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Abstract 
In this paper, the concept of complete coverage planning is 
described through a robotic vehicle navigation on an un-
known terrain. The navigation application is highly interac-
tive with the user to achieve maximum coverage of the field 
and gather terrain information for the user and is called as 
complete coverage planning. Sensor Maps are dynamic 
structures similar to the sensory brain maps which process 
the sensor information from the vehicle and re-arrange 
themselves based on the usage of the sensors during the 
navigation application’s lifetime.  The main idea behind 
such an approach is to formulate a human-inspired model 
for cognition.  Human intervention is facilitated when the 
vehicle is uncertain about a decision during its traversal in 
the field. 

Introduction 
Autonomous vehicle navigation is increasingly used in 
several applications, such as elderly care, schools, space 
exploration and several other faculties of everyday lives. In 
(Chandrasekaran and Conrad 2015), the authors summarize 
the integration of human interaction and robot operations 
through a survey. Several applications ranging from elderly 
care to space exploration are highlighted and the level of 
human machine collaboration is demonstrated through ex-
amples of robots used in each of the areas. The authors in 
(Ghangrekar and Conrad 2009) introduce the concept of 
complete coverage planning of vehicle navigation on an 
unknown terrain. 
 

Theory and Background 
In (Choset  2001 ; Galceran and Carreras 2013 ; Ghangre-
kar and Conrad 2009), the authors summarize a few plan-
ning algorithms for the vehicle. Also, the vehicle maneu-

vers over the obstacle(s) by drawing a collision avoidance 
boundary and navigates along local paths computed while 
encountering obstacles and resumes navigation along the 
regular path (or normal path) to its destination once it is 
dealt with the obstacle (Ghangrekar and Conrad 2009).  To 
achieve human interaction it is necessary to have some 
form of dialogue between the operator and the vehicle. 
Command numbers are used to achieve bidirectional com-
munication during the assist phase when the vehicle seeks 
help. This is similar to the collaborative control mentioned 
in (Fong and Thorpe 2013).  
 In (Ramachandran 2011; Doidge 2015), the authors de-
scribe the cognitive model of the brain through sensory 
brain maps. These maps (Penfield maps) hold a slot for 
every sensory input in the human body and are arranged as 
shown in Figure 1 (Ramachandran 2011).  
 When a sensory input is not recognized in the brain map 
for a certain time, the map dynamically alters itself to ac-
commodate more space and resources for those sensor slots 
that are adjacent to the one that is marked as dormant (Ra-
machandran 2011). This results in a few sensory areas on 
the map becoming larger, growing into the space that was 
utilized by the dormant sensor while the other sensor areas 
show no change in their space (those not adjacent to the 
dormant sensor). However, when the dormant sensor be-
comes active again, through the respective task (learning 
and training), the map again starts to alter, re-assigning its 
original space in the brain map, showing an increase in 
space at that slot. This is known as differentiation of the 
brain map (Doidge 2015).  

These principles on which the brain operates and micro-
manages the sensory map is applied in this work, and is 
demonstrated through the use of three functions namely: 
Sensor Space Reduce, Sensor Space Reallocate Function 
and Sensor Space Deallocate Function. A selective sensor 
framework is introduced in (Chandrasekaran and Conrad 
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2016) that provides a generalized view of integrating ro-
botic applications with vehicle cognition and embodies 
human interaction is the process. 

 

 
Figure 1. A portion of the Penfield map of the skin surface.  

(Ramachandran 2011)  

Experiment Description 
We formalize the concept of Sensory Maps in robotic ve-
hicle navigation through an application similar to the one 
highlighted in (Ghangrekar and Conrad 2009), however, 
with the inclusion of human interaction during uncertainty 
and increased coverage by visiting obstacle free cells that 
were not considered previously in the paper. The experi-
ment is divided into two phases, namely, setting up the 
navigation application of the vehicle and using this appli-
cation to demonstrate the dynamicity of the sensor map. 
The phase I, namely, robotic vehicle navigation is de-
scribed in the following section. The phase II, sensor map 
dynamicity is described in the section thereafter. 

Phase I – Complete Coverage Planning 
We consider a grid of size 5 by 9. The robotic vehicle is 
non-holonomic (i.e. can make only 90 degree turns and 
cannot move in all directions). The vehicle traverses the 
field column-by-column covering as many cell blocks as 
possible. The borders of the field are considered reachable 
so that the vehicle can navigate the perimeter of the field. 
The vehicle makes 90 degree turns at the top and bottom 
cells of the field either turning right at the top of the col-
umn or turning left at the bottom of the field, to move to 
the neighboring column. 

 Two types of obstacles are considered, namely, trees and 
ravines. Complete coverage planning refers to the name of 
the application that runs on the vehicle and is not associat-
ed with any path planning algorithm. The name is given as 
such to indicate maximum area will be covered by the ve-
hicle. This application does not use any path planning 
technique. 

Implementation and Vehicle navigation 
The experiment was implemented using Python language 
(Version 2.7) and the Turtle Graphics tool (in-built utility 
available in Python 2.7)  

The typical layout for the simulation is shown as in Fig-
ure 2. The vehicle traverses the field, cell-by-cell, from top 
to bottom or bottom to top along each column. It makes 
left turns when it reaches the bottom of column (i.e., high-
est index value for row) and makes a right turn when it 
reaches the top of the column (i.e., row index 0). Trees are 
drawn as green circles and ravines are represented as thick 
black lines. The robotic vehicle is represented as a turtle. 
The trace of the vehicle (or the path taken by the vehicle) is 
shown in red. 

The Figures 3 – 7 show the vehicle traversing the field 
and initiating the request for help during the help phase. 
Human Machine Interaction (HMI), is then achieved 
through the communication of help numbers between the 
robot and the user.  

 

 
Figure 2. Simulation field for the vehicle. 

 

 
Figure 3. Help phase initiated and user chooses commands. 
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The vehicle seeks help from the user only when it is unable 
to steer around the obstacle. The user provides one of four 
options:  enter 1 to move forward, enter 2 to turn right, 
enter 3 to turn left or enter 4 to exit the help phase. Only a 
minimal set of commands are exchanged between both 
entities before the robot switches back to the autonomous 
mode. 

In the Figures 8-10, the vehicle navigates smoothly in 
the field by handling the obstacles by itself, even when the 
ravine and tree are close (Figure 9) or when the obstacles 
are spaced apart. The sensors used could be ultrasonic sen-
sors or LIDAR. 

 
Figure 4. User enters turn right twice to avoid the obstacle. 

 

 
Figure 5. Vehicle swings back to autonomous mode. 

 

 
Figure 6. Vehicle covers the cells not previously visited. 

 
Figure 7. Autonomous navigation after seeking user’s help. 

 

 
Figure 8. Vehicle handles ravine and tree autonomously. 

 

 
Figure 9. Vehicle avoiding the trees. 

 

 
Figure 10. Vehicle follows regular path until it reaches its desti-

nation at the bottom. 
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Phase II – Sensor Map Dynamicity 
In Phase I, we were concerned only about the application 
layer of the robotic system. The application is programmed 
into the robot and the focus was to achieve human interac-
tion during the execution of the main task, thereby keeping 
the internal cognitive processing hidden from the user ex-
perience. In this section, we demonstrate the use of a robot 
sensor map similar to the sensory brain map (Ramachan-
dran 2011) to perform information processing and resource 
management for sensors on the robot. The main idea be-
hind such an approach is to formulate a human-inspired 
model for cognition. The sensor map implemented works 
in a very similar manner as the sensory brain map, per-
forming operations such as sensor slot allocation, alloca-
tion of un-used sensor space to the other sensors and re-
allocation of sensor space back to the sensors which had 
the original ownership. Such a dynamic structure allocates 
more space for storage and processing data from the sen-
sors that are heavily used, resulting in efficient usage of the 
memory area. This is similar to how more area in the brain 
map is occupied by the most frequently used sensory in-
puts. 
 The sensors are assumed to be laid in a sequential man-
ner in the sensor space. Depending on the initial condi-
tions, the sensors could be originally assigned equally 
spaced memory slots. The dynamicity of the map is tested 
with the help of the application described in the previous 
section. The sensor manager holds all the relevant infor-
mation related to each sensor and has exclusive ownership 
of the sensor map space. It keeps track of which sensors 
are used for the application and periodically (or based on 
the user given requirements) can run different functions 
that manage and modify the space for the sensors. Similar 
to the use-it-or-lose-it principle as outlined and described 
in (Ramachandran 2011; Doidge 2015), the sensory brain 
map is a dynamic structure that keeps changing depending 
on the usage of the sensory organs.  

Machine Learning and Sensor Map Dynamicity 
In order to illustrate the dynamic nature of the sensor 
maps, it is necessary to use a learning technique. Since we 
as the user can decide the criteria for memory usage and 
thresholds for the sensors, supervised classifiers are the 
best fit for this purpose. When we use such classifiers we 
can extend the current system to handle newer features and 
train the system accordingly. Each of the sensor space 
management functions described below actively use a su-
pervised classifier called the Random Forest (Breiman 
2001). The user can choose the label for the data sets and 
define them during the training phase. However, for the 
present application the data sets are small, hence the classi-
fier is very reliable and highly accurate in its prediction on 

the test set. The description of each of the sensor manage-
ment functions is described in the following paragraphs. 

In Sensor Space Reduce Function, we identify the space 
that should be retained for each sensory input. This func-
tion keeps track of the usage of the sensors on the vehicle 
and determines how much space should be held in the map 
for each sensor. When a sensory input keeps reducing as 
the application progresses, or between different applica-
tions, the corresponding space in the map starts to dynami-
cally reduce as a function of its usage. The classifier uses 
the frequency of the sensor’s usage to determine the per-
centage by which the space should be reduced. This phe-
nomenon is akin to how the brain reduces the space on its 
sensory map when a particular sensory input is less and 
less received on the map during one’s lifetime (Ramachan-
dran 2011), also known as shrinkage of sensory space on 
the map.  

The Sensor Space Reallocate Function distributes the 
sensor space of a dormant sensor to its adjacent sensory 
members on the map. This function checks for sensors that 
are marked for deletion and identifies its adjacent members 
on the map. The classifier distributes the space to the 
dormant sensor’s neighbors and once distributed notifies 
the sensor manager of these changes. As a result, the re-
distribution causes some areas on the map to grow larger, 
however, when the sensors are at the borders, the entire 
distribution is for the one sensor that is adjacent to it. 

The Sensor Space Deallocate Function de-allocates the 
space from the sensors that had previously taken space 
from the dormant sensor and re-allocates it back to the 
dormant sensor when it becomes active again. The function 
uses a classifier that identifies the sensors that become ac-
tive again and automatically trains those sensors (this is 
done internally inside the function by running the tasks 
mapped to it) to increase its usage. Again, the usage metric 
causes the classifier to increase the space on the map for 
the trained sensor while reducing the extra space from its 
neighbors..  

Sensor Maps in Robotic Vehicle Navigation 
The application is implemented in Python 2.7 and uses 
libraries from sklearn documentation (Pedregosa et al. 
2011) to make use of some machine learning techniques 
(Patnaik 2007 ; Mitchell 1997) for supervised classification 
(Mitchell 2007). The robot’s sensory map is pre-filled with 
the memory allocation and sensor usage. Table 1 shows the 
mapping between the sensors and tasks and the initial state 
of the map. 
 When a sensor has 100% space, it refers to the accessi-
ble area for that sensor (on the sensor map) but as the sen-
sor management functions are executed this accessible 
region for the sensor will start to diminish and could even-
tually result in 0% space which will be described in the 
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following sections. The navigation application is executed 
and the vehicle updates the usage of the tasks and the sen-
sors during this process. Once the field is navigated, the 
sensor manager runs the Sensor Space Reduce function. As 
a result, the space for each sensor starts to reduce depend-
ing on how much it was used during its previous applica-
tion. The classifier present inside this function does not 
reduce the sensor space if its usage is above a certain 
threshold (user-defined), otherwise it reduces the sensor 
space according to its usage. Figure 11 shows the space 
available for each sensor after the application was execut-
ed. From the figure, we can see that as the usage is below a 
certain threshold the classifier marks the amount of space 
to be reduced for each sensor. The blue and orange bars 
indicate the available space before and after the navigation 
application. The user can specify the criteria for reduction 
depending on how often the task is being used. When a 
sensor space is reduced, it refers to the active working area 
only. For instance in Figure 11, we can see that space for 
sensor 2 was reduced by 20%, however this 20% is still 
under the ownership of sensor 2 (until it reaches 0). 

Table 1. Initial state of the sensor map 

Sensor ID and task 
mapping 

Space available (work-
ing area in %) 

Usage 
count 

0 (move forward) 100 50 

1 (move backward) 100 70 

2 (turn right) 100 50 

3 (turn left) 100 50 

4 (detect person) 100 55 

 
Figure 11. Sensor space distribution before and after the naviga-

tion application. 

Case 1: Dynamic allocation from a border sensor slot 
The navigation application is continuously executed by 
disabling the check for the person task, thereby reducing 
the space for sensor 4 (a border sensor slot) to 0. After the 
space reduction phase, the Sensor Manager calls the Sensor 
Re-allocate routine to identify the sensors with space re-
duced to 0. This routine then de-allocates the space from 
this sensor (sensor with space equal to 0) to its adjacent 
sensors. This causes some of the sensor spaces to be larger 

than others. In this experiment, we execute this function 
only when the space for a sensor has dropped to 0, indicat-
ing with certainty, that the sensor wasn’t used in the previ-
ous application (its usage count is reduced to 0).  

Figure 12 shows the map distribution after this space re-
allocation. It also shows the space distribution from the 
passive sensor to its adjacent member sensors. Since there 
is only sensor 3 as a neighbor to sensor 4, all of sensor 4’s 
space is allocated to sensor 3, causing it to grow larger, 
which is evident from the figure. 

The navigation application is executed again and the 
task mapped to sensor 4 is re-enabled (check for person). 
When this task is run, it wants to use sensor 4 for its task 
(detect person). Since the map had de-allocated sensor 4’s 
space (since it was unused in the previous applications) to 
sensor 3, it needs to reallocate that space back to sensor 4. 

 

Figure 12. Space distribution after sensor re-allocation showing 
sensor 3 which gets extra space from sensor 4. 

 
When the application identifies that sensor 4 has no space 
it calls another internal function, Handle Feasibility. This 
function identifies the sensor with the ID specified in the 
argument list and starts training the vehicle internally to 
increase its usage, thereby allocating space back into its 
area and simultaneously de-allocating the space from its 
adjacencies. The feasibility function uses the Sensor De-
allocate function to achieve this task. As a result, the sen-
sor space is reduced for just one sensor as shown in Figure 
13. 
 

 
Figure 13. Space distribution after navigation application. Sensor 
4 becomes active and regains the space it had sacrificed to sensor 

3 previously due its dormancy. 
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Case 2: Dynamic allocation from a middle sensor slot  
The mapping is now rearranged by changing the slots for 
sensor 4 and sensor 3 (hence the respective tasks). For the 
purpose of demonstration in the application task associated 
with sensor 3 is disabled and that results in sensor 3 be-
coming unused and the usage dropping to 0 and hence its 
space reduced to 0. On executing the Sensor Space Re-
allocate function, we get the space distribution as high-
lighted in Table 2. Since sensors 2 and 4 are adjacent to 
sensor 3 its space is distributed to 2 and 4 causing their 
areas to grow larger which is evident from the Figure 14.  

Table 2: Sensor map after Sensor re-allocation 

Sensor ID Space available 
(working area in %) 

Usage count 

0 100 126 
1 100 146 
2 135 82 
3 0 0 
4 155 59 

 
Figure 14. Space distribution after sensor re-allocation. Sensors 

2 and 4 acquire the space from sensor 3 since it is considered 
dormant. 

After re-enabling the task mapped to sensor 3 the applica-
tion is executed again. Since the map had de-allocated sen-
sor 3 space to sensors 2 and 4, it needs to re-allocate that 
space back to sensor 3.  

When the application identifies that sensor 3 has no 
space it calls another function, Handle Feasibility similar 
to Case 1. The feasibility function uses the Sensor De-
allocate function. The sensor space is then reduced for sen-
sors 2 and 4 as shown in Figure 15. Sensors 2 and 4, which 
showed an increase in its space have now shrunk and sen-
sor 3 is re-allocated its space to be used in the application. 
This process is also called Differentiation of the Brain Map 
(Doidge 2015). The application can be run continuously 
and hence the space for sensor 3 slot will continue to in-

crease (reducing the extra space from sensors 2 and 4 as 
well). 
 

 
Figure 15. Space distribution after the application completed. 

Sensor 3 becomes active and regains the space it had sacrificed 
to sensors 2 and 4. 

Conclusion 
In this paper, we have demonstrated the navigation of the 
vehicle in the field in the presence of trees and ravine ob-
stacles through complete coverage planning. The important 
features of this application were maximum coverage of the 
field, discovering ravines and invoking user help at the 
right places during the vehicle’s journey through the field. 
The Help phase was kept simple and included only the 
most basic commands. The vehicle visits all the cells ex-
cept those that were blocked by trees and ravines, thereby 
gathering as much information as possible about the field. 
A final list containing cells that are blocked and cells cov-
ered is stored by the vehicle. 
 Also, a dynamic structure called the sensor map using 
supervised learning was implemented on the robotic vehi-
cle. This map is similar to the sensory brain map that is 
dynamically altered by the brain based on the usefulness of 
the sensory inputs. By using the robot navigation applica-
tion it was possible to show the sensor space variation dur-
ing the application and between applications through learn-
ing thus achieving a cognition model similar to human 
brain model for sensor data processing and management. 
This concept of dynamic map structures is very useful in 
resource management for multi-sensor frameworks and 
helps utilize the space available effectively.  

Future Work 
The next step in this research is to combine both trees and 
ravines obstacles. D-S Theory of evidence (Dempster 
1968; Shafer 1976) will be used to infer a decision and the 
vehicle will follow accordingly. Interaction with the human 
user will be prompted when the fusion algorithm signals an 
uncertain state achieving safe maneuvering of the vehicle 
in the field. We will also formulate an evaluation proce-
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dure for our HRI system by considering, the level of shared 
interaction between the user and the vehicle during the 
help phase, the type of information used to communicate 
between them, efficient interaction and scalability of the 
system (Scholtz 2002; Yanco and Drury 2004).   
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