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Abstract

In this work we introduce malware detection from raw byte
sequences as a fruitful research area to the larger machine
learning community. Building a neural network for such a
problem presents a number of interesting challenges that have
not occurred in tasks such as image processing or NLP. In par-
ticular, we note that detection from raw bytes presents a se-
quence problem with over two million time steps and a prob-
lem where batch normalization appear to hinder the learning
process. We present our initial work in building a solution
to tackle this problem, which has linear complexity depen-
dence on the sequence length, and allows for interpretable
sub-regions of the binary to be identified. In doing so we will
discuss the many challenges in building a neural network to
process data at this scale, and the methods we used to work
around them.

1 Introduction

The detection of malicious software (malware) is an impor-
tant problem in cyber security, especially as more of society
becomes dependent on computing systems. Already, single
incidences of malware can cause millions of dollars in dam-
ages (Anderson et al. 2013). Anti-virus products provide
some protection against malware, but are growing increas-
ingly ineffective for the problem. Current anti-virus tech-
nologies use a signature-based approach, where a signature
is a set of manually crafted rules in an attempt to identify
a small family of malware. These rules are generally spe-
cific, and cannot usually recognize new malware even if it
uses the same functionality. This approach is insufficient as
most environments will have unique binaries that will have
never been seen before (Li et al. 2017) and millions of new
malware samples are found every day. The limitations of
signatures have been recognized by the anti-virus providers
and industry experts for many years (Spafford 2014). The
need to develop techniques that generalize to new malware
would make the task of malware detection a seemingly per-
fect fit for machine learning, though there exist significant
challenges.

To build a malware detection system, we must first de-
termine a feature set to use. One intuitive choice is to use
features obtained by monitoring program execution (APIs

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

called, instructions executed, IP addresses accessed, etc.).
This is referred to as dynamic analysis. While intuitively
appealing, there are many issues with dynamic analysis in
practice. To conduct dynamic analysis, malware must be
run inside a specially instrumented environment, such as a
customized Virtual Machine (VM), which introduces high
computational requirements. Furthermore, in some cases it
is possible for malware to detect when it is being ana-
lyzed. When the malware detects an attempt to analyze it,
the malware can alter its behavior, allowing it to avoid dis-
covery (Raffetseder, Kruegel, and Kirda 2007; Garfinkel et
al. 2007; Carpenter, Liston, and Skoudis 2007). Even when
malware does not exhibit this behavior, the analysis environ-
ment may not reflect the target environment of the malware,
creating a discrepancy between the training data collected
and real-life environments (Rossow et al. 2012). While a dy-
namic analysis component is likely to be an important com-
ponent for a long term solution, we avoid it at this time due
to its added complexity.

We instead take a static analysis approach, where we look
at information from the binary program that can be obtained
without running it. In particular, we look at the raw bytes
of the file itself, and build a neural network to determine
maliciousness. Neural nets have excelled in learning fea-
tures from raw inputs for image (Szegedy et al. 2015), sig-
nal (Graves, Mohamed, and Hinton 2013), and text (Zhang
and LeCun 2015) problems. Replicating this success in
the malware domain may help to simplify the tools used
for detecting malware and improve accuracy. Because mal-
ware may exploit bugs and ignore format specifications,
parsing malicious files and using features that require do-
main knowledge can require significant and nontrivial effort.
Since malware is written by a real live adversary, such code
will also require maintenance and improvement to adjust to
changing behavior of the malware authors.

Since we desire to learn a system from raw byte inputs,
from which higher level representations will be constructed,
we choose to use a neural network based approach. How-
ever, there exist a number of challenges and differences for
this domain that have not been encountered in other tasks.
These challenges make research in malware detection in-
trinsically interesting and relevant from a machine learning
perspective beyond merely introducing these techniques to a
novel domain. For Microsoft Windows Portable Executable
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(PE) malware, these challenges include but are not limited
to:

1. The bytes in malware can have multiple modalities of
information. The meaning of any particular byte is con-
text sensitive, and could be encoding human-readable text
(e.g., function names from the import table), binary code,
arbitrary objects such as images (from the resource/data
sections of a binary), and more.

2. The content of a binary exhibits multiple types of spatial
correlation. Code instructions in a function are intrinsi-
cally correlated spatially, but this correlation has discon-
tinuities from function calls and jump commands. Fur-
ther, the contents at a function level can be arbitrarily re-
arranged if addresses are properly corrected.

3. Treating each byte as a unit in a sequence, we are deal-
ing with a sequence classification problem on the order of
two million time steps. To our knowledge, this far exceeds
the length of input to any previous neural network based
sequence classifier.

4. Our problem has multiple levels of concept drift over
time. The applications, build tools, and libraries develop-
ers use will naturally be updated, and alternatives will fall
in and out of favor. This alone causes concept drift. But
malware is written by a real-life adversary, and is often
intentionally adjusted to avoid detection.

Our contributions in this work are the development of the
first, to our knowledge, network architecture that can suc-
cessfully process a raw byte sequence of over two million
steps. Others have attempted this task, but failed to out-
perform simpler baselines or successfully process the entire
file (Anderson 2017), in part because the techniques devel-
oped for signal and image processing do not always transfer
to this new domain. We identify the challenges involved in
making a network detect malware from raw bytes, and the
initial methods one can employ to successfully train such a
model. We show that this model learns a wider breadth of
information types compared to previous domain-knowledge
free approaches to malware detection. Our work also high-
lights a failure case for batch-normalization, which initially
rendered our model unable to learn.

2 Related work

There are two primary themes of past work: the application
of neural networks to ever longer sequences, and the ap-
plication of neural networks to malware detection. The use
of Recurrent Neural Networks (RNNs) has been historically
prevalent in any work involving sequences, but the process-
ing of raw bytes far exceeds the scale attempted in previous
work by orders of magnitude. For malware detection, all of
these previous applications use a significant amount of do-
main knowledge for feature extraction. In contrast, our goal
is to minimize the use of such domain knowledge, and ex-
plore how much of the problem can be solved without spec-
ifying any such information.

2.1 Neural Networks for Long Sequences

Little work has been done on the scale of sequence classi-
fication explored in this work. The closest in terms of pure
sequence length is WaveNet (Oord et al. 2016). WaveNet at-
tempts to advance the state-of-the-art in generative audio by
ignoring previous feature engineering, and instead using the
raw bytes of the audio as the input feature and target. This
results in a sequence problem with 16,000 time steps per sec-
ond of audio. Wide receptive fields for this task (4,800 steps)
were obtained through the use of dilated convolutions (Yu
and Koltun 2016) and by training a very deep architecture.
Ultimately, their work is still on the order of two magnitudes
smaller in sequence length compared to our malware detec-
tion problem.

The use of dilated convolutions to handle sequence length
has become a common trend, as for example in the ByteNet
model for machine translation (Kalchbrenner et al. 2016).
While translation can result in relatively long sequences,
their sequence length is smaller than WaveNet’s audio gen-
eration. While we did explore dilated convolutions in this
work, we did not find them to perform any better or worse
than standard convolutions for our problem. We suspect this
is due to the different nature of locality in binaries, that the
values in the "holes" of the dilation are easier to assume or
interpolate for spatially consistent domains like image clas-
sification, but are not obviously interpolated for binary con-
tent.

We note another trend when working with long se-
quences: the use of RNNs that operate at different frequen-
cies. Mehri et al. (2017) used such an architecture for
audio classification, but exploited the generative nature of
the task to train on sub-sequences of only 512 time steps.
Other works that have made use of RNNs operating at mul-
tiple frequencies have similarly worked on sequences that
do not exceed thousands of time steps (Koutnik et al. 2014;
Neil, Pfeiffer, and Liu 2016).

In addition to the difficulties in dealing with the unusu-
ally long sequences that we confront, we must also con-
tend with a lack of information flow. When making a be-
nign/malicious classification of a binary we obtain only one
error signal, which must be used to inform decisions regard-
ing all 2 million time steps. In contrast, neural translation
models and autoregressive models such as WaveNet are at-
tempting to predict not an overall classification, but the next
word or byte. This provides them with frequent label infor-
mation at each time step, resulting in a near 1:1 mapping
between input size and labels from which to propagate er-
rors. Such frequent gradient information is not available for
our problem, increasing the learning challenge even before
considering sequence length.

2.2 Neural Networks for Malware Detection

There has been little work thus far in applying neural net-
works to malware detection, and no current work we are
aware of that attempts to do so from the raw bytes of the en-
tire binary. It has recently been demonstrated that fully con-
nected and recurrent networks are able to learn the malware
identification problem when trained on just 300 bytes from
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the PE-header of each file (Raff, Sylvester, and Nicholas
2017). Based on the positive results obtained, the current
work extends those results by training networks on entire,
several million byte long executables, and encounters a wide
breadth of potential byte content.

The work of Saxe and Berlin (2015) is closest to ours at
a feature level, as it uses a histogram of byte entropy val-
ues for features. This is in addition to a histogram of ASCII
string lengths, PE imports, and other meta-data that can be
obtained via static analysis. This approach produces some
small level of information from the whole file, but discards
most information about the actual content of the binary in
the process, as it creates a fixed length feature vector to use
as input to the network.

Most recent work in the application of deep learning to
malware detection has used features extracted via dynamic
analysis, where the binary is run in a virtualized environ-
ment to obtain information about its execution. Kolosnjaji
et al. (2016) tackled the related problem of malware fam-
ily classification (i.e., which family does a particular mali-
cious file belong to?) using a combination of convolutions
followed by LSTMs to process the sequence of API calls
a malware file generated under dynamic analysis. This was
after down-selecting to just 60 kernel API calls to track.

Huang and Stokes (2016) performed manual feature en-
gineering of API calls into 114 higher-level concepts, and
combined these API events with input arguments to the orig-
inal function calls as well as tri-grams. Rather than just
predict maliciousness, they performed malware detection
and family classification with the same model (i.e., weights
shared between two tasks). This approach improved the per-
formance of the model on both tasks, and would be compat-
ible with our design in this work.

These prior works in malware detection tend to use sig-
nificant manual feature engineering, which requires a signif-
icant if not rare level of domain expertise. Those using dy-
namic analysis often rely on sophisticated non-public emu-
lation environments to mitigate the challenges with dynamic
analysis, which significantly increases the effort to repro-
duce work. Our proposed approach eliminates this domain
knowledge-specific code and feature processing, reducing
the amount of specialized code and reducing the barrier to
reproduction and extension.

We note one unfortunate aspect of much of the previ-
ous work in malware detection, including some of our own,
namely, the use of data that is not available to the public,
for various reasons. Data that can be readily obtained by
the public is often not of a sufficient quality to be usable
in practice, as we will discuss in 3. This also means we can-
not meaningfully compare accuracy numbers across works,
as different datasets are used with different labeling proce-
dures.

3 Training data

For this work we use the same training and testing data as in
Raff et al. (2016). Specifically, we use the Group B train-
ing data, and Group A & B testing data. Group B data was
provided by an anti-virus industry partner, where both the
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Figure 1: Architecture diagram of MalConv model.

benign and malicious programs are meant to be represen-
tative of files seen on real machines. The Group B training
set consists of 400,000 files split evenly between benign and
malicious classes. The testing set has 77,349 files, of which
40,000 are malicious and the remainder are benign.

The Group A data was collected in the same manner as
most work in the malware identification literature (Schultz
et al. 2001; Kolter and Maloof 2006) , which is available to
the public. The benign data (or "goodware") comes from a
clean installation of Microsoft Windows, with some com-
monly installed applications (e.g., Firefox, Flash, etc) and
the malware comes from the VirusShare corpus (Roberts
2011). The Group A test set contains 43,967 malicious and
21,854 benign testing files.

It was found that training on the Group A-style data re-
sults in severe overfitting (Raff et al. 2016), learning to rec-
ognize "from Microsoft" instead of "benign", which does not
generalize to new data. That is to say, a model trained on
Group A doesn’t generalize to Group B, but a model trained
on Group B does generalize to Group A. For this reason
we only perform our experiments with the Group B training
data, and test on both groups. Testing in this manner allows
us to better quantify generalization ability, as the data are
from different sources. This minimizes shared biases, and
gives us a potential upper and lower-bound on expected ac-
curacy.

We use both group’s test sets, as this allows us to better
judge the generalization ability of the models. Group B’s
test performance is important, as it is supposed to represent
data in the wild, but may have a shared common bias due
to how Group B data was collected. Testing on the Group
A data, which is collected in a different manner, then is a
stronger test of generalization as the data has fewer common
biases with Group B. Because of this, we consider Group A’s
test performance more interesting than Group B’s. We also
want our model to have similar performance on both test
sets, which would indicate the features learned are widely
useful.

In addition, reaching out to the authors and original com-
pany, we have obtained a larger training corpus of 2,011,786
binaries, with 1,000,020 benign and 1,011,766 malicious.
We use this larger dataset to show that our new MalConv ar-
chitecture continues to improve with increased training data,
while the byte n-gram approach appears to have plateaued in
terms of performance.

4 Model Architecture

When designing our model three features were desired: 1)
the ability to scale well with sequence length, 2) the ability
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to consider both local and global context while examining
an entire file, and 3) an explanatory ability to aid analysis
of flagged malware. A block diagram of this model, which
we refer to as MalConv, is given in 1, and a more detailed
diagram is in the supplemental material.

Our architectural choices were influenced in large part by
the need to address the high amount of positional variation
present in executable files. At a high level, the contents of a
PE binary can be rearranged in almost any arbitrary order-
ing. The only fixed constant is the MS-DOS header, which
ends with a pointer to the beginning of the PE-Header. The
PE-Header can then be anywhere, and parts of it can be
located throughout the file. The PE-Header itself contains
pointers to all other contents of the binary (code, resources,
etc). This allows a macro-reorganization of the byte contents
without ever changing the meaning. Similarly, even within
the code sections of a binary, the definition of functions can
be re-ordered so long as address of sets used in the code are
correctly adjusted. This is another level of spatial restructur-
ing that can occur. This macro-level reordering represents
one of many types of spatial properties within a binary, but
we consider it to be the most important to tackle. Spatial dis-
continuities at a function level will remain difficult, but are
not insurmountable for the model to learn around. Correla-
tions across large ranges will likely be missed; we hope to
capture that information in future work.

To best capture such high level location invariance, we
choose to use a convolution network architecture. Combin-
ing the convolutional activations with a global max-pooling
before going to fully connected layers allows our model to
produce its activation regardless of the location of the de-
tected features. Rather than perform convolutions on the
raw byte values (i.e., using a scaled version of a byte’s
value from 0 to 255), we use an embedding layer to map
each byte to a fixed length (but learned) feature vector.
We avoid the raw byte value as it implies an interpretation
that certain byte values are intrinsically "closer" to each-
other than other byte values, which we know a priori to
be false, as byte value meaning is dependent on context.
Training the embedding jointly with the convolution allows
even our shallow network to activate for a wider breadth
of input patterns. This also gives it a degree of robust-
ness in the face of minor alterations in byte values. Prior
work using byte n-grams lack this quality, as they are de-
pendent on exact byte matches (Kolter and Maloof 2006;
Raff et al. 2016).

We note a number of difficult design choices that had to
be made in developing a neural network architecture for such
long input sequences. One of the primary limitations in prac-
tice was GPU memory consumption in the first convolution
layer. Regardless of convolution size, storing the activations
after the first convolution for forward propagation can easily
lead to out-of-memory errors during back-propagation. We
chose to use large convolutional filters and strides to control
the memory used by activations in these early layers.

Attempts to build deep architectures on such long se-
quences requires aggressive pooling between layers for our
data, which results in lopsided memory use. This makes
model parallelism in frameworks like Tensorflow difficult

to achieve. Instead we chose to create a shallow architec-
ture with a large filter width of 500 bytes combined with
an aggressive stride of 500. This allowed us to better bal-
ance computational workload in a data-parallel manner us-
ing PyTorch (Paszke, Gross, and Chintala 2016). Our con-
volutional architecture uses the gated convolution approach
following Dauphin et al. (2016), with 128 filters.

Regularization A consistent result across tested architec-
tures is a propensity for overfitting. This is not surprising
given the large size of our input feature space (2 million
time steps) from which we must learn the benign/malicious
classification based on a single loss. In particular we note
the difficulty in generalizing from both the Group B training
data to the Group B testing data, as well as the Group B
training data to the Group A test data. In development we
found the DeCov regularization (Cogswell et al. 2016) to
be most helpful, which penalizes correlation between the
hidden state activations at the penultimate layer.

One of the significant challenges in our work was the dis-
covery that batch-normalization was preventing our models
from learning the problem. Batch Normalization has become
a common tool in the deep learning literature for both faster
convergence and a regularizing effect that often improves
generalization (Ioffe and Szegedy 2015). This makes the
failure of batch-norm on our data an interesting and unique
result, which we discuss in 5.3.

4.1 On Failed Architectures

A large number of alternative architecture designs were
tested for this problem, including up to 13 layers of convolu-
tion, using various (Bidirectional) RNNs, and with different
attention models. The MalConv architecture presented per-
formed best amongst many candidates. We review the other
high level alternative architecture strategies here, the rea-
sons why they failed to outperform our simpler MalConv,
and how these relate back to out final design. Additional de-
tails can be found in the appendix.

Adding more layers is possible at the cost of decreased
batch size, due to the aforementioned large memory use for
backpropagation. We tested this with up to 13 layers of con-
volutions, and found performance only decreased. Many of
these experiments tried smaller convolutional fields, so that
the total receptive field of a neuron was on the scale of 500
to 1000 time steps. The problem with these approaches, be-
yond increasing training time to an untenable degree, is that
it is not possible to due the standard approach of doubling
the number of convolutional filters after each round of pool-
ing to keep the amount of state per layer roughly equivalent.
The state of the convolutions after 2 million steps is sim-
ply too large to reasonably compute on. Thus a rapid com-
pression of state size per layer is necessary, but this ends up
inhibiting learning. In our approach we have moved large
amounts of information into the wide filter width in a single
convolution, allowing us to exercise and retain information
without exploding memory use.

Another design choice was in processing the entire file si-
multaneously in one large convolution. An appealing notion
would be to break up the input into chunks of 500 to 10,000
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bytes, and process each chunk independently, as this would
greatly reduce the training requirements. We tested this ap-
proach, and while it achieved reasonable accuracies up to
95%, it often failed to generalize to new data — obtaining
test accuracies in the 65-80% range. This is because much of
the contents of a given binary may be fully non-informative
to a maliciousness decision, and training on random chunks
and assuming a malicious label then encourages the model
to overfit to the training data, and memorize the contents to
produce correct decisions. Our MalConv model has access
to the entire file which allows the model to detect the few in-
formative features regardless of location. This is necessary
to avoid the above variety of overfitting, and is objectively
necessary to work in situations where normally benign pro-
grams have had malware injected into them. In this common
situation most of the file should correctly indicate a benign
program, while only a small fraction of the content is mali-
cious.

The issue of information sparsity is also a factor in our
choice to use temporal max-pooling rather than average-
pooling. Beyond providing better interpretability, max-
pooling also provided superior performance relative to
average-pooling. The latter enforces a prior that informa-
tive features should be widely occurring in the underlying
file. But many features will occur only once in the file, and
so when combined with average-pooling, that feature’s high
response in one region of the binary will be washed-out by
the remaining majority of the file that produces a low activa-
tion. Max-pooling avoids this problem, while still allowing
us to tackle the variable-length issue.

While RNNs are a common tool for any sequence related
task, we found they reduced test accuracy when applied after
our convolutions, by breaking the output after each convolu-
tion into a number of fixed sized chunks (with the last chunk
containing padding). While an intuitive step to take, this also
imposes a prior into the model that data coming from the
convolution must regularly produce the same activation pat-
terns at fixed frequencies. This is because the input to the
RNN is re-shaping the temporal outputs of the CNN into a
non-temporal matrix multiplication, and thus mandates the
temporal information appear in consistent locations with a
period equal to whatever chunk size was determined. This is
not something the CNN can reasonable learn, and so perfor-
mance is reduced.

5 Results
We now present the results of our neural network model. To
evaluate its performance and effectiveness, we will look at
standard measures of accuracy in 5.1, investigate the gen-
eralization capability of the learned features in 5.2, and ad-
dress batch-normalization issues in 5.3. We will also take
a moment to note the computational constraints required to
build this model. To get the model to converge in a timely
manner, we had to use a relatively larger batch size of 256
samples per batch. Due to the extreme memory use of the
architecture, this could not be performed on a single GPU.
We were able to train this model on the 400k Group B set us-
ing data parallelism across the 8 GPUs of a DGX-1 in 16.75
hours per epoch, for 10 epochs, and using all available GPU

memory. Training on the larger 2 million set took one month
on the same system.

5.1 Malware classification

In evaluating the predictive performance of our models, we
use Balanced Accuracy (Brodersen et al. 2010) (i.e., accu-
racy weighted so that benign and malicious samples count
evenly) and AUC (Bradley 1997) . We use balanced accu-
racy so that our results across the Group A and Group B tests
sets are directly comparable, as they have differing propor-
tions of benign and malicious samples. AUC is an especially
pertinent metric due to the need to perform malware triage,
where a queue of binaries to look at is created based on a pri-
ority structure (Jang, Brumley, and Venkataraman 2011) . It
is desirable to have the most malicious files ranked highest in
the queue, so that they are identified and quarantined sooner
rather than later. An analyst’s time is expensive, and charac-
terizing a single binary can take in excess of 10 hours (Mo-
haisen and Alrawi 2013). A high AUC score corresponds
to a successful ranking of most malware above most good-
ware, making it a directly applicable metric to evaluate. We
pay particular attention to the accuracy on the Group A test
set, as it has the fewest correlations with the Group B train-
ing set. Thus accuracy performance on Group A serves as a
stronger measure of generalization performance. In this vein
we are also interested in which models have the smallest
difference in performance between Groups A and B, which
would indicate a model hasn’t overfit to the source distribu-
tion.

Despite the difficulty of the task at hand, we found that our
networks tend to converge quickly, after only three epochs
through the training corpus. This is in some ways benefi-
cial, as the training time per epoch is significant. We believe
this fast convergence may be due in part to the small size
of our architecture, which has (only!) 134,632 trainable pa-
rameters. The accuracy results are shown in 1. Our model is
able to achieve high AUCs when trained with and without
regularization, indicating they would be useful for malware
triage to help ranking of work queues.

Looking at the results, we can see our MalConv model
is best or second best in performance on both metrics and
test-sets. It also has the smallest performance difference be-
tween Group A and B test sets, indicating the model is
using features that generalize well across the distributions.
The byte n-gram model has high accuracy and AUC on the
Group B test set, but the model also has a wide gap between
Group A and B performance, indicating overfitting (Raff et
al. 2016). The byte n-gram model is also fragile to single-
byte changes in the input, which will cause a feature to ef-
fectively "disappear" form the model’s consideration. This
is important when we consider that malware is written by an
adversary capable of effecting such changes, making byte
n-gramming a suboptimal approach. Our MalConv architec-
ture does not have this same issue, and would require con-
siderably more work to circumvent. Using a model trained
on the PE-Header generalized well to the Group A test data,
achieving a slightly higher accuracy than MalConv, but has
significantly reduced performance on Group B in terms of
accuracy and AUC. This shows some robustness, but in-
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Table 1: Performance of models on Group A and Group B test sets. Best results in bold, second best in italics.

MalConv MalConv w/o DeCov Byte n-grams PE-Header Network

Test Set Accuracy AUC Accuracy AUC Accuracy AUC Accuracy AUC

Group A 88.1 98.5 83.3 98.4 87.0 98.4 90.8 97.7
Group B 89.6 95.8 86.6 94.3 92.5 97.9 83.7 91.4

Table 2: Performance of models on Group A and Group B
test sets, when using new 2 million training corpus. Best re-
sults in bold

MalConv Byte n-grams

Test Set Accuracy AUC Accuracy AUC

Group A 94.0 98.1 82.6 93.4
Group B 90.9 98.2 91.6 97.0

dicates the same features aren’t being used equally across
domains. Overall, MalConv provides the most encouraging
balance in performance across all data and metrics.

The application of DeCov regularization significantly im-
proves the accuracy of the model for both Group A and B
test sets. This is a somewhat unusual property, as it appears
that the DeCov’s primary impact is to improve the calibra-
tion of the decision threshold, rather than the underlying
concept learned by the model. This was a problem noted in
Raff, Sylvester, and Nicholas (2017) for their PE-header
network. Applying DeCov has successfully improved the
calibration of the model’s output probabilities, increasing
the accuracy by up to 4.8 points.

Using a larger corpus of 2 million files, we can also see
that the MalConv model improves its performance, increas-
ing Group A and B accuracy by 5.9 and 1.3 points, and
Group B AUC by 2.4 points. We have also replicated the
byte n-gram model that the original Group B training data
used, and found that performance dropped on the Group A
test set by 4.4 points for accuracy and 5.0 points for AUC.
Group B test performance was also reduced, though not
significantly. This highlights the predicted brittleness and
propensity for overfitting of byte n-grams for malware de-
tection (Raff et al. 2016). Our MalConv network’s improve-
ment with more data highlights its superiority, and that it
has greater capacity to tackle this problem than prior domain
knowledge free approaches.

5.2 Manual Analysis

Using our architecture design, we are able to perform a mod-
est manual analysis of what the model has learned. We do
this by adapting the approached used by Zhou et al. (2016),
which produces a class activation map (CAM) for each class
in the output. We use a global max-pooling layer in our
work, rather than the average pooling originally proposed.
Doing so produces a naturally sparse activation map which
aids interpretability, which we call a sparse-CAM. This is a
critical design choice given the extreme sequence length of
our binaries, as it would be impractical to examine all 2 mil-

lion bytes. This sparse-CAM design will return one 500 byte
region as "important" for each convolutional filter; since our
model uses 128 filters, there are at most 128 regions marked
for each binary.

This approach enables us to produce CAM mappings for
regions that are indicative of benignness or maliciousness
to the learned network. This preference towards benign or
malicious is determined by the sign of the produced activa-
tion map. Using the PE-file library (Carrera 2007), we can
parse most of our binaries into different regions. These re-
gions correspond to different portions of the binary format.
For example, there is a PE-Header that specifies the regions
of the file. We expect any approach to learn significant in-
formation from this region, as it is the most structured and
accessible portion of a binary. The PE-Header then identifies
which sections of the binary store the executable code (.text
or CODE sections), global variables (.data), and others. By
determining which region each sparse-CAM occurred in, we
can gain insights about what our model is learning. We show
the results of this applied to 224 (7 mini-batches) randomly
selected binaries from the Group A test set. This allows us
to best evaluate the generalized knowledge of the network,
and the results are shown in 3.

Previous work building byte n-gram models on this data
found that byte n-gram’s obtained almost all information
from the PE-Header (Raff et al. 2016). Based on the sparse-
CAM locations, we find that only 58-61% of information
MalConv is using also comes from the PE-Header, indicat-
ing a larger diversity of information types are being used.
The .rsrc section indicates use of the resource directory,
where contents like file icons (but also executable code)
may be stored. Importantly we also see the .text and CODE
sections activating, indicating that our model is using some
amount of executable code as a feature. Similarly, applica-
tion data found in .data and .rdata indicates our model may
be detecting common structural patterns between binaries.

We note in particular that the UPX1 section has been in-
dicative of both benign and malicious binaries, as learned by
our network. The UPX1 section indicates the use of pack-
ing, specifically the widely used UPX packer (Oberhumer,
Molnár, and Reiser 1996). Packing will compress or en-
crypt most of the binary into a single archive which is ex-
tracted at runtime. This makes simple static analysis dif-
ficult, and packing is prevalent among malware authors to
hinder malware analysis. However, packing alone is not a
reliable malware indicator, as many benign applications are
also packed (Guo, Ferrie, and Chiueh 2008). The preva-
lence of packing in malicious executables leads to many
models learning a direct (but unhelpful) equivalence be-
tween "packed" and "malicious". Our results indicate that
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Table 3: Important features as determined by section, as determined by the non-zero regions of the sparse-CAM mapped to the
output of PE-file.

Section Total PE-Header .rsrc .text UPX1 CODE .data .rdata .reloc

Malicious 26,232 15,871 3,315 2,878 697 615 669 383 214
Benign 19,290 11,183 2,653 2,414 596 505 423 243 77

our model may have avoided such an association. We hope
further advances in interpretable models will help us to con-
firm this behavior, and determine which minute details allow
the model to change its inclination.

5.3 The Failure of Batch-Normalization

Our results are seemingly in conflict with what has been re-
ported in numerous other works, since the addition of batch-
normalization to MalConv consistently failed to learn af-
ter several epochs. At best models trained with batch-norm
would obtain 60% training and 50% test accuracies. This
phenomena occurred with all architecture design variants.
Our surprise at this result lead us to implement this, and
other, architectures using batch-normalization in PyTorch,
Tensorflow, Chainer, and Theano. Batch-norm failed to con-
verge or generalize in all cases.

To diagnose this problem, we started with the fact that
batch-normalization assumes that data should be re-fit to a
unit-normal distribution. We then plotted the pre-activation
function response of layers in our network along with that of
the Gaussian distribution, which can be seen in 2. The figure
shows kernel density estimates of the responses from earlier
layers in networks trained on images or on binary executa-
bles. Networks trained on image data display an approxi-
mately Gaussian distribution of activations (smooth and uni-
modal), while the activation distribution of our network ex-
hibits much greater asperity. Since batch normalization as-
sumes the data to be normalized is normally distributed,
this may account for its ineffectiveness in our application.
We recommend that any applications of batch-normalization
to new problems produce similar such visualizations as a
method to diagnose convergence issues.

We hypothesize that batch norm’s ineffectiveness in our
model is a product of training on binary executables. The
majority of contemporary deep learning research, includ-
ing batch-normalization, has been done in the image and
signal processing domains, with natural language a close
second. In all of these domains the nature of data is rel-
atively consistent. In contrast, our binary data presents a
novel multi-modal nature of the byte values. The same byte
value can have drastically different meaning depending on
the location, ranging from ASCII text, code, structured data,
or even images stored for the icon. Our hypothesis is that
this multi-modal nature produces multiple modes of activa-
tion, which then violates the primary assumptions of batch-
normalization, causing degraded performance.

Our tests in using models trained on random chunks of
only 500 to 10,000 bytes of the binary support this hypothe-
sis. When trained on a random sub-region like this, the ma-
jority of bytes will be of a single modality when presented,

−4 −2 0 2 4

0

0.5

1

Standardized Output Value

PD
F

Res5c
Res3b3

Iv4 Conv1
MalConv
N (0, 1)

Figure 2: KDE plots of the convolution response (pre-
ReLU) for multiple architectures. Red and orange: two lay-
ers of ResNet green: Inception-v4 blue: our network; black
dashed: a true Gaussian distribution for reference.

and thus present a smoother unimodal activation pattern.
This was the only case where batch-norm was able to reach
high training accuracies above 60% for our data, but still did
not generalize to the test data (obtaining only 50% random-
guessing accuracy).

6 Conclusion

In this work we have described the use of neural networks on
the raw bytes of entire executable files. This solution avoids
a number of the issues with the more common byte n-gram
approach, such as brittle features and over-focusing on the
PE-Header as important information. It achieves consistent
generalization across both test sets, despite the challenges of
learning a sequence problem of unprecedented length.

In a broader machine learning context, we have identi-
fied a number of unique learning challenges and discussed
techniques for addressing classification of extremely long
sequences. Our work has extended the application of neu-
ral networks to a domain beyond images, speech, etc. to
one with much more sophisticated spatial correlation behav-
iors. In doing so, we identify a potential pitfall with the very
commonly used batch-normalization and suggest a way to
check if the technique is appropriate (a normality test of pre-
activation function response).

In future work we hope to further developed architec-
tures that work in this domain, to further explore the batch-
normalization issue, and determine what types of existing
normalization or weight initialization schemes work with
such multi-modal responses. Critical thought must also be
given to ways in which the memory intensive nature of this
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problem can be reduced, and what types of architectural de-
signs may allow us to better capture the multiple modes of
information represented in a binary. A general approach to
byte level understanding of programs would have many ap-
plications beyond malware classification such as static per-
formance prediction and automated code generation.
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