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Abstract
Honeypots are fake resources that gain value in being probed
and attacked. They deceive network intruders into detailing
the intruder’s behavior and the nature of an intended attack.
A honeypot’s success relies on the quality of its deception and
the perceived value to the attacker. In this paper, we empha-
size the latter. We model a repeated game where a defender
must select from a list of honeypot configurations to detect an
adversary’s attack. The adversary’s attacks each contain their
own unique value function and required features to execute an
exploit. Each exploits ”evolves” by having its value decreases
with the number of detections and new attacks may be added
to the adversary’s arsenal as the game progresses. We show
that this model demands the defender to act strategically, by
showing the adversary can exploit naive defense strategies.
To solve this problem, we leverage the Multi-Armed Bandit
(MAB) framework, a class of machine learning problems that
demand balance between exploration and exploitation.

Introduction
Cybersecurity is a rapidly evolving battleground between of-
fensive and defensive cyber capabilities. As new exploits are
discovered and used to launch new types of attacks, cyber
defenders must detect these changes and develop counter-
measures as quickly as possible. The exploit detection prob-
lem is therefore of critical importance to maintaining effec-
tive cyber defenses. Detecting any type of exploit attempt in
the wild provides valuable information about attacker capa-
bilities and patterns of behavior, but a particularly important
case is detecting novel exploits that have not been observed
before. Such exploits are known as zero-day attacks and they
have the potential to be especially damaging because there
may be no known defense (e.g., a software patch) when the
exploit is first detected (Bilge and Dumitras 2012). Zero-day
exploits can cause very significant damage in the time be-
fore they are detected and before effective countermeasures
are developed.

Intrusion Detection and Prevention Systems (IDPS) are
commonly used to detect suspicious activities based on traf-
fic analysis, packet inspection, and other methods. How-
ever, these systems are often ineffective at detecting zero-
day attacks because they rely on hard-coded rules or pattern
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matching based on known attacks. A common tactic that
is used to improve detection capabilities especially for un-
known types of attacks is the use of fake network hosts or
services, known as honeypots (Spitzner 2003). Honeypots
are designed to look like legitimate computers, servers, or
services, but since the network administrator knows that they
are decoys any attempt to interact with one of these hosts can
be unambiguously identified as malicious, even if it does not
match known attack patterns. In addition, honeypots are set
up to carefully monitor and log all of the interactions with
an attacker, providing valuable information to diagnose an
attack and develop countermeasures such as new signatures
or patches. A large variety of different types of honeypots
exist, but in this paper we focus on honeypots that masquer-
ade as servers on a network. We examine how these decep-
tive hosts can improve intrusion detection for both known
and zero-day attacks.

Honeypots also have limitations. They can only log ac-
tivity if attacked directly (Spitzner 2003) and an attacker is
likely to detect a poorly designed honeypots and actively
avoid it. For example, a honeypot running old, highly vul-
nerable software/services pretending to contain highly valu-
able data (such as credit card information) is unrealistic
and will most likely be avoided by attackers. There are two
broad categories of honeypots depending on the level of re-
alism and interaction they support: low-interaction and high-
interaction. Low-interaction honeypots mimic small services
and require little overhead or upkeep. A low-interaction hon-
eypot may act as the log-in service for a File Transfer Pro-
tocol (FTP) server, but might not actually implement any
features of FTP (such as authentication). A high-interaction
honeypot will go to greater lengths to simulate real features,
such as mimicking all features of an FTP server of a specific
version. High-interaction honeypots are more believable, but
are much more costly to design and maintain.

In this paper we address one of the most important limita-
tions of honeypots for detecting exploits, particularly novel
ones. Any honeypot must represent itself as a particular type
of host or service (e.g., a server running a particular version
of an operating system, with certain open ports, installed
software packages, etc.). This means that any particular hon-
eypot presents a limited attack surface, and will only attract
attention from a certain subset of potential attackers. For
example, an attacker seeking to exploit a new vulnerability
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in the Android operating system will not choose to interact
with a Windows file server. To detect a wider variety of at-
tackers and exploits, we would ideally like to deploy all (or
at least many) possible configurations of honeypots to cover
many facets of the full network attack surface. However, de-
ploying high-quality honeypots is costly.

To address this challenge we propose a new model for
the exploit detection problem that is based on a repeated
game. In each round of the game, the defender choose a set
of honeypot configurations to deploy (sometimes called a
honeynet). Each configuration exposes a specific attack sur-
face, and there is an exponential number of possible config-
urations due to different combinations of features. In each
round the attacker will also choose to attack the network us-
ing a specific exploit from a set known only to the attacker.
The exploits have different levels of severity, and require dif-
ferent sets of features to be used to target a victim system. In
addition, the set of exploits available to the attacker evolves
over time to model the lifecycle of attack exploits (Frei et al.
2006; McQueen et al. 2009). The goal for the defender is to
maximize the total value of the exploits detected over time.

We propose several methods for optimizing the defender’s
selection of honeypots to maximize the value of exploits de-
tected. These methods are based on online learning algo-
rithms (UCB and EXP3) developed for the multi-armed ban-
dit problem (MAB). We show that the basic learning meth-
ods are more effective than several baseline approaches, in-
cluding the static “set it and forget it” approach often used in
the real world. However, the underlying problem in this case
has a complex combinatorial structure, so we also introduce
modified versions of UCB and EXP3 that take advantage of
this structure. We demonstrate empirically that these meth-
ods offer faster learning, and significantly improve the abil-
ity of the system to detect a dynamically evolving space of
exploits used by an intelligent attacker.

Motivating Example: KFSensor
To aid in building a realistic model, we focus on KFSensor,
a commercial intrusion detection system that deploys high-
interaction honeypots on a network (Focus 2003). Though
our model should be applicable to other types of honeypot
software such as HoneyD (Provos 2003), we have selected
KFSensor for its highly customizable and easy-to-use na-
ture. In addition, KeyFocus, the developers of KFSensor,
still maintain the software and provide updates regularly, of-
fering a current and relevant look into honeypot selection
decision making.

At its core, KFSensor operates by simulating high level
systems services in a network. It achieves this through the
use of Sim Servers, simulated servers that define how KF-
Sensor should act in order to masquerade as a real server.
KFSensor imposes no restriction on the amount of Sim
Servers that can run in a given time, but the network de-
fender must maintain a degree of believability, limiting the
amount of playable Sim Servers and combinations. Creating
Sim Servers for protocols that leave open ports that are not
used on your network’s real servers or utilizing numerous
Sim Servers of the same type may hint to the attacker as to
which hosts on the network are honeypots.

KFSensor splits Sim Servers into 2 types: Sim Banners
and Sim Standard Servers. Sim Banners offer a basic re-
ceive/response service with little room for complexity. For
instance, a Sim Banner can easily simulate a basic echo
server that receives some text and responds with a copy of
the text. This differs from the Sim Standard Servers, which
offer a more sophisticated imitation of real servers. These
have a server type (e.g. Telnet, FTP, HTTP, MySql, etc.),
port number, description, version number, and more. All of
these features of a Sim Standard Server are customizable.
KFSensor currently supports a wide variety of the most com-
monly seen servers as Sim Servers, including, but not limited
to, HTTP, Telnet, FTP, SSH, and MySQL servers.

To capture network traffic, the network defender defines
listen definitions. These are instructions for what actions
KFSensor should perform on the designated open or bound
port. KFSensor offers 3 types of actions when the port lis-
tener receives a connection: close the connection, perform
actions determined by the selected Sim Server, or connect to
a native service.

At the highest level of decision making in KFSensor lies
scenario selection. A scenario is a collection of listen defini-
tions. The network administrator can only run 1 active sce-
nario at a given time, but switching between existing scenar-
ios happens quickly and effortlessly. In essence, the network
defender using KFSensor must decide between the combi-
nation of deployed servers in a given round. Selecting the
active scenario happens quickly, but the development of in-
tricate and believable scenarios will cost significant time to
develop. As mentioned previously, crafting a scenario that
has every port open may capture some activity, but an intelli-
gent adversary will take note of this and actively try to avoid
the deployed honeypots. In addition, detecting an attempted
attack on an SQL server when the network in question con-
tains no SQL server may not provide value. Since well-
designed scenarios will offer a limited set of entry points
into the network, the network defender will need to select
an appropriate scenario otherwise running the risk of not de-
tecting attacks.

Related Work
Honeypots are have received significant attention since their
initial description by Stoll in the ”Cuckoo’s Egg” (Stoll
2005) and Berferd in ”An Evening with Berferd” (Cheswick
1992). Pasman evaluates various virtual honeypot software
(Pasman 2007). Bringer et. al. provides a more recent and
extensive survey on the latest honeypot software and ana-
lyzes future trends (Bringer, Chelmecki, and Fujinoki 2012).
Most honeypot work emphasizes how to build more believ-
able and deceptive honeypots, ranging from general to spe-
cific domains, whereas we focus on honeypot selection in
this paper.

Pibı́l et. al. perform a similar approach as the one taken
in this paper, but take a game-theoretic approach (Pı́bil et
al. 2012). They look at the network and problem more stat-
ically. In our case, due to the lack of assumptions about the
adversary and its arsenal of attacks, we take an online ma-
chine learning approach, where we discover the adversary’s
targets and behavior over time. Pibı́l et. al. expand upon their
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work where they formalize their game models and add to
them, such as solving their honeypot selection game when
the attacker utilizes attack graphs, series of steps to execute
a chosen attack (Kiekintveld, Lisỳ, and Pı́bil 2015)

Model
We now introduce our model in more detail. An attacker
and defender play a repeated game where the defender se-
lects a honeypot configuration (e.g., a KFSensor scenario)
in each round. The defender must select from a list of Kd

pre-defined scenarios. Each scenario contains a collection
of hand-crafted listen definitions. We assume all listen defi-
nitions connect to pre-defined Sim Servers. If a listen defini-
tion closes after a connection, KFSensor will lose the details
of an attack. Furthermore, if listen definitions connect to na-
tive services, the attack may cause damage to the network
as a whole. Therefore, we assume that all scenarios involve
a combination of various Sim Servers. This will provide de-
tails about the entirety of an attack.

KFSensor offers an enormous amount of possible config-
urations for a single listen definition/Sim Server connection,
including server name, server type, port number, version, de-
scription, responses, and services, leading to an astronomi-
cal amount of different configuration combinations. To sim-
plify this concept, we define a honeypot as the connection
of a listen definition to its designated Sim Server. So, we
now say that a KFSensor scenario contains a combination
of honeypots. To represent these combinations abstractly in
our model, we use a binary vector of features to represent a
possible honeypot configuration. We define D as the set of
all scenarios/actions available to the defender in each round,
where Di ∈ {0, 1}f , such that 1 ≤ i ≤ f and f is the total
number of existing honeypot configurations in the collection
of pre-defined scenarios. A scenario is said to contain honey-
pot j if Dj

i = 1 and to not contain honeypot j when Dj
i = 0

where 1 ≤ i ≤ Kd and 1 ≤ j ≤ f . In each round, the de-
fender must select a scenario Di to add to the network. If the
adversary’s chosen attack requires a server that the selected
scenario emulates, then the defender detects the attack and
gains positive utility.

The defender’s ultimate goal is to protect its network from
the adversary, while the attacker’s goal is to deploy attacks
that exploit vulnerabilities on the existing network. The de-
fender could play a scenario that contains an HTTP server,
but if the network does not have an HTTP server, this pro-
vides little value, and similarly for the attacker. We define
the network similarly to the definition of KFSensor scenar-
ios. The network N is the set of all hosts on the network,
such that Ns ∈ {0, 1}f represents a single host on the net-
work where 1 ≤ s ≤ Kn and Kn is the total number of
hosts on the network. Since a host can be viewed as a server
with one configuration, we note that |Ns| = 1 . Also note
that we bound the set of total host configurations by f . If an
attack were to target a host on the network and the set D was
incapable of detecting such an attack (perhaps the attack is
for the newest version of MySQL that is not represented in
the set D), we view this as an issue with developing new
scenarios, and outside of the scope of our game. Unlike the

scenarios in D, every host Ns has some value associated
with it, defined by a value function HostVal(Ns). These val-
ues will determine the utility received by the defender and
adversary in each round.

We now define the adversary’s role in the game. The ad-
versary starts with a set of attacks A. We define Au ∈
{0, 1}f to represent the required configuration features of
a server for attack u where 1 ≤ u ≤ Ka, such that Ka is
the total number of attacks available to the adversary. Often
attacks consist of multiple stages, meaning that the attack
exploits several vulnerabilities in order to achieve some ul-
timate goal. In other words, an attack may require multiple
server features (or even multiple servers) in order to exe-
cute. For example, a complex attack may require an Apache
HTTP server v2.0 and a FileZilla FTP server v0.9.59 to
fully execute. In order for the defender to successfully detect
the adversary’s selected attack, the chosen scenario needs to
contain a honeypot configuration for every required configu-
ration feature of the attack. In other words, if Au·Di = |Au|,
then the defender detects the attack. Similar to how we re-
strict hosts in the network N, note that we bound the required
configuration features of attacks in A to f features, because
an attack that bypasses all pre-defined scenarios is out of
scope of our current model.

Not all attacks have the same purpose and and level of
severity. The National Institute of Standards and Technology
uses the Common Vulnerability Scoring System (CVSS) to
assess the severity, difficulty of implementation, and impact
of exploits (Mell, Kent, and Romanosky 2007). We assign
a unique utility function to different attacks, consistent with
the real-world use of a scoring system like CVSS to pro-
vide risk assessments. We use functions because exploits in-
herently do not have static values over time. As an exploit
becomes older and more commonly seen, awareness and
defenses increase to mitigate this exploit from causing the
same degree of harm it might have done when it was first dis-
covered. To model this dynamic life cycle of an exploit, we
restrict the value functions of each attack to monotonically
decreasing functions with respect to the number of detec-
tions by the defender. This captures the spirit of a zero-day
attack, as an unknown zero-day attack will provide its most
value in its infancy. As the number of detections increase
for each attack, the value for future detections will decrease
as potential patches for the vulnerability being exploited by
the attack will arise. Every attack has a unique value func-
tion AttackV al(Au). For instance, a SQL Injection attack
will provide high value while undetected for its severity, but
may be patched quickly in the system when revealed, lead-
ing to low value for future detections. Meanwhile, a brute
force password attack may provide little value to begin with,
as little can be done to prevent it, but may only decrease
slightly, maintaining consistent value in future detections.

The issue with these monotonically decreasing value
functions is that as time t → inf , the value of all attacks
such that

AttackV al(Au)→ 0

and eventually become worthless to both the defender and
adversary. To account for this, at the end of each round t, the
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adversary may discover a new attack with some probability
p. This new attack will have a randomly-generated set of re-
quired features and a randomized attack value function with
probability p. This creates a realistic model of dynamically
evolving cyberattacks. As the defender learns of attacks and
detects them repeatedly, learning how to patch them, new at-
tacks are being developed and added to the adversary’s arse-
nal of attacks A, also increasing the total number of attacks
Ka,t+1 = Ka,t + 1 with probability p.

To summarize, in each round t, the defender must select
a scenario Di and the adversary selects an attack Au and
both are rewarded a utility based on three factors: if Di can
detect Au, the current value of the attack Au, and the total
value of all the hosts in the network N affected by the attack.
At the end of each round, a new attack has a probability of
being added to the adversary’s collection of attacks. In this
game, the defender must protect the hosts on the network
and the various attacks employed by the attacker, particu-
larly protecting from known, dangerous attacks, while still
exploring the possibility of potentially, new, dangerous at-
tacks. In essence, the defender must balance exploiting the
scenarios that defend from known dangerous attacks, while
exploring scenarios that may offer attack surfaces that de-
tect new, unknown attacks. To solve this game, we look to a
machine learning problem framework known as the Multi-
Armed Bandit Problem attackers may use.

Attacker and Defender Algorithms
In this section we detail the adversary and 5 defender solu-
tions used in the experiments.

Adversarial Attacker
We model our attacker model using the “Adversarial At-
tacker” from Klima et al. (Klı́ma, Lisỳ, and Kiekintveld
2015), which is based on fictitious play. This attacker de-
termines a value for each exploit by keeping a running av-
erage of the utility values from previous play, adding in the
value from each new round as it is played and discounting
the previous value. The actions are selected proportionally
based on their values. This policy gradually moves towards
playing actions with higher values with a learning rate λ.
This style of agent provides a general decision making strat-
egy that balances potential reward with historical gain, but
with a gradual learning rate. We can think of this as ei-
ther a single agent that learns from experience over time,
or a collection of attackers that gradually learns based on
shared knowledge. In cybersecurity, attacks typically hap-
pen in campaigns with the same type of attack. When a new
vulnerability is discovered, many hackers exploit the vulner-
ability with varying attacks until patches come out, leading
to gradual shifts in vulnerability use instead of drastic and
erratic shifts. Our Adversarial Attacker assesses each attack
u’s Utility Uu in time t using the formula:

Uu(t) = AttackV al(u, t− 1)+ c ∗ AttackTotal(u, t− 1)

t

AttackV al(u, t) provides current value of attack u, de-
pending on its own generated monotonically decreasing

value function and the number of defender detections. At-
tacks provide their highest value when they have no defender
detections, otherwise known as zero-day status. c is a cau-
tion parameter that determines how important the history of
the attack is. For our experiments, we used a caution value
c = 1.0, such that the value of the attack and its past suc-
cess are roughly worth the same. The AttackTotal(u, t)
provides the total rewards received from attack u.

Algorithm 1 Adversarial Attacker
Input: λ, c
Initialization: P0(u) =

1
Ka

1: for t = 1, 2, 3, · · · do
2: for All Exploits u = 1, 2, · · · ,Ka do
3: Evaluate Uu(t)
4: Mu,t = 1 ⇐⇒ u = argmax

u∗
(Uu∗(t)) else,

Mu,t = 0 ⇐⇒ u �= argmax
u∗

(Uu∗(t))

5: Pt(u) = (1− λ) ∗ Pt−1(u) + λMu,tUu(t)

6: Play Attack U ∼ Pt

7: Observe Reward

This attacker differs from the Adversarial Attacker de-
scribed by Klima in that it is not deterministic. Instead, this
agent uses a distribution that it updates according its be-
liefs and randomly selects from this distribution each round
to play an attack. Note that the learning rate λ affects how
quickly the attacker shifts towards the best response attack.
We implement this learning rate to simulate the collective
knowledge and actions of hackers and malware. When hack-
ers discover a new vulnerability, repeated exploits of the
vulnerability from different hackers and malware may be
launched. Similarly, if a new worm is released, it will jump
from system to system and may attempt to breach a network
multiple times from many of its affected hosts, even after
defensive patches are released.

Naı̈ve Defense Strategy
The simplest defense follows the “set and forget” mentality.
The defender chooses a honeynet scenario to play at the be-
ginning of the game and purely plays this scenario for the
remainder of the game. This limits the defender’s possible
attack surface coverage drastically and we aim to show that
even simple scenario selection changes provides a stronger
strategy and better coverage to detect attacks. For the re-
mainder of the paper, we refer to this defense strategy as a
Pure strategy.

Algorithm 2 Pure Defender
Initialization: Select random arm i s.t. 1 ≤ i ≤ Kd

1: for t = 1, 2, 3, · · · do
2: Play Arm i

Random defense strategies should improve over the Pure
strategy. A Uniform Random defense agent will equally dis-
tribute, but randomize its playing of each honeynet scenario,
making it impossible to fully predict, but still exploit. Next
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is the Fixed Random agent that randomizes its distribution
of random scenario selections. Similar to Uniform Random,
this agent offers a random, but exploitable defense, as the
attacker can determine the random distributions then mini-
mize the expected detection.

Multi-Armed Bandits
MABs target a specific type of problem: balancing explo-
ration vs exploitation. This translates naturally to the high-
level problem in our model. Should the defender deploy hon-
eynet scenarios that detect well-known, dangerous exploits,
or explore other scenarios to try to detect new zero-day at-
tacks? The term Multi-Armed Bandit comes from a gam-
bler playing many slot machines (one-armed bandits) and
trying to maximize his payoffs as each slot machine has its
own, unknown expected payoff. The gambler agent must se-
lect one slot machine, known as an action or arm, in each
round and only receives a random reward from the selected
arm. Because we are dealing with randomization and uncer-
tainty, we evaluate the performance of these agents differ-
ently that usual. Instead of looking at accuracy, we utilize a
metric known as regret. Regret is the difference in expected
rewards between the chosen strategy vs the optimal strategy.
If the gambler finds the best slot machine and plays it but
loses money, he would have no regrets, because he made the
best move prior. The two popular categories MAB solutions
fall under are stochastic bandits and adversarial bandits.

In the stochastic setting, there exists Kd arms to choose
from, each with their own independent reward distributions
on [0, 1]. We use the most notable stochastic solution, the
Upper Confidence Bound (UCB) first described by Auer
et. al. (Auer, Cesa-Bianchi, and Fischer 2002). Though our
defender plays against an adversary, the adversary remains
somewhat controlled by the evolution of the exploits. As the
defender detects exploits, the exploits lose value, eventually
dying off while newly generated exploits with higher value,
somewhat steering the adversary to prefer the new exploits.
This may cause UCB to perform better than expected against
the Adversarial Attacker.

The adversarial setting assumes that an opponent deter-
mines the expected rewards of each arm, potentially with
some external randomization (Bubeck and Cesa-Bianchi
2012). We utilize the Exponentially weighted algorithm for
Exploration and Exploitation (EXP3) is the most famous ad-
versarial bandit algorithm, described by Auer et. al. (Auer et
al. 1995). EXP3 differs from UCB in that it is not deter-
ministic. At the end of each round, it develops a probabil-
ity distribution function and polls a random arm from the
distribution. This prevents an intelligent attack from using
pattern recognition or simply knowing the algorithm. This
adversarial-style assumption fits perfectly in a cybersecurity
setting where hackers may discover the honeynet scenario
deployment logic.

Combinatorial Bandits
In this section we address the combinatorial nature of the
model. When the defender selects a honeynet scenario, it
selects a combination of honeypots with varying configura-
tions. Ideally, we could exploit the combinatorial structure of

the problem as many scenarios will contain the same honey-
pots. If the selected honeynet scenario’s FileZilla v2.0 FTP
server honeypot captured the adversary, then the defender
should update its beliefs about all honeynet scenarios that
contain a FileZilla v2.0 FTP server honeypot.

Combinatorial MABs have received significant attention
in the literature due to increased complexity and variety. Un-
fortunately, none of the existing combinatorial bandit meth-
ods proposed in the literature is a good fit for our model due
to restrictive assumptions. Combinatorial bandits elevate the
problem by allowing the player to select multiple ”basic”
arms, forming a ”super arm”, in each round. Many combi-
natorial bandit models restrict a specific selection of k basic
arms for all “super arms”, such that k < f . In our model,
we do have this restriction; honeynet scenarios may contain
differing numbers of honeypots. Furthermore, our model de-
mands a specific style of non-linear rewards. If the defender
successfully detects an attack, every deployed honeypot in
the honeynet scenario receives a reward which is revealed
to the defender. However, the defender may require multiple
honeypots to detect some attack. In this case, the defender
should update its beliefs about every honeynet scenario that
could have detected the attack and not the scenarios that can
only partially detect the attack.

We show that even a simple approach to converting EXP3
and UCB into combinatorial bandits provides an improve-
ment in detection rates. When implementing EXP3 and
UCB, we take the naı̈ve approach of treating every honeynet
scenario as independent basic arms on the bandit and play
those, ignoring all combinatorial structure. Instead, we pro-
pose a simple approach that makes no changes to base al-
gorithms of EXP3 nor UCB, but instead, when updating the
rewards for playing the arm Di that detected the played at-
tack Au, we update all super arms that are capable of de-
tecting Au. In other words, if the defender successfully de-
tects an attack, we update every honeynet scenario, such that
|Di∗ · Au| = |Au|∀i∗, 1 ≤ i ≤ Kd. We predict this simple
combinatorial conversion to be suboptimal, but show in the
Experiments section, that we do make improvements by ex-
ploiting the combinatorial nature of the problem.

Experiments
Our initial experiment consists of comparing all 5 defender
strategies against the Adversarial Attacker with a λ = 0.25
learning rate. As a baseline, we use a defender oracle that
can see the attacker’s exploit distribution before selecting a
honeynet scenario in order to make the optimal decision. We
subtract the oracle’s expected reward each round from the
expected reward of a defender agent in question to obtain
the defender’s regret. This is metric we used to evaluate the
performance of the 5 solutions.

We use four general monotonically decreasing types of
value functions for the various attacks as seen in Figure 1.
We start with a steep exploit, that starts with initially high
value, but within the first few defender detections, drops
drastically. This represents the simple to fix, but dangerous
nonetheless exploits, such as an SQL Injection. We also uti-
lize a constant exploit classification, that offers little value
in detection to begin with, but does not decrease in value,
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Figure 1: Example value functions for the 4 general exploit
types: Steep, Traditional, Constant, and Steady.

because little can be done about them, such as brute force
password attacks. Our traditional exploit function type after
the vulnerability lifecycle studied by Frei (Frei et al. 2006).

The value for these type of exploits decreases in seg-
ments, depending on what stage of the lifecycle it is in.
Initially, when an exploit is an undetected 0-day it provides
the most value. Upon detection, when network defenders be-
come aware of its existence but are unable to mitigate it, it
begins decreasing in attack value. With each additional de-
tection, the defender grows closer to patching the vulnera-
bility. Eventually, the defender patches the vulnerability and
the exploit provides its lowest value where it turns into a
constant exploit thereafter. Lastly, we show the steady ex-
ploit, which is a linearly decreasing value that is a smoother
version of the traditional exploit. Once low enough in value,
the steady exploit shifts towards a constant exploit, much
like the traditional.

Rewards are calculated based on a number of factors in
our model. We assign a random value to each network server
in the game initialization. These values are static and nor-
malized such that the total value of the servers on the net-
work sums to 1.0. If the defender successfully detects the
adversary’s attack, the attacker receives no reward, such that
Rdetected

Au,t
= 0 in round t. However, if the defender’s se-

lected honeynet scenario Di fails to detect the adversary’s
attack Au, the attacker receives a reward RAu,t such that:

R¬detectedAu,t =
∑

s∈N
AttackV al(u, t)(Au ·Ns)HostV al(s)

The defender’s rewards are opposite of the attacker, so
Rdetected

Di,t
= R¬detectedAu,t

and R¬detectedDi,t
= Rdetected

Au,t
. As

mentioned earlier, we use the concept of an oracle to eval-
uate each defender. In each round, the oracle observes the
adversary’s strategy and plays the arm that maximizes its ex-
pected payoff. We compare this expected payoff to the de-
fender’s expected payoff. We define the Oracle’s expected
utility as,

E[θ] = max
θ

∑

θ∈D

∑

u∈A
Xt(θ) ∗ Yt(u) ∗Rdetected

Dθ,t

and regret as,

Regrett = E[θ ]−
∑

i∈D

∑

u∈A
Xt(i) ∗ Yt(u) ∗Rdetected

Di,t

where Xt(i) is the defender’s probability for playing hon-
eynet scenario i in round t. In the deterministic algorithms
Pure and UCB, only a single honeynet scenario will be given
Pt(i) = 1.0. Yt(u) is the probability that the adversary se-
lects attack u. The closer the defender is to fully playing
the optimal honeynet scenario that will best detect the ad-
versary’s attacks, the closer the defender moves to 0 regret.
We can now measure performance through the measure of
regret, with lower total regret indicating a better strategy.

In each match, the defender and attacker play for 20,000
rounds. We set the total number of possible configurations of
a single Sim Server f = 50. In practice, we expect this will
be significantly higher, but the results in Figure 2 suggest
even this small number provides a compelling argument for
strategically selecting honeynet scenarios. We set the num-
ber of honeynet scenarios to Kd = 50 where each scenario
contains between 8 and 12 listeners. We feel this is well
grounded, as a network defender hand-crafting 50 honeynet
scenarios would provide a wide variety of attack surfaces.
We have the attacker start with only Ka = 10 exploits, but
each round the attacker has a 10% to gain a new exploit with
a fresh value function starting from zero-day status.

Figure 2: Cumulative Regret Over Time

As seen in Figure 2, the Pure strategy performs the
worst, followed by the Fixed Random, then Uniform Ran-
dom strategies. This further suggests that the ”set and for-
get” Pure strategy offers minimal defenses and even sim-
ple changes between honeynet scenarios can improve over-
all network security. UCB and EXP3 perform the best, and
begin to converge by the end of the game, despite new ex-
ploits being created often. This implies that both strategies
strike the right balance between exploration and exploita-
tion, despite the numerous variables and uncertainty, pro-
viding a strong case for MAB algorithms as a foundation for
solving this problem.

One argument against using UCB is the fact that is de-
terministic. Our Adversarial Attacker does not perform any
pattern recognition or make any assumptions about the de-
fender, but if an attacker had knowledge that the defender is
employing UCB, they could exploit the defender and avoid
detection 100% of the time. On the other hand, EXP3 as-
sumes that the opponent is actively trying to minimize the
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agent’s expected rewards. To combat this, EXP3 uses com-
puted distributions to randomly select an arm in each round.

Figure 3: Average number of rounds new exploits go unde-
tected (zero-day)

In our second experiment, we keep the same parameters,
but increase the number of honeynet scenarios to Kd = 100
and the total number of honeypot configurations to f = 100.
This increases the complexity and number of strategies for
the defender. As seen in Figure 4, the naı̈ve strategies per-
form similarly, continuously being exploited by the Adver-
sarial Attacker. UCB and EXP3 also perform only slightly
worse than their experiment 1 counterparts. In first 4000
rounds, EXP3 appears to perform worse than UCB, unlike
in the first experiment 1. This is most likely caused by the
increased number of scenarios and therefore, an increased
amount of exploration.

Figure 4: Second experiment, increasing the honeynet sce-
narios to Kd = 100 and honeypot configurations to f =
100.

Another performance metric we consider is the average
number of rounds a zero-day goes undetected. This essen-
tially measures exploration. As seen in Figure 3, nearly all
defense algorithms average close to 1 round before detect-
ing a never before-seen zero-day attack. The Pure strategy,
on the other hand, averages close to 10 rounds before detect-
ing zero-days. This is somewhat deceptive however, due to
averaging. In reality, if the chosen zero-day attack bypasses
Pure strategy’s single selected scenario, it will always pass

this scenario, maintaining its zero-day status. However, if
the zero-day attack falls to selected scenario, then it will be
captured immediately, going 0 rounds undetected. Though
trivial, Figure 3 exemplifies why changing honeynet scenar-
ios to expose different attack surfaces is necessary for proper
network security.

As mentioned, measuring the average number of rounds
an exploit goes undetected is also measuring exploration.
This can be seen in Figure 3 where UCB has a higher av-
eraged undetected rounds than Uniform Random and Fixed
Random. This is because, as a deterministic algorithm de-
veloped for fixed random distributions, it exploits rather
quickly after exploration. Compare this to EXP3 with the
lowest average undetected rounds, because EXP3, as an ad-
versarial setting algorithm, assumes the opponent is con-
stantly learning from EXP3 and remains more pessimistic
about the“optimal arm” than UCB does.

In the second experiment, we investigate how the at-
tacker’s learning rate impacts the MAB defenders. In the
first experiment, we found that UCB and EXP3 performed
exceptionally well against the Adversarial Attacker with a
λ = 0.25 learn rate. Intuitively, one might argue that the
slow learn rate allowed for smooth transitions between se-
lecting new exploits. In the second experiment, we run UCB
and EXP3 10 times each against an Adversarial Attacker
with learn rates λ = 0.0, λ = 0.20, λ = 0.40, λ = 0.60,
λ = 0.80, and λ = 1.0 to determine how the attacker’s de-
sign affects the defender’s performance.

Combinatorial Improvements
In our fourth experiment, we looked to exploit the combi-
natorial nature of the problem by implementing the simple
modification detailed in the Combinatorial Bandits section.
This conversion updates rewards such that every honeynet
scenario that could potentially detect an attack is credited
with detecting the attack. In other words, if the defender de-
tects attack Au, we update the rewards of every honeynet
scenario such that Au’s required configuration features is a
subset of the honeynet. We utilized the same game parame-
ters described in Experiment 1 and the results are shown in
Figure 5.

Figure 5: Cumulative Regret Over Time with the simple
combinatorial versions of EXP3 and UCB.
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In this combinatorial experiment, COMB-UCB and
COMB-EXP3 outperform UCB and EXP3. We believe
COMB-UCB performs so well due to its quick ”exploita-
tion”, which it is able to do more effectively as its beliefs
about other honeynet scenarios change quicker due to the
combinatorial modifications. Though these simple modifi-
cations provide significant improvement, we believe there is
room for improvement using new algorithms that better ad-
dress all the nuances of this problem.

Future Work
In the current model we ignore network topology. Networks
are typically more layered and intricate. Incorporating topol-
ogy into the model would provide more a realistic chal-
lenge to the defender. Furthermore, the defender makes no
use of the given network structure in the policies we have
proposed. Since the reward structure is determined largely
by the servers on the network, an intelligent defender could
utilize this information to better detect future attacks from
attackers looking to inflict the most damage on a network.
Contextual bandits might provide solutions to problem. We
also plan to investigate if more sophisticated ways of ex-
ploiting the combinatorial structure of the defender’s strat-
egy will yield better results. Due to our construction of the
model, the rewards of the honeypot configurations are not
linear, so we will need to account for this in a combinatorial
bandit model.

Conclusion
We have introduced a new model for using dynamic hon-
eypot configurations to improve exploit detection for cy-
bersecurity. This model allows for automatically adapting
the configuration of honeypots over time to better explore
the attack surface and detect a wider variety of exploits,
including more effective detection of zero-day attacks. We
have proposed some initial methods for determining the de-
fense strategy in these games based on online learning strate-
gies for multi-armed bandits. A complication in this domain
is that the underlying problem has a strong combinatorial
structure. We propose some basic modifications to the multi-
armed bandit problems suitable for this problem, but more
sophisticated methods are needed to fully address the spe-
cific structure of this domain. We showed a broad set of em-
pirical results based on simulation of this scenario. It is clear
that a naı̈ve, static honeypot selection does not provide ef-
fective coverage to detect exploits in our dynamic model.
The learning algorithms demonstrate dramatically improved
performance in detecting exploits, and especially the most
dangerous category of zero-day exploits.
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