
Qualitative Reasoning about Cyber Intrusions

Paul Robertson,1 Daniel Cerys,1 Robert Laddaga,1
Robert Goldman,2 Mark Burstein2

1DOLL Inc.
114 Waltham Street #14,

Lexington, MA 02421, USA
2SIFT

N. 1st Avenue, Suite 400
Minneapolis, MN 55401-1689

paulr@dollabs.com, dcerys@dollabs.com, rladdaga@dollabs.com,
rpgoldman@sift.net, burstein@SIFT.net

Abstract
In this paper we discuss work performed in an ambitious
DARPA funded cyber security effort.The broad approach
taken by the project was for the network to be self-aware and
to self-adapt in order to dodge attacks. In critical systems, it
is not always the best or practical thing, to shut down the
network under attack. The paper describes the qualitative
trust modeling and diagnosis system that maintains a model
of trust for networked resources using a combination of two
basic ideas: Conditional trust (based on conditional prefer-
ence (CP-Nets) and the principle of maximum entropy
(PME)).We describe Monte-Carlo simulations of using
adaptive security based on our trust model.The results of the
simulations show the trade-off, under ideal conditions, be-
tween additional resource provisioning and attack mitiga-
tion.

Introduction
The response to an attack depends upon what urgency ex-
ists for ongoing computation. The conservative approach
would be to stop using the attacked system until it has been
cleaned of malware, but this is not always wise, especially
if the attacker wanted that outcome and the computation is
essential for an important activity. Avoiding attack while
handling attacks in such a way as to minimize loss and
above all to continue is sometimes the preferred strate-
gy.Our objective is to have systems deal with attacks in a
most beneficial way by being aware of what has been at-
tacked and self-adapting (Laddaga 1997, Laddaga et. al.
2001, Laddaga et. al. 2003 and Robertson et. al. 2000) to
minimize the impact of the attack on the mission.This is an

Copyright © 2017, Association for the Advancement of Artificial Intelli-
gence (www.aaai.org). All rights reserved.

attempt to dodge the bullet.It accepts that occasionally an
attack against the cyber infrastructure will succeed despite
all attempts to protect against them and that when this hap-
pens the system must self-adapt in order to minimize the
success of the attack. By “self–adapt”, we mean the ad-
justment of the network infrastructure to ensure that the
most trusted components of the network are used and that
the most violated parts of the network are avoided.
 This approach is a dynamic approach because once a
network has been successfully attacked the attack can, in
principle, spread at light speed to other cyber assets.The act
of dodging the bullet is a continuous one.In this paper, we
will not explore the larger problem of adaptation under at-
tack but rather focus on an important part of the technology
that addresses the state of trust of the cyber assets – what
we call the trust model -- and the diagnosis of the cause.At
any point in time we need to know what cyber assets are
trusted more than others so that we can continuously adapt
to be using the most trusted elements.Rather than attempt to
measure the severity of an attack we endeavor to track the
nature of the attack and its significance to mission tasks –
does the attack diminish the reliability of the machine for
the specific tasks it has been assigned.

Trust Modeling

The notion of trust is a familiar one. In many situations
involving trust, a combination of machine learning and
statistical methods can be useful.Our human experience
shows that we model trust on experience. Experience with
people, experience with situations, and experience with
things.In a self adaptive cyber security environment most of
these intuitions about trust are wrong.

The AAAI-17 Workshop on
Artificial Intelligence for Cyber Security

WS-17-04

218

 When a configuration changes frequently by self-
adaptation, any particular configuration is likely unique and
the lifetime of the configuration is likely short making sta-
tistical approaches difficult to apply.Furthermore, since we
are dealing with modeling the trust of computational com-
ponents in the face of a malicious cyber attack, the trust has
more to do with the attacker than with the computational
component itself.There too lies a problem:The attacker
must continually evolve in response to our continual at-
tempts to thwart cyber attacks.Our evidence that we are
under attack therefore is weak and our hypotheses about
what the attacker will do next is similarly weak.
 The essence of self-adaptive systems is that there are
multiple ways of achieving a desired result and that we can
change between these approaches in response to changes in
the world.In the case of a networked computation system,
we make have a choice between which hosts to use, for
example, to run part of the computation. To support the
needs of self-adaptation therefore, we need to be able to
compare how much we trust one computational component
(say a host) with another.For a computation that draws up-
on several communicating networked hosts (a configura-
tion) we need to be able to compare one configuration
against another candidate configuration in order to deter-
mine which configuration is more trustworthy.These kinds
of relative qualitative trust support our ability to select an
adaptation that will lead to a configuration that has higher
trust in response to an ongoing cyber attack.Finally, there
are occasions where relative qualitative trust alone is not
sufficient and we need a measure of absolute trust.We
sometimes need to ask when has our trust in a host, a pro-
gram, or a configuration dropped to a point where immedi-
ate action is required.In the next two sections we give an
overview of our implementation of qualitative trust and
quantitative trust in the networked cyber domain.
 We assume that we have explicit models of the computa-
tional assets that we are reasoning over including models of
actual executing configurations and candidate alternative
configurations and further that we are able to use these
models to help identify unexpected behavior and diagnose
which parts of the configuration may be responsible for the
unexpected behavior.
 In order to motivate the following discussions consider
the following example of a networked computation – a mis-
sion whose goal is to accomplish video analysis for battle
damage assessment.
 After a bombing run, planes are sent to fly over the
bombed targets taking video.The video is transmitted to a
system that performs geo-location by matching against da-
tabases of terrain.The video along with the geo-location
meta-data is streamed to another system that performs or-
thorectification.Finally the adjusted data and the accompa-

nying meta-data are sent to an analyst’s computer where the
analyst can carefully examine each bombed target and as-
sess the success of each hit. In this simplified example there
are several computer systems configured in a network run-
ning specialized programs involving special databases that
together perform a complex set of computations on the vid-
eo.There may be several sites worldwide capable of per-
forming these operations, some may be co-located, some
may have different costs both monetary and perfor-
mance.For example, using co-located systems may support
faster communication between hosts but if that location has
been hit by a cyber attack using systems spread around the
world may offer greater trust but a higher communication
cost.When all else is equal, we would prefer the configura-
tion that has the least monetary cost and the shortest turn-
around time but in the face of a cyber attack, as our trust in
our ideal configuration declines we may be able to keep the
computation going by selecting a more expensive configu-
ration that offers greater trust.

Qualitative Trust
Our approach to qualitative trust builds heavily upon the
ideas of relative desire (Doyle et al 1991), conditional pref-
erence, ceteris paribus (McGeachie et. al.), and CP-Nets
(Boutilier et. al.).
 By qualitative trust we refer to the idea that we can rep-
resent our level of understanding of trust in non quantitative
ways that is nevertheless useful in making key decisions –
such as choosing one host over another.

Conditional Trust
I trust Mr. X completely to keep a secret but I can’t trust
him at all to manage a budget.Mr. Y on the other hand
loves to gossip and cannot be trusted with a secret but is
quite reliable when it comes to adhering to a budget.When
a machine is compromised it may be trusted less in general,
but it may continue to be more trustable for certain kinds of
operations.Our principle objective with this program is to
keep a computation going despite determined cyber attack-
er’s attempts to stop it.Instead of simply shutting down
systems that may be distrusted we instead attempt to con-
tinue using the best that we can the systems that we have.It
is therefore important to be able to manage not just a single
trust value but rather to be able to represent trust in a par-
ticular capability.This idea of conditional trust draws di-
rectly on the idea of conditional preference (Boutilier et.
al.).

219

Contagion and Trust Models
Since attacks are constantly evolving the knowledge of
attacks that we can usefully apply are limited and very gen-
eral.The notion of contagion is one such very general and
useful approach to modeling trust.The idea is as follows.If
host A running program B is diagnosed as having been at-
tacked, certainly we trust it less that another host that has
shown no signs of attack.Once a host has been attacked it
may allow an attacker to attack a second host on the same
network, or a host that the host is communicating
with.Sometimes if a program P has been successfully at-
tacked, it is the program itself that is less trusted and other
sites on other networks may be trusted less because they are
running the same program.This effect, which we call ‘con-
tagion’, models the spread of distrust and suggests that the
amount of distrust is greater in proportion to the number of
hops to an affected host.Our system permits trust propaga-
tion rules to represent this kind of contagion, and leverage
our model of a running configuration to better inform us of
the state of trust of machines, programs, operating systems,
and communication channels that have not even shown any
form of deteriorated performance (yet).Note that during an
ongoing attack we may easily reach a situation where con-
tagion results in (almost) all assets have some level of dis-
trust.Even when all assets suffer some degree of distrust,
we can still function because our approach largely depends
upon comparative trust and the cost of changing between
configurations of a network computation.

D(attack(a,*))>D(attack(b,*)):: a >tr b (1)

Rule (1) above captures the unconditioned case of conta-
gion.If D(…) is the shortest distance in ‘hops’ from an enti-
ty and a system that has been diagnosed as violated, this
rule shows that a is trusted more than b if all else is equal if
the distance from an attacked asset of a is greater than that
of b.

Conditional Trust Models
Certain tasks are more sensitive to certain kinds of attacks
than others.We can relate attack sensitivity by task with
rules that indicate attack types that a specific task is less
sensitive to:

AttackS. (Task= t1,{{at1|at2},{at3|at4},*}) (2)

 AttackSensitivity rules relate attack types to tasks.Rule
(2) above says that task t1 is less concerned about attacks of
type at1 or at2 than it is of attack types at3 or at4 which in
turn is less serious than all other types of attack represented
by ‘*’.
 Similarly, we can introduce rules that relate varied sensi-
tivities to modes of contagion:

ContS (Task=t1,{{sprog,sos},{snet},{shost}}) (3)

 Rule (3) says that for task t1 contagion by ‘same pro-
gram’ or ‘same operating system’ is less worrisome than an
successful attack on the same local network, which in turn
is less worrisome than a successful a successful attack on
the same host.That is to say if the same program running on
a different network is successfully attacked, it is less prob-
lematic from the standpoint of running task t1 than, for
example, an attack on another asset running on the same
local network.
 Whereas rule (1) gave a general contagion rule, we can
specify more specific contagion rules by task, for example:

Task=t1&(4)

D(attack(a,{at1|at2}))>D(attack(b,{at1|at2})) ::a >tr b

 Rule 4 implements the standard contagion rule explicitly
for attack types at1 and at2 for task type t1.
More complex rules can be specified using our qualitative
trust algebra.A network trust model is compiled from these
rules along similar lines to that of CP-Nets [1].
 Given the trust model and a diagnosis of attack diagnoses
the self-adaptive program (not described in this paper) is
able to ask questions of relative trust for given tasks as fol-
lows:

::hosta >tr hostb(General Query Asset)

 Is hosta trusted (in general) more than hostb?

For a specific set of tasks:

Task={task1|task2}::hosta >tr hostb(task sp.)

Is hosta trusted more than hostb for performing task1
or task2?

In addition, whole configurations can be compared:

::configa >tr configb (configuration)

 Is configuration configa trusted more than configb in
general? While configuration details are not elaborated
here, a configuration plan includes task information where
appropriate, so that, as you would expect, the trust compu-
tation for a configuration takes into account the tasks that
are to be performed by various assets in the configuration.
 Additionally, a complex mission model will often in-
clude phases: data collection, data processing, and data
dissemination, for example could be three phases of a mis-
sion model.Using rules like those provided above, we can
additionally specify trust preferences on a per mission
phase basis and then condition configuration trust prefer-
ences on the phase in question:

Phase={phase1| phase2}::configa >tr configb

220

If we are in either phase1 or phase2 do we trust configa
more than configb?

By only specifying relative sensitivities to different
forms of contagion and attack types conditionalized on task
types and mission phases we are able to make relative trust
comparisons that is sufficient to adapting a running config-
uration to a more trustworthy one when conditions change.

If a host is diagnosed as having been successfully at-
tacked a chain of potential contagions will cause other as-
sets to be trusted less than other depending upon the task
and mission phase.We can simply compute which assets
have their trust changed as the result of a malicious attack
which allows the self-adaptive engine to ask the right ques-
tions in determining if an adaptation is possible that will
minimize the impact on the mission of the observed attack.

Active Diagnosis
We have discussed what to do when we have confirmed an
attack on a component; we propagate the reduced trust to
other downstream components that are likely to candidates
for attack.That is not enough, however.We would like to
diagnose who the attacker is, because we can take actions
to blacklist that attacker thereby minimize further damage
being caused by the same attacker against other of our as-
sets. If our component is on the edge and communication
with external computers with whom we have no infor-
mation, such as would be the case for a web services com-
ponent, we will have to dig deeper to produce a list of the
connections by interrogating log files, for example.Such
sleuthing can be expensive, so we would not want to do it
routinely, but given a confirmed attack, the effort is worth-
while.We assume, therefore, for every component type a
collection a specialized taskable sensors that can be in-
voked to gather information.There are two different kinds
of information that can be collected, the first concerns the
clients of the attacked component and the second concerns
an analysis of the traffic between each client and the at-
tacked component that might cause the client to be suspect-
ed of being the attacker.

Diagnosis proceeds by generating a list of hypotheses
about the attacker.If the attacked component is an edge
component, specialized sensors are tasked to find the cli-
ents.One the full candidate list is established the evidence
against each client is established.In general initially nothing
will be known and the clients will all be equally like-
ly.Specialized sensors for detecting suspiciousbehavior of
these clients will be tasked to gather more information for
the clients.At each stage the clients will be sorted in de-
scending order of likelihood for causing the attack.On each
iteration, the specialized sensors will adjust the trust in the
clients and eventually one or more of the clients will rise in

likelihood until a threshold is reached that incriminates the
client enough for it to be blacklisted.The gathered evidence
remains for the other clients so that if the attack continues
after the blacklisting of a client, the diagnosis can continue
to find other attackers.
 For certain kinds of attack, such as a DDOS attack, there
will be more than a single attacker.The attackers will thus
be found one at a time and blacklisted until all clients have
an acceptable level of trust.
 This approach depends upon having specialized sensors
that can be tasked by the diagnosis engine upon de-
mand.These sensors can scan application logs in order to
extract client identity and further look for activity profiles
that do not match those of well behaved clients.

High Level Overview
In this section we present a worked example of the ap-

proach and how the trust model allows the self-adaptive
system (not described in this paper) to perform adaptations
in response to an evolving cyber attack.

Figure 1 Cloud Resources

Figure 1 shows a simple cloud with three available hosts
with different capabilities.Host-A can run program-A, host-
B can run programs B and C while host-C can run pro-
grams A and C.
 For a given mission we have three candidate configura-
tions: shown in Figure 2.
 Initially all assets are trusted.Based on non-trust related
reasons, configuration A is preferred and established (Con-
figuration A balances the load better than the other two
configurations).At some point during the execution Host-A
is successfully attacked.This results in the following order-
ing of configurations on the basis of configuration trust:

Config-C >tr Config-B >tr Config-A

 The running system is therefore adapted to configuration
C.This involves Running program-A on host-C (instead of
host-A).Why is Configuration C better than configuration
B?By contagion host-B is trusted less than host-C, configu-
ration B uses host-B to run two programs whereas configu-
ration C uses host-B only to run one program.

221

Figure 2: Potential Configurations

Results
In this paper, we have addressed a way of reasoning about
relative state of trust of components of a distributed, net-
worked, application.The eventual success depends upon the
quality of the evidence provided by the sensors that must
reason about unexpected behavior of the system. These
aspects will be covered in forthcoming papers from the
project.Here we address the best case that can be expected
when the sensors are 100% accurate.

For this idealized example, we assume the ability to pro-
tect a host by providing a backup that can be switched to
instantaneously, and the ability to fishbowl a host to de-
ceive an attacker and thereby slow down an attack. What
we wish to know is the minimum number of additional re-
sources we need to protect the network fully or to bound
the downtime due to successful attack.

In our simulation, we assume that a host once successful-
ly attacked takes one time unit to recover.We additionally
assume that a fishbowl provides one time unit of protection
from attack.Finally we assume a mission that has 10 steps
each taking one time unit.The simulation mounts a random
attack during each time unit.A successful attack on each
time unit will therefore have a worst case impact of dou-
bling the mission time because a one time unit recovery is
necessary during each time unit.A fully protected system
will finish in 10 time units because all attacks could be
dodged.

Figure 3: Simulation of the 10 step plan

 Figure 3 shows the results of a Monte-Carlo simulation
of the 10 step plan using randomly generated network con-
figurations of 30 nodes with an average connectivity
branching factor of 4. The results show that for a resource
budget of 126% of the minimum resources, when provided
with accurate sensor data, the system can be protected from
most attacks.
 The actual level of redundancy can be estimated for a
given configuration.What is important here is to observe
that a system can be protected from attack, if intelligent
sensors providegood evidence, with a modest investment in
additional resources.
 Conceptually a system that has exactly the minimum
resources required to get the job done is very brittle to any
failure be it a natural failure or an deliberate attack.A mod-
est over-provisioning of resources in a system that has dy-
namic reconfiguration and health sensors for the compo-
nents, can survive in the face of deliberate and sustained
attacks.

222

Conclusions
In this paper, we have focused on the use of qualitative
reasoning about networked computations.The notion of
relative trust supports the self-adaptation of networked
computations so that the resources in use are always the
most trusted resources for the job that is required of
them.Given conditional trust, a resource that is no longer
trusted to perform certain functions, such as be a SQL serv-
er, may be used to perform other non-SQL functions. Com-
putations that have been performed on hosts that have be-
come untrusted can be transferred to other resources that
are more trusted for the operations in question.A compute
resource that has thereby lost all of its computations in fa-
vor of other resources can be taken off line and reflashed to
a fresh state at which point it can be reintroduced into the
network and once again be a candidate for use in imple-
mentation parts of the mission.We have observed that a
system constituted in this manner can remain running de-
spite an ongoing and determined attack.We have shown
that we can detect and diagnose zero day attacks and black-
list the attackers.
 While avoiding an attack and keeping the attackers at
bay is always the preferred route, there will always be cases
where the determined attacker can get through our defens-
es.In such cases, the use of qualitative reasoning about trust
in harmony with a diagnosis engine and specialized taska-
ble expensive sensors, we can keep vital computations alive
in spite of an onslaught of attackers.
 Finally, we have spoken only of qualitative means in this
paper but there are cases where quantitative information is
also required.In fact our system includes both kinds of in-
formation, and the quantitative reasoning will be the subject
of a follow-on paper.

Acknowedgements
This work was supported by Contract FA8650-11-C-7191
with the US Defense Advanced Research Projects Agency
(DARPA) and the Air Force Research Laboratory.The
views expressed are those of the authors and do not reflect
the official policy or position of the Department of Defense
or the U.S. Government.

References
Boutilier, C. Brafman, R. I., Domshlak, C., Hoos, H. H. and
Poole, D. CP-nets: A Tool for Representing and Reasoning with
Conditional Ceteris Paribus Preference Statements
http://www.jair.org/media/1234/live-1234-2225-jair.pdf
McGeachie, J. & Doyle, J. Utility Functions for Ceteris Paribus
Preferences
http://www.csc.ncsu.edu/faculty/doyle/publications/uc02.pdf

Jaynes, E. T. Probability Theory – The Logic of Science, Cam-
bridge – (Chapter 12).
Doyle, J., Shoham, Y. M.and Wellman, P., 1991 A Logic of Rela-
tive Desire, Proceedings: Methodologies for Intelligent Systems,
pp16-21.
De Kleer, J. and Williams, B. C. Diagnosing Multiple
Faultshttp://www2.parc.com/spl/members/dekleer/Publications/Di
agnosing%20Multiple%20Faults%20AIJ%20reprint.pdf
Morris, P. and Pearl, J., 1994 A Maximum Entropy Approach to
Nonmonotonic ReasoningPAMI March 1994 Volume 15 #3
pp220-232
Laddaga, R., 1997 Self-adaptive software DARPA BAA 98-12.
December.
Laddaga, R. Robertson, P and Shrobe, H. (Ed). 2001 Results of
the First International Workshop on Self Adaptive Software.In
Self-Adaptive Software.
Laddaga, R. Robertson, P and Shrobe, H. (Ed), 2003 Self-
Adaptive Software: Applications, Volume 2614 Lecture Notes in
Computer Science. Springer-Verlag.
Robertson, P., Laddaga, R. and Shrobe, H., 2000 Self-Adaptive
Software, Volume 1936 Lecture Notes in Computer Science.
Springer-Verlag.

223

