

Complete Coverage Planning: Achieving Human Interaction
and Maximum Coverage During an Autonomous

Robotic Vehicle Navigation of an Unknown Terrain

Balasubramaniyan Chandrasekaran, James M. Conrad
University of North Carolina at Charlotte

Department of Electrical and Computer Engineering
{bchandr3, jmconrad}@uncc.edu

Abstract
In this paper, the concept of complete coverage planning is
described through a robotic vehicle navigation on an un-
known terrain. The navigation application is highly interac-
tive with the user to achieve maximum coverage of the field
and gather terrain information for the user and is called as
complete coverage planning. Sensor Maps are dynamic
structures similar to the sensory brain maps which process
the sensor information from the vehicle and re-arrange
themselves based on the usage of the sensors during the
navigation application’s lifetime. The main idea behind
such an approach is to formulate a human-inspired model
for cognition. Human intervention is facilitated when the
vehicle is uncertain about a decision during its traversal in
the field.

Introduction
Autonomous vehicle navigation is increasingly used in
several applications, such as elderly care, schools, space
exploration and several other faculties of everyday lives. In
(Chandrasekaran and Conrad 2015), the authors summarize
the integration of human interaction and robot operations
through a survey. Several applications ranging from elderly
care to space exploration are highlighted and the level of
human machine collaboration is demonstrated through ex-
amples of robots used in each of the areas. The authors in
(Ghangrekar and Conrad 2009) introduce the concept of
complete coverage planning of vehicle navigation on an
unknown terrain.

Theory and Background
In (Choset 2001 ; Galceran and Carreras 2013 ; Ghangre-
kar and Conrad 2009), the authors summarize a few plan-
ning algorithms for the vehicle. Also, the vehicle maneu-

vers over the obstacle(s) by drawing a collision avoidance
boundary and navigates along local paths computed while
encountering obstacles and resumes navigation along the
regular path (or normal path) to its destination once it is
dealt with the obstacle (Ghangrekar and Conrad 2009). To
achieve human interaction it is necessary to have some
form of dialogue between the operator and the vehicle.
Command numbers are used to achieve bidirectional com-
munication during the assist phase when the vehicle seeks
help. This is similar to the collaborative control mentioned
in (Fong and Thorpe 2013).
 In (Ramachandran 2011; Doidge 2015), the authors de-
scribe the cognitive model of the brain through sensory
brain maps. These maps (Penfield maps) hold a slot for
every sensory input in the human body and are arranged as
shown in Figure 1 (Ramachandran 2011).
 When a sensory input is not recognized in the brain map
for a certain time, the map dynamically alters itself to ac-
commodate more space and resources for those sensor slots
that are adjacent to the one that is marked as dormant (Ra-
machandran 2011). This results in a few sensory areas on
the map becoming larger, growing into the space that was
utilized by the dormant sensor while the other sensor areas
show no change in their space (those not adjacent to the
dormant sensor). However, when the dormant sensor be-
comes active again, through the respective task (learning
and training), the map again starts to alter, re-assigning its
original space in the brain map, showing an increase in
space at that slot. This is known as differentiation of the
brain map (Doidge 2015).

These principles on which the brain operates and micro-
manages the sensory map is applied in this work, and is
demonstrated through the use of three functions namely:
Sensor Space Reduce, Sensor Space Reallocate Function
and Sensor Space Deallocate Function. A selective sensor
framework is introduced in (Chandrasekaran and Conrad

The AAAI-17 Workshop on
Human-Aware Artificial Intelligence

WS-17-10

614

2016) that provides a generalized view of integrating ro-
botic applications with vehicle cognition and embodies
human interaction is the process.

Figure 1. A portion of the Penfield map of the skin surface.

(Ramachandran 2011)

Experiment Description
We formalize the concept of Sensory Maps in robotic ve-
hicle navigation through an application similar to the one
highlighted in (Ghangrekar and Conrad 2009), however,
with the inclusion of human interaction during uncertainty
and increased coverage by visiting obstacle free cells that
were not considered previously in the paper. The experi-
ment is divided into two phases, namely, setting up the
navigation application of the vehicle and using this appli-
cation to demonstrate the dynamicity of the sensor map.
The phase I, namely, robotic vehicle navigation is de-
scribed in the following section. The phase II, sensor map
dynamicity is described in the section thereafter.

Phase I – Complete Coverage Planning
We consider a grid of size 5 by 9. The robotic vehicle is
non-holonomic (i.e. can make only 90 degree turns and
cannot move in all directions). The vehicle traverses the
field column-by-column covering as many cell blocks as
possible. The borders of the field are considered reachable
so that the vehicle can navigate the perimeter of the field.
The vehicle makes 90 degree turns at the top and bottom
cells of the field either turning right at the top of the col-
umn or turning left at the bottom of the field, to move to
the neighboring column.

 Two types of obstacles are considered, namely, trees and
ravines. Complete coverage planning refers to the name of
the application that runs on the vehicle and is not associat-
ed with any path planning algorithm. The name is given as
such to indicate maximum area will be covered by the ve-
hicle. This application does not use any path planning
technique.

Implementation and Vehicle navigation
The experiment was implemented using Python language
(Version 2.7) and the Turtle Graphics tool (in-built utility
available in Python 2.7)

The typical layout for the simulation is shown as in Fig-
ure 2. The vehicle traverses the field, cell-by-cell, from top
to bottom or bottom to top along each column. It makes
left turns when it reaches the bottom of column (i.e., high-
est index value for row) and makes a right turn when it
reaches the top of the column (i.e., row index 0). Trees are
drawn as green circles and ravines are represented as thick
black lines. The robotic vehicle is represented as a turtle.
The trace of the vehicle (or the path taken by the vehicle) is
shown in red.

The Figures 3 – 7 show the vehicle traversing the field
and initiating the request for help during the help phase.
Human Machine Interaction (HMI), is then achieved
through the communication of help numbers between the
robot and the user.

Figure 2. Simulation field for the vehicle.

Figure 3. Help phase initiated and user chooses commands.

615

The vehicle seeks help from the user only when it is unable
to steer around the obstacle. The user provides one of four
options: enter 1 to move forward, enter 2 to turn right,
enter 3 to turn left or enter 4 to exit the help phase. Only a
minimal set of commands are exchanged between both
entities before the robot switches back to the autonomous
mode.

In the Figures 8-10, the vehicle navigates smoothly in
the field by handling the obstacles by itself, even when the
ravine and tree are close (Figure 9) or when the obstacles
are spaced apart. The sensors used could be ultrasonic sen-
sors or LIDAR.

Figure 4. User enters turn right twice to avoid the obstacle.

Figure 5. Vehicle swings back to autonomous mode.

Figure 6. Vehicle covers the cells not previously visited.

Figure 7. Autonomous navigation after seeking user’s help.

Figure 8. Vehicle handles ravine and tree autonomously.

Figure 9. Vehicle avoiding the trees.

Figure 10. Vehicle follows regular path until it reaches its desti-

nation at the bottom.

616

Phase II – Sensor Map Dynamicity
In Phase I, we were concerned only about the application
layer of the robotic system. The application is programmed
into the robot and the focus was to achieve human interac-
tion during the execution of the main task, thereby keeping
the internal cognitive processing hidden from the user ex-
perience. In this section, we demonstrate the use of a robot
sensor map similar to the sensory brain map (Ramachan-
dran 2011) to perform information processing and resource
management for sensors on the robot. The main idea be-
hind such an approach is to formulate a human-inspired
model for cognition. The sensor map implemented works
in a very similar manner as the sensory brain map, per-
forming operations such as sensor slot allocation, alloca-
tion of un-used sensor space to the other sensors and re-
allocation of sensor space back to the sensors which had
the original ownership. Such a dynamic structure allocates
more space for storage and processing data from the sen-
sors that are heavily used, resulting in efficient usage of the
memory area. This is similar to how more area in the brain
map is occupied by the most frequently used sensory in-
puts.
 The sensors are assumed to be laid in a sequential man-
ner in the sensor space. Depending on the initial condi-
tions, the sensors could be originally assigned equally
spaced memory slots. The dynamicity of the map is tested
with the help of the application described in the previous
section. The sensor manager holds all the relevant infor-
mation related to each sensor and has exclusive ownership
of the sensor map space. It keeps track of which sensors
are used for the application and periodically (or based on
the user given requirements) can run different functions
that manage and modify the space for the sensors. Similar
to the use-it-or-lose-it principle as outlined and described
in (Ramachandran 2011; Doidge 2015), the sensory brain
map is a dynamic structure that keeps changing depending
on the usage of the sensory organs.

Machine Learning and Sensor Map Dynamicity
In order to illustrate the dynamic nature of the sensor
maps, it is necessary to use a learning technique. Since we
as the user can decide the criteria for memory usage and
thresholds for the sensors, supervised classifiers are the
best fit for this purpose. When we use such classifiers we
can extend the current system to handle newer features and
train the system accordingly. Each of the sensor space
management functions described below actively use a su-
pervised classifier called the Random Forest (Breiman
2001). The user can choose the label for the data sets and
define them during the training phase. However, for the
present application the data sets are small, hence the classi-
fier is very reliable and highly accurate in its prediction on

the test set. The description of each of the sensor manage-
ment functions is described in the following paragraphs.

In Sensor Space Reduce Function, we identify the space
that should be retained for each sensory input. This func-
tion keeps track of the usage of the sensors on the vehicle
and determines how much space should be held in the map
for each sensor. When a sensory input keeps reducing as
the application progresses, or between different applica-
tions, the corresponding space in the map starts to dynami-
cally reduce as a function of its usage. The classifier uses
the frequency of the sensor’s usage to determine the per-
centage by which the space should be reduced. This phe-
nomenon is akin to how the brain reduces the space on its
sensory map when a particular sensory input is less and
less received on the map during one’s lifetime (Ramachan-
dran 2011), also known as shrinkage of sensory space on
the map.

The Sensor Space Reallocate Function distributes the
sensor space of a dormant sensor to its adjacent sensory
members on the map. This function checks for sensors that
are marked for deletion and identifies its adjacent members
on the map. The classifier distributes the space to the
dormant sensor’s neighbors and once distributed notifies
the sensor manager of these changes. As a result, the re-
distribution causes some areas on the map to grow larger,
however, when the sensors are at the borders, the entire
distribution is for the one sensor that is adjacent to it.

The Sensor Space Deallocate Function de-allocates the
space from the sensors that had previously taken space
from the dormant sensor and re-allocates it back to the
dormant sensor when it becomes active again. The function
uses a classifier that identifies the sensors that become ac-
tive again and automatically trains those sensors (this is
done internally inside the function by running the tasks
mapped to it) to increase its usage. Again, the usage metric
causes the classifier to increase the space on the map for
the trained sensor while reducing the extra space from its
neighbors..

Sensor Maps in Robotic Vehicle Navigation
The application is implemented in Python 2.7 and uses
libraries from sklearn documentation (Pedregosa et al.
2011) to make use of some machine learning techniques
(Patnaik 2007 ; Mitchell 1997) for supervised classification
(Mitchell 2007). The robot’s sensory map is pre-filled with
the memory allocation and sensor usage. Table 1 shows the
mapping between the sensors and tasks and the initial state
of the map.
 When a sensor has 100% space, it refers to the accessi-
ble area for that sensor (on the sensor map) but as the sen-
sor management functions are executed this accessible
region for the sensor will start to diminish and could even-
tually result in 0% space which will be described in the

617

following sections. The navigation application is executed
and the vehicle updates the usage of the tasks and the sen-
sors during this process. Once the field is navigated, the
sensor manager runs the Sensor Space Reduce function. As
a result, the space for each sensor starts to reduce depend-
ing on how much it was used during its previous applica-
tion. The classifier present inside this function does not
reduce the sensor space if its usage is above a certain
threshold (user-defined), otherwise it reduces the sensor
space according to its usage. Figure 11 shows the space
available for each sensor after the application was execut-
ed. From the figure, we can see that as the usage is below a
certain threshold the classifier marks the amount of space
to be reduced for each sensor. The blue and orange bars
indicate the available space before and after the navigation
application. The user can specify the criteria for reduction
depending on how often the task is being used. When a
sensor space is reduced, it refers to the active working area
only. For instance in Figure 11, we can see that space for
sensor 2 was reduced by 20%, however this 20% is still
under the ownership of sensor 2 (until it reaches 0).

Table 1. Initial state of the sensor map

Sensor ID and task
mapping

Space available (work-
ing area in %)

Usage
count

0 (move forward) 100 50

1 (move backward) 100 70

2 (turn right) 100 50

3 (turn left) 100 50

4 (detect person) 100 55

Figure 11. Sensor space distribution before and after the naviga-

tion application.

Case 1: Dynamic allocation from a border sensor slot
The navigation application is continuously executed by
disabling the check for the person task, thereby reducing
the space for sensor 4 (a border sensor slot) to 0. After the
space reduction phase, the Sensor Manager calls the Sensor
Re-allocate routine to identify the sensors with space re-
duced to 0. This routine then de-allocates the space from
this sensor (sensor with space equal to 0) to its adjacent
sensors. This causes some of the sensor spaces to be larger

than others. In this experiment, we execute this function
only when the space for a sensor has dropped to 0, indicat-
ing with certainty, that the sensor wasn’t used in the previ-
ous application (its usage count is reduced to 0).

Figure 12 shows the map distribution after this space re-
allocation. It also shows the space distribution from the
passive sensor to its adjacent member sensors. Since there
is only sensor 3 as a neighbor to sensor 4, all of sensor 4’s
space is allocated to sensor 3, causing it to grow larger,
which is evident from the figure.

The navigation application is executed again and the
task mapped to sensor 4 is re-enabled (check for person).
When this task is run, it wants to use sensor 4 for its task
(detect person). Since the map had de-allocated sensor 4’s
space (since it was unused in the previous applications) to
sensor 3, it needs to reallocate that space back to sensor 4.

Figure 12. Space distribution after sensor re-allocation showing
sensor 3 which gets extra space from sensor 4.

When the application identifies that sensor 4 has no space
it calls another internal function, Handle Feasibility. This
function identifies the sensor with the ID specified in the
argument list and starts training the vehicle internally to
increase its usage, thereby allocating space back into its
area and simultaneously de-allocating the space from its
adjacencies. The feasibility function uses the Sensor De-
allocate function to achieve this task. As a result, the sen-
sor space is reduced for just one sensor as shown in Figure
13.

Figure 13. Space distribution after navigation application. Sensor
4 becomes active and regains the space it had sacrificed to sensor

3 previously due its dormancy.

618

Case 2: Dynamic allocation from a middle sensor slot
The mapping is now rearranged by changing the slots for
sensor 4 and sensor 3 (hence the respective tasks). For the
purpose of demonstration in the application task associated
with sensor 3 is disabled and that results in sensor 3 be-
coming unused and the usage dropping to 0 and hence its
space reduced to 0. On executing the Sensor Space Re-
allocate function, we get the space distribution as high-
lighted in Table 2. Since sensors 2 and 4 are adjacent to
sensor 3 its space is distributed to 2 and 4 causing their
areas to grow larger which is evident from the Figure 14.

Table 2: Sensor map after Sensor re-allocation

Sensor ID Space available
(working area in %)

Usage count

0 100 126
1 100 146
2 135 82
3 0 0
4 155 59

Figure 14. Space distribution after sensor re-allocation. Sensors

2 and 4 acquire the space from sensor 3 since it is considered
dormant.

After re-enabling the task mapped to sensor 3 the applica-
tion is executed again. Since the map had de-allocated sen-
sor 3 space to sensors 2 and 4, it needs to re-allocate that
space back to sensor 3.

When the application identifies that sensor 3 has no
space it calls another function, Handle Feasibility similar
to Case 1. The feasibility function uses the Sensor De-
allocate function. The sensor space is then reduced for sen-
sors 2 and 4 as shown in Figure 15. Sensors 2 and 4, which
showed an increase in its space have now shrunk and sen-
sor 3 is re-allocated its space to be used in the application.
This process is also called Differentiation of the Brain Map
(Doidge 2015). The application can be run continuously
and hence the space for sensor 3 slot will continue to in-

crease (reducing the extra space from sensors 2 and 4 as
well).

Figure 15. Space distribution after the application completed.

Sensor 3 becomes active and regains the space it had sacrificed
to sensors 2 and 4.

Conclusion
In this paper, we have demonstrated the navigation of the
vehicle in the field in the presence of trees and ravine ob-
stacles through complete coverage planning. The important
features of this application were maximum coverage of the
field, discovering ravines and invoking user help at the
right places during the vehicle’s journey through the field.
The Help phase was kept simple and included only the
most basic commands. The vehicle visits all the cells ex-
cept those that were blocked by trees and ravines, thereby
gathering as much information as possible about the field.
A final list containing cells that are blocked and cells cov-
ered is stored by the vehicle.
 Also, a dynamic structure called the sensor map using
supervised learning was implemented on the robotic vehi-
cle. This map is similar to the sensory brain map that is
dynamically altered by the brain based on the usefulness of
the sensory inputs. By using the robot navigation applica-
tion it was possible to show the sensor space variation dur-
ing the application and between applications through learn-
ing thus achieving a cognition model similar to human
brain model for sensor data processing and management.
This concept of dynamic map structures is very useful in
resource management for multi-sensor frameworks and
helps utilize the space available effectively.

Future Work
The next step in this research is to combine both trees and
ravines obstacles. D-S Theory of evidence (Dempster
1968; Shafer 1976) will be used to infer a decision and the
vehicle will follow accordingly. Interaction with the human
user will be prompted when the fusion algorithm signals an
uncertain state achieving safe maneuvering of the vehicle
in the field. We will also formulate an evaluation proce-

619

dure for our HRI system by considering, the level of shared
interaction between the user and the vehicle during the
help phase, the type of information used to communicate
between them, efficient interaction and scalability of the
system (Scholtz 2002; Yanco and Drury 2004).

References
Breiman, L. 2001. Random forests. Machine learning, 45(1), 5-
32.
Chandrasekaran, B., & Conrad, J. M. 2015. Human-robot collab-
oration: A survey. In SoutheastCon 2015 (pp. 1-8). IEEE
Chandrasekaran, B., & Conrad, J. M. 2016. Sensor fusion using a
selective sensor framework to achieve decision and task execu-
tion. In SoutheastCon 2016 (pp. 1-7). IEEE.
Choset, H. 2001. Coverage for robotics–A survey of recent re-
sults. Annals of mathematics and artificial intelligence, 31(1-4),
113-126.
Dempster, A. P. 1968. A generalization of Bayesian inference.
Journal of the Royal Statistical Society. Series B (Methodologi-
cal), 205-247.
Doidge, N. 2015. The Brain's Way of Healing: Remarkable Dis-
coveries and Recoveries from the Frontiers of Neuroplasticity,
New York, NY: Penguin Publishing Group
Fong, T., & Thorpe, C. 2013. Vehicle teleoperation with Collabo-
rative control. In Multi-Robot Systems: From Swarms to Intelli-
gent Automata: Proceedings from the 2002 NRL Workshop on
Multi-Robot Systems (p. 195). Springer Science & Business Me-
dia
Galceran, E., & Carreras, M. 2013. A survey on coverage path
planning for robotics. Robotics and Autonomous Systems, 61(12),
1258-1276.
Ghangrekar, S., & Conrad, J. M. 2009. Modeling and simulating
a path planning and obstacle avoidance algorithm for an autono-
mous robotic vehicle. In 2009 IEEE International Symposium on
Modeling, Analysis & Simulation of Computer and Telecommuni-
cation Systems (pp. 1-3). IEEE.
Mitchell, T. M. 1997. Machine learning. Burr Ridge, IL: McGraw
Hill, 45, 995.
Mitchell, H. B. 2007. Multi-sensor data fusion: an introduction.
Springer Science & Business Media.
Patnaik, S. 2007. Robot Cognition and Navigation: An Experi-
ment with Mobile Robots. Springer Science & Business Media.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion,
B., Grisel, O., & Vanderplas, J. 2011. Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research,
12(Oct), 2825-2830.
Ramachandran,V.S. 2011. The Tell-Tale Brain: A Neuroscien-
tist's Quest for What Makes Us Human, New York, NY:W. W.
Norton & Company
Scholtz, J. 2002. Evaluation methods for human-system perfor-
mance of intelligent systems. National Inst of Standards and
Technology Gaithersburg MD Manufacturing Engineering
Lab.Shafer, G. 1976. A mathematical theory of evidence (Vol. 1,
pp. xiii+-297). Princeton: Princeton university press.
Yanco, H. A., & Drury, J. L. 2004. Classifying human-robot in-
teraction: an updated taxonomy. In SMC (3) (pp. 2841-2846).

620

