Targeted CFR is be-
tween these two because it pursues all actions for the target
player only in some portions of the tree; otherwise it is fol-
lowing a single trajectory as in Outcome Sampling.

As observed in (Gibson et al. 2012b), Outcome Sampling
leads to a high variance in the estimated counterfactual value
computed for an action. On iterations where an action is not
evaluated, the counterfactual value is (implicitly) considered
to be zero. This may explain why Outcome Sampling has
not been preferred for most forms of poker. Adding probes
to Outcome Sampling gives us a superior (although still very
rough) estimate of every action’s counterfactual value. Like-
wise, in Targeted CFR, at information sets where we are
performing regret updates (i.e., in the targeted portion of the
game tree) we always have an estimated counterfactual value
for every action.

In all our experiments with poker, it has proven advan-
tageous to target the later betting rounds more often than
the earlier betting rounds. We conjecture that the reason is
that game trees for poker exhibit a high degree of fan-out
and there are far more histories on the later betting rounds
than the earlier betting rounds. All forms of sampling prior
to Targeted CFR visit histories in the earlier betting rounds
far more frequently than histories in the later betting rounds.
Targeted CFR addresses this imbalance by targeting the later
betting rounds more often.

Results

We performed a variety of experiments, mostly compar-
ing Targeted CFR to External Sampling, but also in some
cases Average Strategy Sampling. Two different measures
of the quality of our strategies were employed: exploitabil-
ity and head-to-head performance. Exploitability measures
how much a given strategy would lose to a best response, and
can be thought of as a measure of distance from equilibrium.
A true equilibrium strategy would have zero exploitability.

Head-to-head performance was measured by comparison
to a reference strategy. For the reference strategy we typ-
ically use the best strategy we have available for the given
game. We use head-to-head performance for a couple of
reasons. First, for some games it is not feasible to compute
exploitability. Second, depending on his or her goals, an im-
plementer may care more about head-to-head performance
than exploitability.

Measuring head-to-head performance in this way has the
limitation that we are only comparing to a single reference
system. It is possible that a strategy may have excellent
head-to-head performance against one opponent, but not
against another.

We discuss below results on games of different sizes. For
poker we think of the size of the game along two dimen-
sions; the number of different betting sequences allowed,
and the number of “buckets” in the card abstraction. For
a game with no card abstraction, the number of buckets is
simply the number of permutations of the cards from the
viewpoint of one player (modulo isomorphism). In Texas
Hold’em, on the final betting round, this would be the num-
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Figure 6: Game 1: Exploitability Over Time

Figure 7: Game 1: Head-to-head loss over time

ber of ways of dealing five community cards and two private
cards to the player.

For the first game (“game 1”) we used a 24 card deck
with no card abstraction. There are approximately 6.25 mil-
lion buckets on the final betting round. The game permits
a single pot-size bet on every betting round, which leads to
a total of 322 betting sequences. For the parameter τ which
controls how often we target each betting round we used this
distribution:

Betting Rounds Probability
0, 1, 2, 3 0.2
2, 3 0.8

Note that we are always targeting multiple betting rounds,
and that we prioritize the later betting rounds over the earlier
betting rounds.

Figure 6 shows exploitability over time. As you can see,
Targeted CFR and External CFR differ hardly at all on this
measure. Figure 7 shows the head-to-head results. Tar-
geted CFR offers a small improvement which diminishes
over time.

We turn now to games that do not employ a perfect card
abstraction. For game 2, we use a full 52-card deck, but
cluster the hands on each of the last three betting rounds
into approximately one million buckets. The card abstrac-
tion exhibits imperfect recall (Waugh et al. 2009). We use

Figure 8: Game 2: Head-to-head loss over time

Figure 9: Game 2: Real-game exploitability over time

the same betting structure as game 1, with only 322 betting
sequences possible.

For the parameter τ which controls how often we target
each betting round we used this distribution:

Betting Rounds Probability
0, 1, 2, 3 0.025
2, 3 0.75
1, 3 0.175
0, 3 0.05

The head-to-head results are shown in figure 8. Surpris-
ingly we see much larger head-to-head outperformance with
this game than with game 1. We also computed real-game
exploitability, with results shown in figure 9.

Note that for both systems real-game exploitability bot-
toms out very quickly and actually gets slightly worse over
time. This is typical of systems with imperfect recall
card abstractions; they tend not to optimize real-game ex-
ploitability as well as one might hope. Having said that,
it does appear that Targeted CFR produces a substantially
lower real-game exploitability.

Our final game, game 3, employs a much larger betting
system than either of the previous two games. We allow a
maximum of two bets per betting round and four bet sizes,
which leads to around a million betting sequences. We used
a smaller imperfect recall card abstraction with 169, 10,000,
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Figure 10: Game 3: Head-to-head loss over time

10,000 and 1,980 buckets on the four betting rounds respec-
tively.

We compare Targeted CFR to both External Sampling and
Average Strategy Sampling, with the head-to-head results
shown in figure 10. As you can see Targeted CFR outper-
forms by a substantial margin. 2

The results shown above are a mixed bag, but Targeted
CFR outperforms on the two games that employ imperfect
recall card abstractions. Games that can be solved with no
card abstraction are probably best attacked through other
methods (e.g., CFR+). Targeted CFR is best suited for larger
games that require card abstraction and cannot feasibly be
solved with methods like CFR+.

Targeted CFR is being employed in the construction of
Slumbot 2017, our entry into the 2017 Computer Poker
Competition.

Conclusions

We have presented Targeted CFR, a new variant of counter-
factual regret minimization, along with results comparing it
to External Sampling and Average Strategy Sampling. Tar-
geted CFR generally outperforms on large games with im-
perfect recall card abstractions.

The present paper explores only a couple of methods of
targeting; there are no doubt other variations that would
prove fruitful.
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