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Abstract

Given the self-aware, artificially intelligent, and complex
system-of-systems nature of the Internet of Things (IoT), un-
intended behavior will manifest itself in many forms. In this
paper, we illustrate a method for steganographic messaging
that can exploit IoT side channels and be resilient to the het-
erogeneous communications and application protocols that
exist in the IoT. We show that IoT side channels are suscep-
tible to network steganography. Moreover, it is possible to
create a data-in-motion steganographic method without net-
work protocol modifications and mathematically bound the
channel capacity.

Introduction

The Internet of Things (IoT) is the realization of intercon-
nected and ubiquitous computing, pervasive sensing, and au-
tonomous systems that can affect the physical world. Some
argue the promise of IoT technology represents the begin-
ning of a transcendental shift in humans’ interaction with
technology (Gubbi et al. 2013). The “things” that exist in
the IoT can be generally thoughts of as physical or com-
putational objects that label, sense, communicate, process,
or actuate thereby bridging the physical and virtual worlds
(Oriwoh and Conrad 2015; Pande and Padwalkar 2014).
While there is no universally accepted definition of the IoT,
the International Telecommunication Union Telecommuni-
cation Standardization Sector (ITU-T) defines the IoT as “a
global infrastructure for the information society, enabling
advanced services by interconnecting (physical and virtual)
things... through the exploitation of identification, data cap-
ture, processing and communications capabilities, the IoT
makes full use of things to offer services to all kinds of ap-
plications, whilst maintaining the required privacy (ITU-T
).” The inclusion of privacy concerns in the ITU-T’s stan-
dard definition points to an implication that suggests sig-
nificant security challenges in the IoT. Like any technology
that impacts the physical world through extensions in cyber
space, the scope and quantity of potential threat vectors in-
creases significantly over those technologies that keep the
domains separate. Given its pervasive nature, security in
the IoT is an immensely challenging, but well known and

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

documented, problem (Zhao and Ge 2013; Hwang 2015;
Li and Da Xu 2017).

Security, and by implication deception, is a more signif-
icant concern when artificially intelligent autonomous and
autonomic system behaviors are considered. Both of these
characteristics are intrinsic “features” of the IoT and likely
to increase in sophistication and complexity as technology
matures, leading to greater system self-awareness. The no-
tion of self-awareness in the IoT has led to a new term for
characterizing the IoT: self-star (self-*). Self-* encompasses
a wide range of behaviors that extends the concept of au-
tonomic computing to the ubiquity and invasiveness of the
IoT. The term self-* covers several aspects of system-self,
such as self-configuring, self-organizing, self-healing, self-
adapting, and self-protecting (Berns and Ghosh 2009). As
the devices in the IoT manifest greater self-* properties, it
becomes increasingly unrealistic to expect human operators
to maintain control over IoT system dynamics. Threats from
malignant human IoT objectives or errant intelligent auto-
nomic behaviors will progressively be the norm and present
challenging latent security risks that are susceptible to ma-
nipulation.

Researchers and practitioners cannot ignore security
problems related to technology and are actively address-
ing IoT security headlong, through defensive mecha-
nisms such as differential-encryption, soft-biometrics, and
decentralized-ledger approaches, amongst others (Her-
rmann, Muhl, and Geihs 2005; Dorri et al. 2017; Dinca and
Hancke 2017). However, passive intrinsic security threats
are often overlooked. IoT devices typically operate on a
primary communications channel and require a side chan-
nel for inter-process communications, control, and/or con-
figuration. These side channels create another vulnerabil-
ity, due to their usage for direct configuration or opera-
tions or self-* behaviors. In this manner, the scope and
scale of the IoT will offer a tremendous platform for net-
work steganography. Steganographic methods hide infor-
mation, thereby making the information difficult to notice
by embedding it in an information carrier. The distinction
between steganography, network steganography in particu-
lar, and “covert channels” (communication paths that were
neither designed nor intended for information transfer) is
not well grounded (Lubacz, Mazurczyk, and Szczypiorski
2014). We apply the term network steganography because
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IoT side channels natively operate as a secondary channel
for telemetry or other control data rather than the primary
channel for sensing or actuation information.

The threat of covert communication is a very real threat,
and is well documented in the literature (for example
(Moskowitz and Kang 1994)). Because of its scale, hetero-
geneity, and ubiquity the IoT will be highly susceptible to
exploitations of covert communication channels. Moreover,
the IoT (as a system) will have a complexity beyond hu-
man comprehension, possess an ability to affect the physical
world, and will have sense of “self” manifesting autonomic
behaviors imbued with artificially intelligent (AI) reasoning.
Embedded in IoT devices themselves, the same AI capa-
bilities that acquire, aggregate, and analyze other IoT ac-
tuators and data sources to assure provenance and veracity
of suspect IoT cyber data, will enable self-protecting (ad-
versarial or otherwise), obfuscating, and deceptive “thing-
behaviors” that exploit intrinsic side channels and employ
network steganography to avoid detection.

In this paper, we illustrate a method for steganographic
messaging that can exploit IoT side channels and be resilient
to the heterogeneous communications and application pro-
tocols that exist in the IoT network. We show that IoT side
channels are susceptible to network steganography. More-
over, it is possible to create a data-in-motion steganographic
method without network protocol modifications and math-
ematically bound the channel capacity. The paper is orga-
nized as follows. The next section provides a background
on IoT side channels, IoT self-* properties, and network
steganography. This section is followed by the description
of the side channel timing covert channel and ring topology
discussion. We conclude with a summary and a brief discus-
sion of countermeasures.

Background
The modern IoT is, and will continue to be, comprised of
sensing and actuation devices that operate as a single sys-
tem (though distributed and compose-able), have embed-
ded artificial intelligence with continuous learning capa-
bilities, and have ”self awareness.” A hallmark character-
istic of IoT composite systems is self-star (self-*) behav-
iors, such as self-organizing, self-configuring, self-healing,
self-protecting, etc., often referred to self-* properties or
characteristics (Berns and Ghosh 2009; Kishore Ramakr-
ishnan, Preuveneers, and Berbers 2014). The underlying
notion behind self-* characteristics mandate an understand-
ing of state, context, and environment, so that a device’s
behavioral adaptation lead to recovery from arbitrary tran-
sient conditions or changes to an initial state. The basis for
self-* relate to traditional topics of control theory and be-
cause IoT devices do not exist purely in isolation they typ-
ically utilize, or require, communication channels in which
to transmit and receive messages to/from users and other de-
vices/systems (Athreya, DeBruhl, and Tague 2013). More-
over, having awareness of context, IoT devices must assess
the surrounding environment and use the assessment to best
accomplish their current goals (Sicari et al. 2015). Assess-
ing a device’s state and the environment in which it is oper-
ating mandates some manner of learning. Traditional incre-

mental learning techniques can be used to address exposure
to new observations for assessment. However incremental
learning generally does not capture relationships between
context and operational requirements. Therefore, continu-
ous learning, a key enabler of self-* behaviors in IoT, will
only advance in sophistication as artificial intelligence tech-
nologies are improved. Further, IoT devices are components
in complex system-of-systems that are imbued with artificial
intelligence to collectively achieve user goals.

To accomplish continuous learning and self-* behaviors
many IoT devices and systems commonly utilize control
channels or control messaging (Kim and Kim 2005), (Heath
et al. 2008), (Kim and He 2015). Control or side chan-
nels are those communication pathways used for system
functions, whether they be heartbeats, internal monitor-
ing/signaling, self-awareness mechanisms, or other system-
centric operations. The existence and nature of side channels
creates an additional vector that can be exploited for both
benign and malicious purposes (Ronen et al. 2017). From
the perspective of security, passive observation of side chan-
nels, like primary channels, can lead to the leakage of in-
formation that may classify or even uniquely identify IoT
devices, i.e. watermarking (Chhetri, Faezi, and Al Faruque
2017). There are methods for detecting the potential leak-
age from side channel messaging. For example, Coron et al.
(Coron, Naccache, and Kocher 2004) developed statistical
tests that can detect the presence of side channel leakage
from cryptographic computations. Nonetheless, detection
of leakage does not necessarily prevent it. Further, unlike
physical information leakage, such as those resulting from
electro-magnetic emissions, leakage that is embedded in the
operational information itself can represent a particularly
difficult security concern. In the context of this research, the
exploitation of a side channel should not be confused with
a side channel attack that, while related to information leak-
age, requires an encryption device or mechanism. Our focus
is on the exploitation of side channels for covert communica-
tion, regardless of whether that communication is desirable
or undesirable.

Much like primary communication channels, side chan-
nels can be used for covert communication. Originally
coined by Szczypiorski (Szczypiorski 2003), the term net-
work steganography refers to the use of telecommunications
medium or protocols to conceal messages between a sender
and a receiver. Contrary to typical steganographic meth-
ods that use digital media (e.g. pictures, audio, video files,
etc.) as the means in which to embed hidden data, net-
work steganography encode content in communication pro-
tocols control elements or intrinsic functionality. There are
three generally accepted classifications of network stegano-
graphic methods: 1) protocol storage, 2) protocol timing,
and 3) application protocol header modifications (Lubacz,
Mazurczyk, and Szczypiorski 2014). Each of these meth-
ods take advantage of network communications protocols
to exploit covert data channels and some methods are more
efficient and robust than others (Collins and Agaian 2016).
In the following sections we present a method for network
steganography using IoT side channels and illustrate the
method through mathematical examples.
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A Timing Network Stego Side Channel

Given the self-aware, artificially intelligent, and complex
system-of-systems nature of the IoT, threats will manifest
themselves in many forms. The existence of side channels
presents an exploit that can be utilized to hide information.
In the context of network steganography it is not necessarily
important to highlight the purpose of the covert communi-
cations, as it could be used for watermarking, benign inter-
device self-* enabling behaviors, malicious network subver-
sion, or other objectives. As a simple example, consider how
a spy might utilize “normal” communications to embed a
message to signal the start of a broader attack, or trigger
the activation of a malicious activity. Now consider how
the same spy might use the ubiquitous network of smart IoT
devices to do the same thing and avoid detection. Extend-
ing this example, note that IoT devices are capable of ac-
tuating the real world and, unlike modern computers, will
exist in the network at unprecedented scale and availabil-
ity. From just this simple pragmatic example, it becomes
clear that network steganography takes on a new cyber pri-
ority in the IoT. This priority becomes more significant when
AI-enabled self-* behaviors create situations that could lead
to the devices themselves employing covert messages (ob-
scured from human users) for their own means.

The problem of covert messaging, independent of the
transmission protocols, in IoT side channels boils down
to: how can a sender in a network, described by a graph,
covertly send information to a receiver, via the time that the
message gets there? When framed in this manner, a stegano-
graphic threat can be considered as an IoT adaption of covert
timing channels (Moskowitz, Greenwald, and Kang 1998;
Martin and Moskowitz 2006; Moskowitz and Miller 1992).
Consider a network of devices that are communicating with
each other. Further, it is the desire for one transmitter node
nTr to covertly communicate with another receiver node nR

by manipulating the cover/legitimate traffic that it sends to
the receiver node.

We make some basic assumptions that generalize to In-
ternet communications. Moreover these assumptions span
most commonly implemented IoT network protocols includ-
ing bluetooth and many IoT specific protocols, such as Z-
wave, ZigBee, WiMo, and Insteon (Raglin et al. 2017).

1. ASSUMPTION: nTr addresses the message to nR, but it
only has control over the first link it leaves nTr on.

2. ASSUMPTION: The path that the message travels is a
simple path; that is, the message never goes through the
same node twice. Thus, when we use the term path it is
understood to be a simple path.
To illustrate, we make another reasonable assumption:

the sender and the receiver have synchronized clocks. The
sender starts at t = 0, if it sends a time symbol t1 it waits
until it has been received at time t1 and then sends the next
symbol, and waits the amount of time of that symbol, and
then sends the next. It is the inter-symbol gap time that is
the information. The method we propose does not require
any time stamping, or sequence numbering of the messages.
The inter-symbol gap time is received noiselessly by the re-
ceiver. The symbols are t1 < t2 < · · · tK ,K ≥ 2.

Transmitter
0 1 2 3 4 5 6 7

Receiver
0 1 2 3 4 5 6 7

Figure 1: Transmission of t1, t1, t2, t1, t2, where t1 =
1, t2 = 2.

A

B

C

Figure 2: 3-clique, also 3-ring

Simple example: 3-ring R3

Imagine we have a very simple 3-node graph given by the
following adjacency matrix A3

A3 =

(A B C

A 0 1 1
B 1 0 1
C 1 1 0

)
(1)

There are two paths (see Fig. 1) from A to C, they are
A → C, and A → B → C. To simplify notation we write
this as 〈A|C〉, and 〈A|B|C〉. Let us assume that the time
to travel each link is t, where t is the unit of time (a tick).
We often suppress the t (normalize it to 1) and write n in-
stead of n · t for the sake of simplicity. Let T denote the
time for a cover message to travel from A to C, we have
that T 〈A|C〉 = 1, and T 〈A|B|C〉 = 2. By using the inter-
symbol gap time C knows whether the trip took 1t or 2t.
Also, by our assumptions, A is allowed to pick the path that
the cover message travels on. Keep in mind the real infor-
mation we are interested in is T , not the content of the cover
message. The time that it takes for the cover message to
arrive at C is the covert steganographic communication.

That is in terms of the cover channel 〈A|C〉, and 〈A|B|C〉
are the same, but the fact that this message takes either 1 or
2 ticks t is what forms the stego side channel.

What we presently have is a timing channel with input
binary X and output binary T . Using Verdú’s result (Verdú
1990, Eq. 1),(Moskowitz, Greenwald, and Kang 1998) we
have the following formula for capacity in bits per unit time
(Ct) where X is the input to the channel, and the random
variable T is the output random variable which is the cost in
time as a function of the random variable X . First we define
the mutual information in unit of bits per unit time (It), and
then Ct

It=
I(X,T )

E(T )
,where I(X,T )=H(X)−H(X|T )=I(T,X).

(2)
Ct = sup

X
It (3)

T takes on the values 1 or 2, however we generalize this
to t1, t2, t1 < t2 for the sake of generality. This is a noise-
less binary input, binary output, timing channel (Moskowitz
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and Miller 1994). That is the channel matrix is the 2 × 2
identity matrix. Hence p(xi) = p(ti) and thus the condi-
tional entropies H(T |X) and H(X|T ) are zero (the condi-
tional probabilities are 0 or 1, and by definition, 0 log 0 =
1 log 1 = 0)1. We abuse notation and let p = p(x1) and
1− p = p(x2). Eq. (2) reduces to

Ct = maxp

(
H(X)

p·t1+(1−p)·t2

)
(4)

= maxp

(
−p log(p)−(1−p) log(1−p)

p·t1+(1−p)·t2

)
(5)

Theorem 1. (Shannon 1948, Appendix 4),(Krause
1962),(Moskowitz and Miller 1994, Thm. 2),(Khan-
dekar, McEliece, and Rodemich 2000) The capacity, in
units of bits per t, of the channel in Eq. (5) is Ct = logω,
where ω is the unique positive root of the characteristic
polynomial

χ(x) := 1−
∑

i=t1,t2

x−i, x ≥ 0 . (6)

Furthermore, the distribution on X that achieves capacity is
pc = ω−t1 , where pc = P (X = t1), which is equivalent to
1− pc = ω−t2 .

Proof: We only sketch the proof since it is well referenced
in the literature. We note that it generalizes to more than
two symbols (see the later theorem in this paper). In short
there are two equivalent ways of defining the capacity. The
algebraic way is via saying that capacity is the limit superior
of the number of different symbols that can be passed per
unit time. The other way is as the maximum of the ratio of
the mutual information, which in the noiseless case is the
input entropy,. to the expected time to send a symbol. At
first glance there is no mathematical reason for them to be
the same, but they are. For channels with noise the algebraic
way has only been generalized to special cases (Martin and
Moskowitz 2006). A simple proof of the algebraic way via
finite different equations is given in (Moskowitz and Miller
1994, Lemma 1,2. Thm 1). We present the proof for the
second way below.

We wish to maximize It which is a function of one vari-
able p (for more symbols we must use Lagrange multipliers).
We let q = 1− p, L(x) := x log(x), and Δt := t1 − t2.

d

dp

(−L(p) − L(q)

p · t1 + q · t2

)
= 0 (7)

(p(Δt) + t2) · d
(
−L(p)−L(q)

)
dp − (Δt) · (−L(p) − L(q))

(p(t1 − t2) + t2)2
= 0 (8)

(p(Δt) + t2) · ln(
q

p
) = −(Δt) · (L(p) + L(q)) (9)

p(Δt) ln(
q

p
) + t2 ln(

q

p
) = p(Δt) ln(

q

p
) + (Δt) ln(q) (10)

t2 ln(p) = t1 ln(q) = t1 ln(1 − p) (11)

p
t2/t1 = 1 − p, let p = x−t1 , so 1 − p = x−t2 (here p �= 0, 1) and (12)

1 − (x
−t2 + x

t1 ) = 0. (13)

1We use log for the base 2 logarithm, and ln for the natural log.

Figure 3: N -ring

Hence, if ω solves the characteristic equation we have p =
ω−t1 , 1− p = ω−t2 . Furthermore,

Ct =

(−ω−t1 log(ω−t1)− ω−t2 log(ω−t2)

ω−t1 · t1 + ω−t2 · t2

)
(14)

=

(
t1ω

−t1 log(ω) + t2ω
−t2 log(ω)

ω−t1 · t1 + ω−t2 · t2

)
= logω � (15)

Note, it is often computationally easier to express the
characteristic polynomial with positive coefficients and find
its root. For our example from Fig. 1 we find that the posi-
tive solution of

x2 − (x+ 1) = 0 (16)

is 1+
√
5

2 . Thus, we have that Ct = log 1+
√
5

2 ≈ .694 bits/t
and the critical probability pc =

−1+
√
5

2 ≈ .618.
Notice that in the 3-ring in Fig. 1 there are alway two

paths between any two nodes, the shortest of length 1, and
the longest of length 2. Therefore, A can communicate (via
the method described) to C with a capacity of .694 bits/t.
Note there is nothing special about A and C due to the graph
symmetry, so this result holds for any two nodes in the 3-
ring.

Simple example extended to the N -ring RN

— only use nodes 1 and N

Let us consider a generalization of the 3-ring, that is we will
look at an N -ring (see Fig. 3). Without loss of generality, we
use a clockwise cyclic numbering of the nodes, 1 through N,
and pick one particular node as the first node v1 (as denoted
in Fig. 3). We note that the simple ring structure and how
nodes may be compromised has been well-studied in terms
of rewiring (Hyden et al. 2017).

Now say that v1 wishes to open a covert side channel to
vN . A message can be sent the short way 〈v1|vn〉 or the long
way 〈v1|v2|v3|v4|...|vN 〉. So now a symbol is either t1 = 1
or t2 = N − 1. From above, the capacity is, in units of bits
per t,

Ct = logω; ,

where ω is the unique positive root of the characteristic poly-
nomial

χ(x) := 1−
∑

i=1,N−1

x−i, x ≥ 0 . (17)

Furthermore, the distribution on X that achieves capacity is
pc = ω−1, thus 1− pc = ω−(N−1) �
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Figure 4: Plots of 1 and f(b).

As noted above, it is often computationally easier to ex-
press the characteristic polynomial with positive coefficients
and find its root, that is find the positive solution of

xN−1 − xN−2 − 1 = 0 . (18)

We see that as N grows large, Ct inversely approaches zero
(for N = 101, Ct = .05, for N = 701, Ct = .01, and for
N = 10, 001, Ct = .001).

What if we use an intermediate node instead of the
final node?

For R3 there are no intermediate nodes, however for N > 3
there are. For example, let N = 11 in the ring topology,
which set-up gives us the highest capacity? Since t2 > t1
(nothing is lost by this, we are just flipping the short way
with the long way) we see that t2 = 6, 7, 8, 9, 10. Please see
Table 1 for clarification.

For R11 we see that we achieve the maximum capacity
when the difference between t1 and t2 is maximized. Can
we prove this in general? First, let us look at an even case
N = 10, R10 in Table 2.

The reason that the last row is different is that our sym-
bols are the time values, if the time values are the same
then the capacity must be zero. If we send different stor-
age symbols at different times then we could the table giving
pc = 1/2, H(X) = 1, E(T ) = 5, Ct = .2 bpt. Sending dif-
ferent storage symbols does not affect the other calculations.

Theorem 2. Given, RN , N ≥ 3 we let Ct(1, j) denote the
covert channel timing capacity using nodes v1, vj (because
there is no loss of generality we can always take the first
node to be v1).2 Ct(1, j) is a monotonic decreasing function
of j as

j →
{�N/2�+ 1, for N odd

N
2 + 2, for N even.

Proof. We see that t1 = N − j + 1, t2 = j − 1, ≤ t1 <
t2 ≤ N − 1. We extend from integers to real numbers and
let a = t1, b = N − a = t2. We can write the characteristic
polynomial χ(x) as 1 − (x−b + xb−N

)
, with x ∈ (0, 1),

since 0 < Ct = logω < 1 . The root ω solves 1 = x−b +

2Due to the ring symmetry we do not consider the rotations of
the nodes (that is v1, vN is the same case as v2, v1, or v3, v2, ... ,
or vN , vN−1, similarly for the other cases.

xb−N . For x fixed we will show that f(b) := x−b + xb−N

is an increasing function of b for b > N/2. Therefore, as
b decreases to N/2 so will ω the intersection point with the
line y = 1, and we will be done. (see Fig. 4) Note, since b is
the bigger time value, as noted above, we have that b > N/2.

To show that f(b) is an increasing function of b we fix x
at any value greater than 1 (the region of interest).

f(b) = x−b + xb−N (19)

= e−b ln(x) + e(b−N) ln(x) (20)

= e− ln(x)·(b) + eln(x)·(b−N), so (21)
df

db
= ln(x) ·

(
eln(x)·(b−N) − e− ln(x)·(b)

)
(22)

= ln(x) · (xb−N − x−b
)
, since a+ b = N(23)

= ln(x) · (x−a − x−b
)
, (24)

since b > a ⇒ b = a+ d, d > 0 (25)
= ln(x) · (x−a)

(
1− x−d

)
, since x > 1 (26)

> 0 � (27)

Thus, we have shown for the N -ring RN that the best
capacity is achieved for t1 = 1, t2 = N − 1, with the nodes,
up to rotation, being v1 and vN . Of course we have only
been looking at noiseless binary channels timing channels
(binary input, binary output, no noise) so far. This is because
for a ring there are at most two paths of different lengths
between any two vertices. We have not considered noise in
the channel. See Table 3.

Discussion of Simple IoT Topology

For the N -ring our assumptions are straight forward. As-
sumption 1 is that the sender node can determine whether
the message goes to the “left of right.” The second assump-
tion is simply that the message does not double-back upon
itself. Of course, for more complicated topologies Assump-
tion 2 requires additional considerations. For theoretical
clarity, we kept the assumptions here to a minimum. The re-
sult for the N -ring is that the covert timing channel capacity
is obtained by using a sender node, and a receiver node 1-
hop/(N -1) hops away from it. This example was simplified
to show the theoretical steganographic method. In this ex-
ample we show the optimal maximization of capacity based
on the topology for this ring structure. For more complicated
topologies is unclear what the maximum will be and may
represent a computationally intractable problem. In the next
section we randomize and use and expected capacity (e.g.
a mean field approach) and illustrate the steganographic ap-
proach. This mean field method, may be more applicable
for more complicated topologies that will be more common
representations in IoT networks.

Randomized IoT Communication and

Expected Capacity

Now let us analyze the situation where the transmitting node
nTr does not pick the node it transmits to. If it can pick, and
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Table 1: N = 11
Paths Time Values ω pc H(X) E(T ) Ct

〈v1|v2|v3|v4|...|v11〉, 〈v1|v11〉 t2 = 10, t1 = 1 1.1975 .8351 .6460 2.4843 .2600 bpt
〈v1|v2|v3|v4|...|v10〉, 〈v1|v11|v10〉 t2 = 9, t1 = 2 1.1619 .7408 .8255 3.8144 .2164 bpt
〈v1|v2|v3|v4|...|v9〉, 〈v1|v11|v10|v9〉 t2 = 8, t1 = 3 1.1461 .6642 .9208 4.6791 .1968 bpt

〈v1|v2|v3|v4|...|v8〉, 〈v1|v11|v10|v9|v8〉 t2 = 7, t1 = 4 1.1382 .5959 .9733 5.2124 .1867 bpt
〈v1|v2|v3|v4|v5|v6|v7〉, 〈v1|v11|v10|v9|v8|v7 = �N/2�+ 1〉 t2 = 6, t1 = 5 1.1347 .5316 .9971 5.4684 .1823 bpt

Table 2: N = 10
Paths Time Values ω pc H(X) E(T ) Ct

〈v1|v2|v3|v4|...|v10〉, 〈v1|v10〉 t2 = 9, t1 = 1 1.2132 .8243 .6706 2.4056 .2788 bpt
〈v1|v2|v3|v4|...|v10〉, 〈v1|v10|v9〉 t2 = 8, t1 = 2 1.1749 .7245 .8493 3.6531 .2325 bpt
〈v1|v2|v3|v4|...|v8〉, 〈v1|v10|v9|v8〉 t2 = 7, t1 = 3 1.1586 .6431 .9401 4.4278 .2123 bpt

〈v1|v2|v3|v4|...|v7〉, 〈v1|v10|v9|v8|v7〉 t2 = 6, t1 = 4 1.1510 .5699 .9859 4.8603 .2029 bpt
〈v1|v2|v3|v4|v5|v6〉, 〈v1|v10|v9|v8|v7|v6 = (N/2) + 2〉 t2 = 5, t1 = 5 1.1487 NA NA NA 0

Table 3: N Ring, t1 = 1, t2 = N − 1

N Ct

3 .6942 bpt
5 .4950 bpt

10 .2786 bpt
20 .1978 bpt
50 .0844 bpt

100 .0494 bpt

the criteria is maximizing capacity it would pick, if, with-
out loss of generality, nTr = n1, then nR = nN (same as
using n2) as discussed above.So now, given RN two nodes
are chosen at random and we wish to determine the possi-
ble threat, as measure by the covert timing channel capacity
between the two nodes as discussed above.

Let us chose two random nodes on RN . The first node
is randomly chosen, and without loss of generality, can be
taken as v1. Now, the probability that the next node is
vj , j = 2, 3, ..., N is 1

N−1 . Let us consider the parity of
N .

N ODD: This follows on what we discussed above. The
first node is v1, with probability 1

N−1 the next randomly
chosen node is vN , which is a noiseless timing channel with
times 1 and N−1, which we denote as Ct(1, N−1), the next
randomly chosen node can be taken as vN−1 which simi-
larly give us Ct(2, N − 2). This analysis continues in this
descending order until the second randomly chosen node is
�N/2� + 1, which gives us Ct(�N/2
, �N/2�). It then re-
peats the capacities reversing the order.

EXAMPLE: N = 5
v1, v5 results in Ct(1, 4)
v1, v4 results in Ct(2, 3), 4 = �5/2�+ 1
v1, v3 results in Ct(3, 2)
v1, v2 results in Ct(4, 2)

Thus, for N odd (o), we see that the average capacity

Ct(RNo) is

Ct(RNo) =
2

N − 1

�N/2�∑
i=1

Ct(i, N − i) . (28)

Which we may also express as

Ct(RNo) =
2

N − 1

�N/2�∑
i=1

logωi, (29)

where ωi is the unique positive root of 1−(x−(N−i)+x−1).
Which of course is,

Ct(RNo) =
2

N − 1
log

⎛
⎝�N/2�∏

i=1

ωi

⎞
⎠ . (30)

N EVEN: This case is slightly different because when we
consider the nodes v1 and vN

2 +1 we see that t1 = t2 = N/2.
Hence the capacity is zero. However, it still must be counted
in average, which only manifests itself in dividing by N−1.

Thus, for N even (e), we see that the average capacity
Ct(RNe) is

Ct(N
e) =

2

N − 1

N
2 −1∑
i=1

Ct(i, N − i) . (31)

Which of course is,

Ct(RNe) =
2

N − 1
log

⎛
⎝N

2 −1∏
i=1

ωi

⎞
⎠ . (32)

Where ωi is the unique positive root of 1−(x−(N−i)+x−1).
In Fig. 5 we that the lowest curve is Ct(RN ), and the top

plot is Ct(1, N − 1) for RN .

Conclusion

The advance of the Internet of Things will revolutionize vir-
tualized interactions with the physical world. In doing so, in-
terconnected devices that form self-aware complex system-
of-systems purposed to human objectives will have artifi-
cially intelligent (AI) behaviors and communicate between
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Figure 5: Plot of the average (blue, lower) capacity against
best (green, upper, smoother) capacity.

themselves and with end-users along multiple, likely dy-
namic, communications channels. These AI capabilities
also introduce a greater chance of side channel use for the
purposes of covert messaging or network steganography,
whether malicious or benign.

We illustrated a method for steganographic messaging
that uses transmission timing to obscure symbols. We
presented several examples in ring network configurations,
given varying initial hop conditions. Through these formu-
lations, we showed that IoT side channels are susceptible
to network steganography and that it is possible to create a
data-in-motion steganography method without network pro-
tocol modifications. While the examples do not account
for empirical concerns such as noise, the described meth-
ods certainly would have implications for device network-
watermarking methods, as well as theoretical covert channel
risk quantification and threat countermeasures.

While the proposed method may appear general for net-
works and not necessarily IoT specific, it is the complica-
tions introduced by the autonomic nature, scope, and reach
of IoT that takes the issue of networki steganography to an-
other degree of importance. The significance of the protocol
agnostic method described in this paper presents a clear pic-
ture of the new challenges to the already difficult issue of
providing network and information security. Moreover, the
introduction of machine learning and AI capabilities, given
a pervasive IoT with cyber-reach into the real-world, man-
dates a much deeper understanding of the susceptibility of
communication protocols to all types of manipulation not
just for automated learning and improved system resilience.
Additional research in the area of network steganography
may be helpful in this respect. This research paper is in-
tended to form the groundwork for future research in the
domain of IoT side channel network steganography. In fu-
ture work we will consider more complicated IoT network
topologies. Further, as this work is just a first theoretical
step, we plan to implement the described protocol-agnostic
network steganography method in an empirical IoT environ-
ment to elicit experimental results and explore the implica-
tions.
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