
Formalizing Anthropomorphism:
A Study in Deep Neural Networks

Martin Zinkevich, Dale Schuurmans∗
Google

1600 Amphitheatre Parkway
Mountain View, California 94043, USA
{martinz,schuurmans}@google.com

Abstract

Anthropomorphization can be used as a tool by humans to
reason about complex nonhuman phenomena, by ascribing
agents with intelligence and goals that are similar to their
own. Deep neural networks are complex structures, and we do
not understand well how to optimize them. One way to deal
with such complexity is to give complex parts of the network
(such as the activation functions) goals and actions, even if
these parts are unchanging in their behavior. This allows us
to transform the problem of finding the parameters of deep
neural networks into a game, and use the same approaches
that we use for games to generate good parameters for a deep
neural networks. This paper presents the results of (Schuur-
mans and Zinkevich 2016) to the game theory community.

Introduction
Consider a mathematical programming problem

Minimize f(x) (1)
Subject to: g(x) ≤ 0 ∀g ∈ G (2)

and: h(x) = 0 ∀h ∈ H (3)

for a given objective f : Rn → R and finite sets G,H ⊆
RRn

. We know how to solve such problems if they are lin-
ear or convex; for example, for unconstrained minimization,
simple strategies such as calculating the gradient, perform-
ing a line search in the negative gradient direction, and re-
peating, is well known to work under general conditions,
even if it is not always efficient. More sophisticated strate-
gies, such as Newton’s Method, or stochastic methods, such
as stochastic gradient descent, Adagrad (Duchi, Hazan, and
Singer 2011), SDCA (Shalev-Shwartz and Zhang 2013), et
cetera, can do significantly better. However, all of these al-
gorithms share a particular property: they converge in the
limit to the correct answer.

When the objective is nonconvex, it is very difficult to
guarantee convergence to a global minimum. Many algo-
rithms (such as Adagrad (Duchi, Hazan, and Singer 2011))
used in training deep networks were developed to solve con-
vex optimization problems. However, training a deep net-
work is definitely not a convex optimization problem, so

∗Also: University of Alberta, daes@ualberta.ca.
Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

there are no guarantees that such algorithms will converge
to a local minimum, let alone a global minimum. How-
ever, this assumption provides a way to generate reason-
able algorithms for the problem. This is similar to how peo-
ple optimize support vector machines (Boser, Guyon, and
Vapnik 1992; Cortes and Vapnik 1995). For support vector
machines, there are examples x1 . . . xT ∈ Rn, and labels
y1 . . . yT ∈ {−1,+1}, and we are trying to choose θ ∈ Rn

to minimize:

L(θ) =

T∑

t=1

l(yt, θ · xt) (4)

Theoretically, we want to define l(y, ŷ) to be a 0-1 margin
loss, where l(y, ŷ) = I(λ − yŷ > 0), where I(true) = 1
and I(false) = 0, i.e. to minimize the number of examples
where the prediction has the wrong (or nearly the wrong)
sign. In practice, we set l(y, ŷ) = max(λ − yŷ, 0) or some
similar convex function. this assumption replaces an objec-
tive where theoretical guarantees hold on 0-1 loss on test
data with objective that can be easily minimized via con-
vex optimization. This has spurred amazing progress in the
field of convex optimization, focused on this specific prob-
lem (Duchi et al. 2008; 2010; Shalev-Shwartz et al. 2011;
Duchi, Hazan, and Singer 2011; Mukherjee et al. 2013;
Zinkevich et al. 2010; Recht et al. 2011).

We believe that through deep learning and game theory,
we can spur progress in the field of computational game the-
ory, focused on trying to train deep networks.

Deep Neural Networks
Training a deep neural network consists of finding the pa-
rameters of the model that minimize loss. Unlike before,
there is no simple assumption that can reduce this to a prob-
lem that can be reasoned about theoretically. At present,
dropout (Srivastava et al. 2014), batch normalization (Ioffe
and Szegedy 2015), gradient clipping (Pascanu, Mikolov,
and Bengio 2013), Adagrad (Duchi, Hazan, and Singer
2011), regularization, and constraints on weights are all ap-
plied. As a key point, there is often no separation between
the problem being solved and the method to solve it: many
of these techniques blend the problem and the solution.

Outside of neural networks, the most classic example of
this is decision trees. Theoretically, a decision tree could rep-
resent any binary function on the inputs: the generalization

The AAAI-17 Workshop on
What's Next for AI in Games?

WS-17-15

1021

power comes from the weakness1 of the learning algorithm,
instead of a weakness in the space of models to be learned.
While this nuance is powerful, it makes it difficult to evolve
new algorithms in a non-experimental framework.

In (Schuurmans and Zinkevich 2016), we introduced the
concept of Deep Games, which formalizes the notion of
what it means to think of a deep neural network as a linear
or convex problem. In a deep game, one learns a parameter-
ized model M : Rn → R. The structure can vary, but to
be concrete, one can consider an example of a three layer,
fully connected neural network with a n1−n2−n3 structure
(where n1=n and n3=1):

M(x) = A3(Θ
T
3 A2(Θ2A1(Θ1x))) (5)

where Θi ∈ Rni×ni+1 , Ai : Rni → Rni is the activation
function a : R → R applied to a vector such that for all
x ∈ Rni , (Ai(x))j = a(xj).

The standard approach to minimizing loss over a param-
eterized neural network has been backpropagation, which is
simply applying gradient descent or stochastic gradient de-
scent to the problem. In and of itself, there is a limited un-
derstanding of gradient descent on non-convex problems. In
particular, one can argue that it converges to a local mini-
mum, given it starts reasonably close to it (Lee et al. 2016),
but such an analysis has not yet been applied any of the more
recent innovations on learning deep networks.

What makes deep networks hard are the activation func-
tions. If a was an affine function, then we could find the op-
timal parameters by setting Θ1 and Θ2 to be the identity, and
then tuning Θ3, effectively making the whole problem con-
vex. Yet, when we take the gradient of a at the current point,
we are effectively assuming the activation function at each
point is affine, but somehow changing over time in unpre-
dictable ways. Basically, when we are applying odd variants
of gradient descent to a nonconvex problem, we are anthro-
pomorphizing parts of the loss function, considering their
local behavior, but abandoning our ability to model their full
behavior.

Anthropomorphizing Deep Learning
As shown in (Schuurmans and Zinkevich 2016), one can in-
stead formalize the problem of training a deep neural net-
work by thinking about agents. First, imagine that there is
are three protagonists in charge of choosing Θ1, Θ2, and Θ3.
Now, in a learning problem, we have a bunch of examples,
{(xt, yt)}t∈{1...m}. We want to minimize the loss:

L(Θ1,Θ2,Θ3) =

m∑

t=1

l(yt,M(xt)), (6)

where l is a loss function that is convex in its second pa-
rameter. We could imagine the utility of the protagonists is
opposite the loss: however, for even one protagonist to cal-
culate her best response becomes difficult.

1Here, weakness refers to the ability of the algorithm to fit the
training data perfectly. In machine learning, if you have perfectly
fit the training data, you have likely “overfit”, and will not do as
well on new training data as if you had only loosely fit the training
data.

We can imagine that the activation function “changes”
with each example. Specifically, for every t ∈ {1 . . .m},
for every i ∈ {1, 2, 3}, there is a function Zi,t : R

ni → Rni

such that Mt : R
n → R is defined as:

Mt(x) = Z3,t(Θ
T
3 Z2,t(Θ2Z1,t(Θ1x))) (7)

In particular, to model the activations we introduce an agent,
which we refer to as a “zanni”, to each layer in the neu-
ral network. We imagine Zanni2 1 chooses Z1,t for all
t ∈ {1 . . .m}, Zanni 2 chooses Z2,t for all t ∈ {1 . . .m}
and Zanni 3 chooses Z3,t for all t ∈ {1 . . .m}. Now,
in this anthropomorphization, it is important that what we
observe matches our understanding of these anthropomor-
phized functions. Specifically, we want to design the game
such that:

Mt(xt) = M(xt) (8)
∇ΘMt(xt) = ∇ΘM(xt) (9)

If Zi,t are first-order approximations of A at the right points,
then Mt is a first-order approximation of M at xt. Specifi-
cally, given the actions of the protagonists choosing Θ1, Θ2,
Θ3, the zanni agents must want and be able to choose Zi,t

such that it is a first-order approximation of A: specifically,
if it not the case, then at least one zanni can unilaterally de-
viate so that he gets more reward. Thus, at any Nash equi-
librium, Mt will be a first-order approximation of M at xt.
However, this must be a choice: the mechanism by which
the value and the gradient of Zi,t change must be an action
of an agent: otherwise, a “unilateral” deviation by a protag-
onist has to take into consideration how the zannis respond,
which is a computationally difficult task.

The action that the zanni has is to choose an affine Z1,t (or
Z2,t or Z3,t) given t. Define Q1,t, Q2,t, Q3,t ∈ Rn×n, and
d1,t, d2,t ∈ Rn, and d3,t ∈ R, such that for all i ∈ {1, 2, 3},
Zi,t(x) = Qi,tx+ di,t. We can write Mt as:
Mt(xt) =

Q3,t(Θ3(Q2,t(Θ2(Q1,t(Θ1xt) + d1,t)) + d2,t)) + d3,t
(10)

Now, Mt(xt) is a linear function of Θ1 or Θ2 or Θ3. Our
new utility function for the protagonists is:

u(Θ1,Θ2,Θ3, {Qi,t}i,t, {di,t}i,t) = −
m∑

t=1

l(yt,Mt(xt))

(11)

Define T1(x) = Θ1x, T2(x) = Θ2A1(T1(x)), and
T3(x) = ΘT

3 A2(T2(x)). For i ∈ {1, 2, 3}, define Q∗i,t =
∇Ai(v)|v=Ti(xt), and d∗i,t = Ai(Ti(xt))−Q∗i,tTi(xt), such
that Q∗i,tv+d∗1,t is a first-order approximation of Ai at Ti(x).
Now, we define the utility of the ith zanni as −∑m

t=1(Qi,t−
Q∗i,t)

2 + (d∗i,t − di,t)
2. Thus, for all i ∈ {1, 2, 3}, the utility

of Zanni i is maximized when Q1,t = Q∗1,t and d∗1,t = d1,t.

2To complement the protagonist name from theatre, we chose
to name a third set of agents in the game after the Zanni from Com-
media dell’arte, who are both servants and tricksters, which is an
apt characterization of the activation functions in deep networks.

1022

Thus, we do not force the zannis to chose these first-
order approximations: we merely make it in their best in-
terest. This anthropomorphization both allows us to reason-
ably expect the zanni agents to play these first-order approx-
imations, however does not force the protagonists choosing
the parameters to contemplate how the zannis would change
their behavior if the protagonists behavior changed. Thus, at
any point in time, when a protagonist chooses a set of pa-
rameters, she sees a simple relationship between her choice
of parameters and her utility, if she assumes that all the other
protagonists and the zannis are fixed. Thus, we are capable
of calculating the best response for any protagonist given the
other agents are fixed, and moreover, are capable of mini-
mizing regret. Moreover, we can prove that local and global
minima of the deep neural network problem are Nash equi-
libria of our game. Another treatment of these details is fully
worked out and explained in (Schuurmans and Zinkevich
2016).

Benefits
Two abilities determine the value of a new way of looking at
an old problem: its ability to produce new solutions, and its
ability to reason about which solutions might be success-
ful. Anthropomorphization, in general, can justify almost
any physical system: for instance, imagining that the north
wind has a mind can explain in hindsight any weather, but
only meteorology can predict the weather. Thus, it is the
mathematical relationship between minima (more specifi-
cally, KKT points3) and Nash equilibria that makes this con-
nection meaningful in our case. Also, practically, it is im-
portant to have a different view than the original problem,
otherwise no additional creative stimulation is gained. For
example, thinking solely about the individual layers as dif-
ferent agents does not simplify the problem enough to make
it tractable.

An example where this view has spurred novel outcomes
is the application of regret matching to training deep neural
networks. In (Schuurmans and Zinkevich 2016), we provide
multiple results that show how regret matching provides a
viable, and often times advantageous training strategy for
deep neural networks.

However, the model does not simply suggest any algo-
rithm. For example, algorithms that deal with each layer
separately but do not minimize regret, or an unconstrained
variant of the problem with no limits on the weights or reg-
ularization are questionable in this environment.

Outlook
A final point about the perspective we are adopting in this
work is an open question with regards to convergence:
specifically, there is a well known result that internal re-
gret minimizing algorithms converge to a correlated equi-

3A KKT point is a point where the Karush-Kuhn-Tucker condi-
tions (Karush 1939; Kuhn and Tucker 1951) hold: if the gradient of
the loss is zero, it is a KTT point, or roughly if the opposite of the
gradient is exiting the feasible set. Under reasonable assumptions,
every local minimum is a KKT point, but not every KKT point is a
local minimum.

librium in finite action games (Blum and Mansour 2007).
Moreover, for some potential games, any correlated equilib-
rium is a mixture of pure strategy Nash equilibria (Neyman
1997). Now, there is a resemblance between the deep learn-
ing games and potential games: if you ignore the zannis, then
the other agents all have the same equilibria.

Conjecture 1 Given a game with agents P and agents Z,
where agents P all have the same utility and minimize in-
ternal regret, and agents Z all play a unique best response
every iteration, then is the limit of the joint action distribu-
tion a mixture of Nash equilibria?

Notice that one can actually unify all the zannis here into
one agent, if that simplifies the analysis.

Such a result would be remarkable, as it would in one
sweep prove convergence for an entire set of algorithms. It
would not prove convergence to a global minimum, since
this is an NP hard problem (Blum and Rivest 1992). How-
ever, what it would do is allow for a variety of algorithms
that trade off the speed of choosing a strategy in a single iter-
ation and the number of iterations required to reach a certain
value of internal regret. A second question would revolve
around standard external regret minimizing algorithms, and
how they would act in this environment: would they too con-
verge to a mixture of Nash equilibria?

References
Blum, A., and Mansour, Y. 2007. From external to inter-
nal regret. Journal of Machine Learning Research 8:1307–
1324.
Blum, A., and Rivest, R. 1992. Training a 3-node neural
network is NP-complete. Neural Networks 5:117–127.
Boser, B. E.; Guyon, I. M.; and Vapnik, V. N. 1992. A train-
ing algorithm for optimal margin classifiers. In Proceedings
of the fifth Annual Workshop on Computational learning the-
ory, 144.
Cortes, C., and Vapnik, V. 1995. Support-vector networks.
Machine Learning 20(3):273–297.
Duchi, J.; Shalev-Shwartz, S.; Singer, Y.; and Chandra, T.
2008. Efficient projections onto the l1-ball for learning in
high dimensions. In Inter. Conf. on Machine Learning, 272–
279.
Duchi, J.; Shalev-Shwartz, S.; Singer, Y.; and Tewari, A.
2010. Composite objective mirror descent. In COLT 2010 -
The 23rd Conference on Learning Theory, 14–26.
Duchi, J.; Hazan, E.; and Singer, Y. 2011. Adaptive subgra-
dient methods for online learning and stochastic optimiza-
tion. Journal of Machine Learning Research 12:2121–2159.
Ioffe, S., and Szegedy, C. 2015. Batch normalization: Accel-
erating deep network training by reducing internal covariate
shift. CoRR abs/1502.03167.
Karush, W. 1939. Minima of functions of several variables
with inequalities as side constraints. Master’s thesis, Univ.
of Chicago, Chicago, Illinois.
Kuhn, H., and Tucker, A. 1951. Nonlinear programming. In
Proceedings of 2nd Berkeley Symposium, 481–492. Univer-
sity of California Press.

1023

Lee, J.; Simchowitz, M.; Jordan, M.; and Recht, B. 2016.
Gradient descent only converges to minimizers. In 29th An-
nual Conference on Learning Theory.
Mukherjee, I.; Canini, K. R.; Frongillo, R. M.; and Singer,
Y. 2013. Parallel boosting with momentum. In Machine
Learning and Knowledge Discovery in Databases - Euro-
pean Conference, ECML PKDD 2013, Prague, Czech Re-
public, September 23-27, 2013, Proceedings, Part III, 17–
32.
Neyman, A. 1997. Correlated equilibrium and potential
games. International Journal of Game Theory 26:223–227.
Pascanu, R.; Mikolov, T.; and Bengio, Y. 2013. On the diffi-
culty of training recurrent neural networks. JMLR Workshop
and Conference Proceedings 28(3):1310–1318.
Recht, B.; Re, C.; Wright, S.; and Niu, F. 2011. Hogwild:
A lock-free approach to parallelizing stochastic gradient de-
scent. In Advances in Neural Information Processing Sys-
tems 24.
Schuurmans, D., and Zinkevich, M. 2016. Deep learning
games. In Advances in Neural Information Processing Sys-
tems.
Shalev-Shwartz, S., and Zhang, T. 2013. Stochastic dual co-
ordinate ascent methods for regularized loss minimization.
Journal of Machine Learning Research 14:567–599.
Shalev-Shwartz, S.; Singer, Y.; Srebro, N.; and Cotter, A.
2011. Pegasos: Primal estimated sub-gradient solver for
svm. Mathematical programming 127(1):3–30.
Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; and
Salakhutdinov, R. 2014. Dropout: A simple way to pre-
vent neural networks from overfitting. Journal of Machine
Learning Research 15:1929–1958.
Zinkevich, M.; Weimer, M.; Li, L.; and Smola, A. 2010. Par-
allelized stochastic gradient descent. In Advances in Neural
Information Processing Systems 23.

1024

