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Abstract

In the context of data-mining competitions (such as those or-
ganized by Kaggle), we show how access to an oracle that
reports a contestant’s log-loss score on the test set can be ex-
ploited to deduce the ground-truth of some of the test exam-
ples. By applying this technique iteratively to batches of m
examples (for small m), all of the test labels can eventually
be inferred. In this paper, (1) We demonstrate this attack on
the first stage of a recent Kaggle competition (Intel & Mo-
bileODT Cancer Screening) and use it to achieve a log-loss of
0.00000 (and thus attain a rank of #4 out of 848 contestants),
without ever downloading the training set or training a clas-
sifier to solve the actual task. (2) We prove an upper bound
on the batch size m as a function of the floating-point reso-
lution of the probability estimates that the contestant submits
for the labels. (3) We derive, and demonstrate in simulation,
a more flexible attack that can be used even when the ora-
cle reports the accuracy on an unknown (but fixed) subset of
the test set’s labels. These results underline the importance of
evaluating contestants based only on test data that the oracle
does not examine.

Introduction
Data-mining competitions such as those as offered by
Kaggle, DrivenData, KDD Cup, ImageNet LS-VRC (Rus-
sakovsky et al. 2015), and other organizations, have be-
come a mainstay of machine learning. By establishing com-
mon rules of participation as well as training and testing
datasets that are shared by all contestants, these competitions
can help to advance the state-of-the-art of machine learning
and big data analytics practice in a variety of application
domains (Mangal and Kumar 2016; Kiss-Tóth and Takács
2014; De Cock et al. 2013). In order for the scientific results
of these contests to have value, however, it is imperative that
the methods by which candidates are evaluated be sound.
The importance of fair evaluation is made more pressing by
the availability of oracles, often provided by the organizers
of the competitions themselves, that return the accuracy or
loss value of the contestant’s guesses with respect to the test
labels. The purpose of such oracles is to help participants
to pursue more promising algorithmic strategies and to im-
prove the overall quality of contestants’ submissions. But
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they also open up the possibility of systematic overfitting,
either inadvertently or maliciously.

In this paper, we consider how an oracle that returns the
log-loss of a contestant’s guesses w.r.t. the ground-truth la-
bels of a test set, can be exploited by an attacker to infer the
test set’s true labels. The log-loss is mathematically conve-
nient because, unlike other metrics such as the AUC (Tyler
and Chen 2000; Agarwal et al. 2005), which is calculated
over pairs of examples, the log-loss can be computed for
each example separately. Moreover, unlike the 0-1 loss that
conveys only the number of correctly labeled examples, the
log-loss measures how “close” the contestant’s probability
estimates are to ground-truth. The attack proposed in our pa-
per can be effective despite limited floating-point resolution
in the oracle’s return values, and can be applied even if the
oracle only computes the log-loss on an unknown (but fixed)
subset of the test set. In a case study we performed for this
paper, we applied the attack to achieve a perfect score on
a recent Kaggle competition (Intel & MobileODT Cervical
Cancer Screening), thereby attaining a rank on the first-stage
competition leaderboard of #4 out of 848.

To be fair, Kaggle had structured their competition rules
such that the first stage was mostly for informational pur-
poses to let contestants know how their algorithmic ap-
proachs were faring compared to their competitors’. More-
over, leaderboard algorithms such as Ladder (Blum and
Hardt 2015) could prevent many kinds of attacks, includ-
ing the one we present in this paper. On the other hand,
while many competition organizers employ sufficient safe-
guards, some currently do not: some competitions run by
DrivenData1, for example, evaluate contestants on test ex-
amples that are available to contestants during the entire
competition. We are also unaware of any competition that
currently uses robust leaderboard algorithms such as Ladder.
Finally, even a temporary high ranking in a data-mining con-
test could conceivably hold ancillary value, e.g., by inducing
a potential employer to take a look at a particular person’s
curriculum vitae. In any case, the potential of exploiting a
competition oracle underlines the importance of employ-
ing commonsense safeguards to preserve the integrity of
contestant rankings. In particular, the results in this paper
suggest that evaluation of contestants’ performance should

1https://www.drivendata.org/
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be done strictly on test examples on which the oracle never
reported accuracy.

Related work
Both intentional hacking (Whitehill 2016; Blum and Hardt
2015; Zheng 2017; Hardt 2017) and inadvertent overfit-
ting (Dwork et al. 2015; Hardt and Ullman 2014) to test
data in adaptive data analyses – including but not limited
to data-mining competitions – have generated recent re-
search interest in the privacy-preserving machine learning
and computational complexity theory communities. In par-
ticular, Blum and Hardt (Blum and Hardt 2015) recently
described a “boosting” attack with which a contestant can
estimate the test labels such that, with probability 2/3, the
accuracy of the inferred labels w.r.t. the ground truth is bet-
ter than chance. The essence of their attack is to query the
oracle many times using randomly generated guess vectors,
and then to compute the majority vote of each example’s la-
bel over only those guess vectors that achieved a better loss
value than would be expected by chance. In this sense, the
attack they explore is probabilistic and attempts to infer all
of the ground-truth labels at the same time. In contrast, our
paper explores how a contestant can ascertain the ground-
truth labels of the test set definitively, by inferring just a few
examples at at time. In addition to illustrating the attack it-
self, they devised a “Ladder” algorithm that can be used to
rank contestants’ performance in a way that is robust to the
boosting attack. In later work by Zheng (Zheng 2017), the
Ladder mechanism was simplified to avoid redundant com-
putation; moreover, a sample complexity bound was shown
relating the number of examples in the test set to the desired
precision of the leaderboard loss values.

For the particular accuracy metric of the Area Under the
Receiving Operating Characteristics Curve (AUC), White-
hill (Whitehill 2016) demonstrated how an oracle that re-
turns exact information on the AUC of a contestant’s guesses
can be used to infer a few ground-truth labels of the test
set, provided that the AUC is high enough. Moreover they
showed in a tiny simulation (n = 16 examples) that, even
without a high starting AUC, the accuracy of the contes-
tant’s guesses can be improved by integrating over all possi-
ble ground-truth labelings that are consistent with the AUC
value returned by the oracle. On the other hand, they also
proved a weak form of lower bound on the number of possi-
ble binary ground-truth labelings for which the contestant’s
guesses achieve any fixed AUC c; this essentially imposes a
severe practical limit on the size of the test sets in which this
kind of attack is feasible.

Notation and Assumptions
We assume that the contestant’s goal is to infer the ground-
truth labels of the test set, which contains n examples, each
of which belongs to one of c possible classes. We represent
the ground-truth of the entire test set using a row-wise 1-hot
matrix Yn ∈ {0, 1}n×c, where Yn

.
= [y1, . . . ,yn]

�, each
yi = [yi1, . . . , yic]

�, each yij ∈ {0, 1}, and
∑

j yij = 1
for each i. Similarly, we represent the contestant’s guesses
using matrix Ŷn ∈ R

n×c, where Ŷn
.
= [ŷ1, . . . , ŷn]

�, each

ŷi = [ŷi1, . . . , ŷic], each ŷij ∈ (0, 1), and
∑

j ŷij = 1 for
each i. The loss function that we study in this paper is the
log-loss, computed by function f , of the contestant’s guesses
with respect to the ground-truth:

�n
.
= f(Yn, Ŷn) = − 1

n

n∑
i=1

c∑
j=1

yij log ŷij (1)

Furthermore, we assume that the data-mining competition
offers an oracle to which a contestant can submit her/his
real-valued guesses for the test labels and obtain the log-loss
�n of the guesses with respect to the ground-truth.

Example
To show how knowledge of the log-loss can reveal infor-
mation about the ground-truth itself, consider a tiny test set
in which there are just 2 examples and 3 classes, and sup-
pose a contestant submits the following guesses to the oracle
(where e is the base of the natural logarithm):

Ŷ2 =

[
e−2 e−1 1− e−2 − e−1

e−8 e−4 1− e−8 − e−4

]
If the oracle reports that the log-loss of the contestant’s
guesses, with respect to the ground-truth, is 3, then the
ground-truth labeling of these two examples must be

Y2 =

[
1 0 0
0 1 0

]
since this is the only value of Y2 that satisfies

f(Y2, Ŷ2) = −1

2

2∑
i=1

3∑
j=1

yij log ŷij = 3

Problem formulation and proposed solution
Here we describe an attack (summarized in Algorithm 1)
with which a contestant can iteratively (in batches) infer the
ground-truth of the test set. The algorithm is structured so
that the contestant incorporates the inferred ground-truth la-
bels into her/his guesses during subsequent rounds, thereby
enabling her/him to “climb” the leaderboard while waging
the attack. For simplicity of notation (and without loss of
generality), we assume that the examples in the test set are
ordered such that (1) the labels of the first k examples have
already been inferred; (2) the labels of the next m examples
(which we call the probed examples) are to be inferred in the
current round; and (3) the rest (n−m− k) of the test labels
will remain uninferred during the current round.

Since f is computed by summing over all n examples, its
definition can be re-written as

�n = f(Yn, Ŷn) (2)

= − 1

n

⎡⎣ k∑
i=1

∑
j

yij log ŷij +
k+m∑
i=k+1

∑
j

yij log ŷij+

n∑
i=k+m+1

∑
j

yij log ŷij

⎤⎦ (3)
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If we assume that the first k examples have already been
inferred correctly so that ŷij = yij for each j and each
i ≤ k, then the first term in the RHS of Equation 2 is ap-
proximately 0.2 Moreover, if we set ŷij to 1/c for each j
and each i = k + m + 1, . . . , n, then the third term in the
RHS equals −1 × (n −m − k) × log c – regardless of the
ground-truth labels of these examples. Based on these facts,
we can deduce the log-loss �m due to only the m probed
examples to be:

�m
.
=

1

m

k+m∑
i=k+1

∑
j

yij log ŷij

=
1

m
((n−m− k) log c− n× �n) (4)

Given knowledge of �m – which can be calculated from
the value �n returned by the oracle – and given knowledge of
[ŷk+1, . . . , ŷk+m]� – which the candidate her/himself con-
trols – the ground-truth of the m probed examples can be
inferred using exhaustive search over all possible cm label-
ings (for small m). Over �n/m� consecutive rounds, we can
determine the ground-truth values of all of the test labels.

Algorithm 1 Infer the ground-truth of the test set using the
oracle’s response �n.
Input: A probe matrix Gm, where m is the number of

probed examples in each round.
Input: An oracle that reports f(Yn, Ŷn).
Output: The ground-truth labels Yn for all n examples.

for round r = 1, . . . , �n/m� do
1. Set k ← (r − 1)×m.
2. Configure the probe matrix Ŷn:

• For i = 1, . . . , k (examples that have already been
inferred), set ŷi to the inferred yi.

• For i = k+1, . . . , k+m (the probed examples), set
ŷi to the corresponding row of Gm.

• For i = k+m+1, . . . , n (examples that will remain
uninferred), set ŷij to 1/c for all j.

3. Submit Ŷn to oracle and obtain �n.
4. Compute �m (the loss on just the m probed exam-
ples) according to Equation 4.
5. Determine the ground-truth of the probed examples
by finding [yk+1, . . . ,yk+m]� that minimizes ε.

end for

Note that, due to the finite floating-point resolution of the
oracle’s return value, there is usually a small difference be-
tween the �m that is calculated based on the oracle’s re-
sponse and the true log-loss value of the m probed examples.
We call this difference the estimation error:

ε
.
= |�m − f([yk+1, . . . ,yk+m]�, [ŷk+1, . . . , ŷk+m]�)|
2In practice, competition oracles often enforce that each ŷij ∈

[γ, 1−γ] where γ is a small number such as 1×10−15; this results
in a negligible cost of k log(1− (c− 1)γ) for the second term. We
discuss this later in the paper.

How to choose the guesses of the probed examples
The key to exploiting the oracle so as to infer the ground-
truth correctly is to choose the guesses Ŷn so that �m reveals
the labels of the probed examples uniquely. To simplify no-
tation slightly, we let Gm

.
= [ŷk+1, . . . , ŷk+m]� – which

we call the probe matrix – represent the contestant’s guesses
for the m probed examples. The probe matrix can stay the
same across all submission rounds.

If the contestant’s guesses were real numbers in the math-
ematical sense – i.e., with infinite decimal resolution – then
Gm could be set to random values, constrained so that
each row sums to 1. With probability 1, the log-loss �m
would then be unique over all possible instantiations of
[yk+1, . . . ,yk+m]�. However, in practice, both the guesses
and the log-loss reported by the oracle have finite precision,
and “collisions” – different values of the ground-truth that
give rise to the same, or very similar, losses – could occur.
Consider, for example, the probe matrix below:⎡⎢⎣ 0.53595382 0.20743777 0.25660840

0.76336402 0.17982958 0.05680643
0.83539897 0.02825473 0.13634628
0.88845736 0.10858667 0.00295598

⎤⎥⎦
Here, no two elements are closer than 0.025 apart. Yet two
possible values for the ground-truth labeling Y4 result in
log-loss values (approximately 1.18479 and 1.18488, re-
spectively) that are less than 10−4 apart; these candidate la-
belings are⎡⎢⎣ 0 1 0

0 0 1
1 0 0
1 0 0

⎤⎥⎦ and

⎡⎢⎣ 1 0 0
0 1 0
1 0 0
0 1 0

⎤⎥⎦
If the oracle returned a log-loss of, say, 1.185, then it would
be ambiguous which of the two values of Y4 was the correct
one.

Collision avoidance
In order to avoid collisions, we need to choose Gm so that
the minimum distance – over all possible pairs of differ-
ent ground-truth labelings of the m examples – is large
enough so that even a floating-point approximation of �m
can uniquely identify the ground-truth. We can thus formu-
late a constrained optimization problem in which we express
the quality Q of Gm as:

Q(Gm)
.
= min

Ym �=Y′
m

|f(Ym,Gm)− f(Y′
m,Gm)| (5)

where Ym,Y′
m are distinct ground-truth labelings, and we

wish to find
G∗

m
.
= argmax

Gm

Q(Gm)

subject to the constraints that each row of Gm be a proba-
bility distribution. Optimization algorithms do exist to solve
constrained minimax and maximin problems (Madsen and
Schjær-Jacobsen 1978; Brayton et al. 1979). However, in
practice, the optimization problem above presents difficul-
ties: computing the minimum loss difference over all unique
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pairs of ground-truths requires a minimax objective function
with cm(cm − 1)/2 components, which grows large very
fast. Alternatively, the set of loss values (over all unique
ground-truths) can be sorted, and then the minimum dis-
tance can be computed using just cm − 1 operations. But
this latter implementation is not differentiable, and hence
finite differencing must be employed, which is also slow.
Instead, to optimize the minimax objective, we resorted to
a heuristic that is designed to sample the guesses ŷij so
that the sum of the logarithms of a randomly chosen sub-
set of the guesses – one for each example i – is far apart
within the range of 32-bit floating-point numbers. In partic-
ular, we set ŷij = a × 10b and sampled a ∼ U([0, 1]) and
b ∼ U({−14, 13, . . . ,−1, 0}) for each i and each j < c.
For j = c, we sampled a ∼ U([0, 1]) and b was fixed to
0. Finally, we normalized each ŷi so that the entries sum to
1. Based on this heuristic, we used Monte-Carlo sampling
(with 10000 samples) to optimize the maximin expression
above. In particular, for m = 6, we obtained a matrix G6

for which Q(G6) = 0.00152. This number is substantially
greater than the largest estimation error we ever encountered
during our attacks (see section below describing our demon-
stration on Kaggle) and thus enabled us to conduct our attack
in batches of 6 probed excamples. However, for m = 7, we
were never able to find a G7 for which Q(G7) > 0.0001.

Bound on number of probed examples m
The oracles in data-mining competitions such as Kaggle of-
ten impose lower and upper bounds on the submitted prob-
abilities so that ŷij ∈ [γ, 1 − γ] for each i, j, where γ is a
small number such as 10−15. This ensures that the log-loss
is well defined (so that log 0 is never evaluated) but also in-
directly imposes an upper bound on how many examples m
can be probed during each round. Below we show a upper
bound on the quality of a probe matrix Qm as a function of
γ:

Proposition 1. Let m be the number of probed examples
and let c be the number of possible classes. Let γ ∈ (0, 1)
represent the minimum value, imposed by the oracle, of any
guess ŷij . Then the quality Q(Gm) of any probe matrix Gm

is bounded above by log(1−(c−1)γ)−log γ
cm−1 .

Proof. Since γ is the minimum value of any element in Gm,
then 1 − (c − 1)γ is the maximum value. Each of the m
probed examples must therefore contribute at least− log(1−
(c− 1)γ) and at most − log γ to the log-loss. Averaged over
all m examples, the log-loss must therefore be in the closed
interval

I
.
=

[
− 1

m

∑
i

log(1− (c− 1)γ), − 1

m

∑
i

log γ

]
= [− log(1− (c− 1)γ),− log γ]

Since there are c classes, then there are cm possible ground-
truth labelings and corresponding log-losses. The maximum
value of Q(Gm) – i.e., the minimum distance, over all pos-
sible pairs of distinct ground-truth labelings, between cor-
responding log-loss values – is attained when the log-losses

are distributed across I so that the cm − 1 “gaps” between
consecutive pairs of log-loss values are equal in size. There-
fore, the maximum value of Q(Gm) is at most

δ =
log(1− (c− 1)γ)− log γ

cm − 1

Since δ decreases exponentially in m, and since δ must be
kept larger than the maximum estimation error ε observed
when executing Algorithm 1, then m must necessarily be
kept small.In practice we were not able to find satisfactory
Gm even for m ≥ 7. Nonetheless, even with m = 6, we
were able to climb the leaderboard of a recent Kaggle com-
petition successfully.

Experiment: Kaggle Competition
We tested Algorithm 1 on the Intel & MobileODT Cervi-
cal Cancer Screening competition hosted by Kaggle in May-
June 2017. The objective of the competition was to develop
an automatic classifier to analyze cervical scans of women
who are at-risk for cervical cancer and to predict the most
effective treatment based on the scan. Such a classifier could
potentially save many lives, especially in rural parts of the
world in which high-quality medical care is lacking. During
the first stage of the contest, the competition website pro-
vided each contestant with training images (1821) and as-
sociated training labels (with c = 3 categories), as well as
testing images (n = 512). The goal of the competition was
to predict the test labels with high accuracy. To help com-
petitors identify the most promising classification methods,
Kaggle provided an oracle – which each contestant could
query up to 5 times per day – that reported the log-loss on all
512 test examples without any added noise. After the first-
stage submission deadline (June 14, 2017), the second stage
of the competition began, using a larger test set and an or-
acle that reported the loss on only a fixed subset of the test
samples.

Cheating during the first stage: Since the oracle dur-
ing the first stage of the competition returned the log-loss
on the entire test set, it provided an ideal environment in
which to demonstrate Algorithm 1. We performed the attack
in phases according to the following procedure: For the first
2 queries, we probed only a single test label (i.e., m = 1)
just to verify that our code was working correctly. For the
next 30 queries, we probed m = 4 labels (using the G4

shown in the appendix). For the remaining queries (after we
had found G6 with large enough Q), we probed m = 6 ex-
amples per query. The maximum estimation error ε, over all
rounds, between the log-loss returned by the oracle and the
loss calculated based on the inferred ground-truth, was less
than 0.0061. This was less than half of Q(G6) for the probe
matrix we used and thus allowed us to infer the ground-truth
unambiguously. During the competition we did not perform
any supervised learning of cervical scan images (i.e., the in-
tended purpose of the competition) whatsoever.

Results: The progression of our attack is shown in Figure
1. In short, with less than 100 oracle queries (well within the
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oracle query limit given the total duration of the competi-
tion), we were able to infer the ground-truth labels of all the
test examples perfectly. We note that, during consecutive it-
erations of the attack, the attained log-loss need not always
decrease – this is because the the reduction in loss due to
inferring more examples can sometimes be dwarfed by an
increase in loss due to which specific entries of Gm are se-
lected by the corresponding ground-truth of the probed ex-
amples. Nevertheless, the proposed attack is able to recover
perfectly all m probed labels during every round. The pro-
gression of (usually decreasing) log-loss values �n is plot-
ted in Figure 1. By the last iteration, we had recovered the
ground-truth values of all 512 examples correctly and thus
attained a loss of 0.00000. Since we were tied with several
other contestants who also achieved the same loss (whether
by legitimate means or by cheating), and since Kaggle ap-
parently uses the submission time as a secondary rank basis
(and we were not the first party to achieve a perfect score),
we were ranked in 4th place on the first-stage leaderboard
(see Figure 2).

Second stage: During the second stage of the same Kag-
gle competition, the organizers published a larger test set
that included the 512 test examples from the first-stage as
a subset. Moreover, these same 512 examples were the ba-
sis of both the oracle results and the leaderboard rankings up
until the conclusion of the second-stage competition. Hence,
for a brief period of about two weeks, we were able to main-
tain the illusion of a top-ranked Kaggle competitor achieving
a perfect score. To be clear: the final, definitive results of the
competition (announced on June 21, 2017) – including who
won the $100,000 prize money – were based on the log-loss
on the entire test set, not just the subset. Naturally, our rank-
ing declined precipitously at this point (to 225th place out
of 848 contenders) since our guesses on the remaining 75%
examples were just 1/c.

Cheating when the Oracle Reports Accuracy
on a Subset of Examples

It is more common in data-mining competitions for the ora-
cle to report accuracy on only a subset of the test set. Here
we describe how a contestant can still cheat, using similar
methods as described above, when the oracle reports accu-
racy on a fixed subset of examples (i.e., the same subset for
each oracle query). In this setting, the contestant submits a
matrix Ŷn with n rows, but the log-loss obtained from the
oracle is based on only s ≤ n examples. Note that, in con-
trast to Algorithm 1, here we treat “already inferred” exam-
ples in the same way as the “uninferred” examples – we as-
sign their guesses to be ŷij = 1/c for all i, j (instead of
setting them to their inferred values). The only drawback of
this simplification is that the attacker cannot simultaneously
infer the ground-truth and decrease her/his log-loss (in the
manner illustrated by Figure 1) – rather, the contestant must
wait until after she/he has inferred the ground-truth to “cash
in” and jump to a higher leaderboard rank. We describe the
new attack below:

Determining the size of the subset s: The first step of the
attack is to determine the value of s. To this end, it is use-

Figure 1: Climbing the Kaggle leaderboard, using the pro-
posed log-loss oracle exploitation algorithm, of the Intel &
MobileODT Cervical Cancer Screening 2017 competition
(first stage). After 98 rounds of Algorithm 1, we had inferred
all 512 test labels correctly and thereby achieved a log-loss
of 0.00000.

ful to identify a single test example that is definitely in the
s-element subset on which the oracle reports accuracy. Find-
ing such an example can be achieved by setting the guesses
ŷij to 1/c for all but one example and setting the guesses
to random values (but not equal to 1/c) for a single “probe”
example i. If the loss reported by the oracle is not equal to
− log c, then the probe example must be one of the s evalu-
ated examples; otherwise, another example is chosen and the
procedure is repeated. Assuming that the fraction s/n is not
too small, then this procedure should only take a few oracle
queries.

Given a single example at index i that is known to be
among the s evaluated examples, along with the log-loss
value �s summed over all s evaluated examples, the contes-
tant can determine s. To see how, notice that the s−1 exam-
ples that are not example i contribute a log-loss of s−1

s log c,
and that example i contributes − 1

syij log ŷij . Therefore, the
contestant can iterate (jointly) over all n possible values for
s ∈ {1, . . . , n} and all c possible values of yi to find

argmin
s

{
min
yi

∣∣∣∣∣1s
(
(s− 1) log c−

∑
j

yij log ŷij

)
− �s

∣∣∣∣∣
}

(6)
The solution is the number of examples s on which the or-
acle reports the log-loss. We note that, in practice, due to
finite resolution of the oracle’s response and the contestant’s
guesses, the inferred value of s can sometimes be inaccurate.
Nevertheless, even an imperfect estimate of s can often be
used to infer the ground-truth of the s evaluated test exam-
ples with high accuracy (see simulation results below).

Inferring the labels of a batch of probe examples: Now
that s has been inferred, the contestant can probe the la-
bels of m examples at a time. To infer Ym, the contestant
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Figure 2: Our leaderboard rank on the first stage of the Intel
& MobileODT Cervical Cancer Screening 2017 climbed to
#4 after we inferred the labels of all the test examples using
Algorithm 1.

must consider whether each probed example i is in the s-
element subset on which the oracle reports the log-loss. To
this end, we define z ∈ {0, 1}m so that zi is 1 if exam-
ple i is in the s-element subset and 0 otherwise. The L1-
norm ‖z‖1 of this vector thus equals the number of probed
examples that are also in the s-element subset, and we can
compute the contribution of the probed examples to the log-
loss as − 1

s

∑
i

∑
j ziyij log ŷij . The remaining log-loss is

accounted for by the (s− ‖z‖1) “uninferred” examples and
amounts to s−‖z‖1

s log c. Therefore, to determine Ym and z,
the contestant must optimize

argmin
Ym

⎧⎨⎩ min
z∈{0,1}m

∣∣∣∣∣∣
⎛⎝−1

s

∑
i

∑
j

ziyij log ŷij

+
s− ‖z‖1

s
log c

)
− �s

∣∣∣∣} (7)

using brute-force search (which is easy since m is small).
Naturally, row i of the inferred matrix Ym is valid only if
zi = 1.

Choosing the guesses: Similar to the section above, we
need to optimize the probe matrix so as to to minimize colli-
sions. In this setting, however, we must be concerned not just
with different possible ground-truth labelings Ym, but also
with the indicator variables z – both of which “select” dif-
ferent elements ŷij to add to the log-loss. We thus revise the
quality function to maximize the minimum distance, over all
distinct pairs Ym 
= Y′

m and over all distinct pairs z 
= z′,
of the corresponding log-loss values (see appendix).

Simulation
Instead of applying the algorithm above to the Intel-
MobileODT competition3, we conducted a simulation. In

3The oracle in the second stage of the Intel-MobileODT 2017
competition evaluated only a subset of the test examples, but it

particular, we simulated a test set containing n = 2048
examples (from c = 3 classes) where s = 512 evaluated
examples were randomly sampled (but fixed over all oracle
queries) across the entire test set. The simulated contestant
first probed just single examples to find one of the s evalu-
ated examples. Then, it inferred s by optimizing Equation 6.
The contestant then proceeded to submit batches of m = 4
probed examples (for �n/m� total rounds) and infer their la-
bels based on the oracle’s response by optimizing Equation
7 using exhaustive search.

To assess how the floating-point resolution p of the ora-
cle’s response impacts the accuracy of the labels inferred by
the contestant, we varied p ∈ {1, 2, 3, 4, 5}, where p was the
number of digits after the decimal point. (p = 1 means that
the oracle’s responses were rounded to the nearest 0.1; p = 2
to the nearest 0.01, etc.). For each p value, we conducted 100
simulations. As the probe matrix for all simulations, we used
G̃4 (see appendix). At the end of each simulation, we com-
puted the accuracy of the inferred labels versus ground-truth,
and then averaged the accuracy rate over all 100 simulations.

Results: Results are shown (for each p) in Table 1, where
columns 2-4 represent the median, mean, and standard de-
viation of the accuracy (% correct) of the inferred test la-
bels, and columns 5-7 represent the same statistics for the
accuracy (absolute difference) between the true s (the num-
ber of evaluated examples in the test set that is needed in
Equation 7) and inferred ŝ. As expected, the accuracy of in-
ferred labels increased with higher floating-point resolution
p. In many simulations, the contestant’s best inference of s
was incorrect, and yet many (and often most) of the inferred
test labels were still correct. In fact, the average correlation
(over all values of p) between |s− ŝ| and the accuracy of the
inferred test labels w.r.t. ground-truth, was only−.107, sug-
gesting that correct inference of the test labels is relatively
robust to errors in inference of s.

Summary and Conclusions
We derived an iterative algorithm whereby a contestant can
illicitly improve her/his leaderboard score in a data-mining
competition by exploiting information provided by an oracle
that reports the log-loss of the contestant’s guesses w.r.t. the
ground-truth labels of the test set. During each iteration of
the attack, the contestant infers the ground-truth labels of
batches of m probed examples of the test set. We proved
that the maximum batch size m whose labels can be inferred
in each round is fundamentally limited by the floating-point
resolution of the contestant’s guesses. Nevertheless, the at-
tack is practical, and we demonstrated it on a recent Kag-
gle competition and thereby attained a leaderboard ranking
of #4 out of 848 (for the first stage of the contest), with-
out ever even downloading the training or testing data. For
more general scenarios in which the oracle reports the log-
loss on only a fixed subset of test examples, we derived a
second algorithm and showed in simulation that it can infer
the ground-truth of the test examples with high accuracy, de-
spite inaccuracy in inferring which examples are part of the

turned out that this subset was exactly the 512 images from the
first-stage test set; hence, there was nothing new to infer.
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Table 1: Results of simulations (for varying floating-point resolution p of the oracle’s response) in which the contestant tries to
infer the test labels based on a log-loss score that is calculated based only on a random, but fixed, subset of s test examples.
Results for each p are averaged over 100 simulations.

Label Accuracy (% correct) s Accuracy (|s− ŝ|)
p Median Mean StdDev Median Mean StdDev
1 39.46 38.77 3.66 1181.50 1170.27 144.84
2 48.89 47.76 5.54 1126.00 1060.82 333.74
3 59.72 59.40 4.81 1445.50 1129.56 662.61
4 80.41 78.71 13.73 3.00 204.55 444.78
5 100.00 93.55 11.92 0.00 169.85 434.34

evaluated subset.
In terms of practical implications, our findings further

underline the importance of evaluating contestants in data-
mining competitions based only on test examples that the
loss/accuracy oracle never examined. Other mechanisms in-
tended to make rankings more robust, such as imposing a
limit on the number of oracle queries submitted per day, can
easily be circumvented by registering multiple contestant ac-
counts.

Future work: According to the rules for the Intel & Mo-
bileODT Cancer Screening competition, the winning con-
testant is obliged (before receiving the prize money) to sub-
mit her/his training code that she/he used to train the clas-
sifier that won the competition. Without any modification
to either the code itself or the hyperparameter settings, the
training code should be able to re-generate a classifier that
can produce the same set of guesses as those used to win the
competition. The point here is to ensure that bona fide ma-
chine learning research was conducted in the spirit intended
by the competition organizers, rather than just competition
hacking. Future research on data-mining competition hack-
ing could examine how even this safeguard might be over-
come. In particular, it would be interesting to explore how
a neural network architecture and hyperparameter settings
might be “reverse-engineered”, based on both the training
and testing sets, to yield a relatively simple neural network
design (so as not to arouse suspicion) that performs well on
both the training and testing sets, but not necessarily on in-
dependent, held-out data.

Appendix: Probe Matrices Gm

For the experiment on the Kaggle competition, we used the
matrices G4 and G6 shown below (note that e here means
“times 10 to the power. . . ”):

G4 =

⎡
⎢⎢⎢⎣

3.17090802e-01 6.03843391e-01 7.90658068e-02
3.34653412e-01 6.64893789e-01 4.52799011e-04
4.44242183e-01 5.42742523e-01 1.30152938e-02
3.02254057e-01 1.41415552e-01 5.56330391e-01

⎤
⎥⎥⎥⎦

and Q(G4) = 0.019248.

G6 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

3.72716316e-13 3.17270110e-06 9.99996841e-01
4.03777185e-11 2.98306441e-06 9.99997020e-01
1.51235222e-11 9.45069790e-02 9.05493021e-01
7.54659835e-10 6.77224932e-07 9.99999344e-01
1.84318694e-09 2.37398371e-01 7.62601614e-01
9.75336131e-12 1.44393380e-06 9.99998569e-01

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

and Q(G6) = 0.001526.
For the simulation of our second algorithm that can in-

fer the ground-truth on a random (but fixed) subset of test
examples, we defined a new quality function

Q̃(G̃m)
.
= min

zm,
Ym �=Y′

m

|f̃(zm,Ym,Gm)− f̃(zm,Y′
m,Gm)|

where

f̃(zm,Ym, Ŷm) = − 1

m

∑
i

∑
j

ziyij log ŷij

In our simulated attack against the oracle, we used:

G̃4 =

⎡
⎢⎢⎢⎣

3.34296189e-02 6.06806998e-06 9.66564298e-01
6.80901580e-15 8.52564275e-02 9.14743602e-01
1.78242549e-01 2.03901175e-12 8.21757436e-01
1.22676250e-02 1.40922994e-03 9.86323118e-01

⎤
⎥⎥⎥⎦

and Q̃(G̃4) = 0.012750.
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