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Abstract

Data intensive solutions, such as solutions that include ma-
chine learning components, are becoming more and more
prevalent. The standard way of developing such solutions is
to train machine learning models with manually annotated or
labeled data for a given task. This methodology assumes the
existence of ample human annotated data. Unfortunately, this
is often not the case, due to imbalanced distribution of classes
and lack of human annotation resources. This challenge is
exasperated when thousands of hierarchical classes are intro-
duced. Therefore, it is critical to quantify the sufficiency of
the data for a given task before applying standard machine
learning algorithms. Moreover, it may be the case that there
is ample labeled training data to only solve a sub-problem. In
particular, in the hierarchical classification problem, the suffi-
ciency level of training data could vary significantly depend-
ing on the granularity level of hierarchy we use for classifica-
tion. We identify a need to decompose the given problem to
sub-problems for which there is ample training data. In this
paper we propose a methodology to decompose a hierarchi-
cal classification problem considering the characteristics of a
given dataset. We define an optimization problem of adaptive
node collapse that identifies an appropriate hierarchy decom-
position based on a trade-off between multiple goals. In our
experiments, we consider the trade-off between the learning
accuracy and the hierarchy abstraction level.

Introduction
Data intensive solutions rely on data and on machine learn-
ing models that generalize from this data. In many of the
real-world problems, the quantity and the quality of the
data challenge the machine learning algorithms. In partic-
ular, the large-scale hierarchical classification problems are
challenged by the data distribution and complexity of the
hierarchy. This is prevalent in the medical domain where hi-
erarchical classification tasks like coding the medical condi-
tions to ICD hierarchy, coding adverse events to MedDRA
hierarchy and coding drug and compounds to WHODD hi-
erarchy are essential for various purposes like diagnosing,
billing, monitoring drug safety, secondary analysis tasks and
regulatory processes. The main challenges in solving these
problems include:
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• Long tail distributions, making it infeasible to learn all the
data classes (labels), because there is insufficient training
data for classes appearing in the long tail.

• Hierarchy of labels. There is a trade-off between the level
of label details (there are more details lower in the hier-
archy) and the amount of training data available (there is
less data lower in the hierarchy).

• Often, the goal is to learn the most specific concept, i.e.,
cover the lowest level hierarchy classes. Of course, the
requirement is to do so with sufficiently high accuracy.
Given these challenges, it is important to understand the

limitations of the machine learning models with respect to
the quality and quantity of the available dataset. In a hierar-
chical classification problem, it may not be possible to train
a classifier that always classifies instances to a leaf node.
For example, if a particular leaf node has only a few training
examples or the existing examples are significantly diverse
in terms of their semantics, the classification algorithm may
find it difficult to learn to classify to this node. In such cases,
it may make sense to train a classifier that is capable of clas-
sifying to the parent of that node. In this paper, we formulate
this problem as an optimization problem. We are unaware of
prior work that formulates this problem. The goal of our op-
timization problem is to find a surface in the hierarchy that
maximizes a combination of:

1. The classification accuracy and,
2. Coverage of leaf nodes in the hierarchy.
We define a surface over a hierarchy to be a set of hierarchy
tree nodes that intersect once each path from the root of the
hierarchy (highest level node) to the leaves of the hierarchy
(lowest level nodes).

For example, consider the classification problem depicted
in figure 1. The hierarchy has three levels. The ideal scenario
would be that the training data set contains sufficient data
with high quality to train a classifier that can classify new
instances to one of the seven leaf nodes. However, when the
training data does not satisfy the above requirement, it is im-
portant to decompose the problem and solve sub-problems.
In our example, the idea is to find the segment of the hier-
archy where we can train the model to classify at leaf node
level and the segment where we have to restrict the classi-
fication problem to higher level in the hierarchy. This seg-
mentation is indicated with a line drawn on the hierarchy
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Figure 1: Trade-off between accuracy and leaf node cover-
age

which we call the surface. However, we should keep a bal-
ance when we draw the surface on the hierarchy. As shown
in the figure 1, as we move the surface up we can poten-
tially get a higher accuracy but we are loosing the specificity
of the classification results. Hence, it is important to cover
as many leaf nodes as possible while attaining the desired
accuracy level.

The defined optimization problem balances the need for
accuracy and the coverage of leaf nodes. The method starts
with a surface and calculates the accuracy and the number of
leaf nodes covered, and optimizes over these characteristics.
The task of classifying to the leaves that are not included
in the surface should be handled separately. A possible ap-
proach is to implement a non learning solution for these leaf
classes (e.g., a dictionary). Another possible approach is to
implement a learning solution, where there is only a need to
classify the nodes under the chosen surface node. For those
leaf nodes of the hierarchy not included in the surface, the
method determines the correct parent class for the data in-
stance. This allows to train a separate classifier for leaf nodes
under this parent to determine their leaf node. Note that this
classifier is easier to train relative to the large classifier and
would have less impact from the long-tailed data distribution
due to a significantly smaller number of classes.

A user may specify a number of leaf nodes to be included
in the training data set and the accuracy desired for the clas-
sification operation. From these inputs, it is possible to de-
termine the surface that provides the desired number of leaf
nodes and accuracy for use in selecting training data. The
method optimizes the accuracy plus the highest number of
nodes. Additional optimization goals may be added, such as
a requirement for high diversity in the content (e.g., textual
description) of the leaf nodes.

Methodology
We develop a mechanism for determining a combination of
nodes over which to train a machine learning model from an
ontology or a labeling hierarchy. Any proposed algorithm
needs to balance learning accuracy with leaf nodes cover-
age. Various considerations exist. For example, some classes
in the labeling hierarchy of the training data set do not have
enough training data or contain particularly difficult seman-
tics while instances of another class have homogeneous se-
mantic in the training data. In this case, it might make sense

Figure 2: Label Tree example. The line depicts one possible
surface or hierarchy decomposition.

to draw the surface covering latter class and the parent of the
former class.

We define the following search problem. Given a set of
training data for a classification task, our goal is to find a
surface in the labeling hierarchy, that maximizes the accu-
racy of predictions and the coverage of specific classes in
the hierarchy.

We are given a training set (X1, Y1), . . . (Xn, Yn). We are
also given a labeling hierarchy T . Each Yi corresponds to a
path in T from root to leaf. A labeling surface, s, is a set of
tree nodes that intersect each path from the root to the leaf
once. For example, Figure 2 depicts a three level labeling
tree:

T = {(R,P1), (R,P2),

(P1, C1), (P1, C2), (P1, C3),

(P2, C4), (P2, C5)}

s = (C1, C2, C3, P2)

Where T is a label tree and s is a possible surface as depicted
by the line over the tree nodes.

Given a labeling surface s, we re-label the training set us-
ing the surface s as follows. The new label of Xi is defined
as the intersection between the surface s and Yi, siY = s∩Yi.
We call the learning problem associated with surface s, Ls.

We assume that we apply some learning algorithm to Ls

and get an accuracy function f(Ls).
For a given surface s, an adjacent surface s′ is a surface

that differs from s by only one node. The set of all such
adjacent surfaces of s will be denoted as adj(s).

Given a surface s we define its weight to be the sum of
depth of all its nodes, denoted by w(s). For example, in our
running example the weight is w(s) = 2 + 2 + 2 + 1.

Now the following discrete gradient decent greedy search
algorithm is defined. Set m to be a weighted hyper parameter
of the algorithm.

1. Choose some surface s

2. Calculate C(s) = f(Ls) + m ∗ w(s) For s and any s ∈
adj(s). Pick s that maximizes C(s).

3. Repeat until C(s) does not improve much.
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TreeDepthCost =
n∑

j=1

m∑

i=1

wij

where n = number of chosen surface nodes, and
m = number of nodes in path from tree root to nodej

Figure 3: Formulating the challenge of learning as much
of the lower hierarchy level as possible by maximizing the
depth of the chosen surface (all hierarchy trees that are clas-
sified); adding a weighing factor wi such that different cost
may be incurred by stopping at different hierarchy levels.

Figure 4: MedDRA hierarchy v 18.1 (left) with an example
(right)

Initial results
In our experiments, we examine an aspect of the method
suggested in Section Methodology. We show that it is pos-
sible to change the accuracy of a learning model by moving
up the classification hierarchy while incurring the trade-off
of a shorter path from the root. We formulate the challenge
mentioned in Section Introduction as an optimization prob-
lem: maximize the weighted depth of all hierarchy trees (see
Formula 3) and a measure of the learning model accuracy.
We chose a weight of 1 for all hierarchy levels, but it is pos-
sible to tune the optimization by adjusting the weights. We
chose F1-score (F1 score ) as the measure of accuracy. Other
measures, such as only precision or G-measure, are possi-
ble. Our experimental results demonstrate one of the major
strengths of our approach: it is generic and can be applied in-
dependently of the learning model. We chose three different
learning models: Support Vector Classifier (SVC ), Multino-
mial Naive Bayes classifier (NB ), and Convolutional Neural
Network (CNN ).

Dataset
We used a publicly available MedDRA coded drug label
dataset for our experiments. A drug label describes how a
drug should be used, on what populations and any safety
concerns there may exist. One of the elements in a drug la-

Figure 5: Adverse event distribution over PTs

bel is the expected adverse events. The drug label dataset
released for TAC 2017 challenge (TAC 2017 ) specifies the
MedDRA code for the adverse events in the label. Med-
DRA is a hierarchical vocabulary used to uniquely identify
a particular adverse event. The MedDRA hierarchy consists
of five levels that are called: System Organ Class (SOC),
High Level Group Term (HGLT), High Level Term (HLT),
Preferred Term (PT), and Lowest Level Term (LLT) respec-
tively from the root. The adverse events in TAC dataset are
coded with MedDRA version 18.1. This version of the Med-
DRA has 26 SOCs, 335 HGLTs, 1721 HLTs, 21612 PTs,
74980 LLTs (see Figure 4). The TAC dataset consists of
7034 adverse event mentions and they are coded for 1404
unique PT codes. As depicted in Figure 5, the adverse event
mentions has a long tailed distribution over the PT codes.

Experiments and results
To demonstrate that the hierarchy tree level across which we
draw the surface affects the accuracy of the trained model,
we conducted a number of experiments over three surfaces:

1. The surface was drawn over the PTs (bottom of hierarchy
or leaves).

2. The surface was drawn over the PTs when their HLT has
five or more adverse events in the dataset and over the
HLT otherwise. I.e, we re-label the instances to corre-
spond to the HLT when their PTs has less than five in-
stances (moving them one step up the hierarchy).

LabelClass =

{
HLT if

∑
data points ∈ HLT < 5

PT otherwise

3. The surface was drawn over the SOCs (top of the hierar-
chy, below ’root’).

To show that the accuracy variation over different surfaces
is consistent across various machine learning algorithms, we
chose the simple Multinomial Naive-Bayes (NB), the more
sophisticated Support Vector Classifier (SVC), and the Con-
volutional Neural Network (CNN). Table 2 shows the results
of our experiments.

As expected, the results show that accuracy improves as
we go up in the hierarchy by re-labeling the data points. The
second table column shows how many distinct classes were
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Table 1: Experiment Results
Surface # Classes Algorithm F1-score

1(PT) 1494 SVC 0.81
1494 NB 0.58
1494 CNN 0.77

2(PT-HLT) 1394 SVC 0.82
1394 NB 0.59
1394 CNN 0.78

3(SOC) 25 SVC 0.91
25 NB 0.90
25 CNN 0.92

Table 2: Results of measuring accuracy using F1-score for
three different surfaces: 1(PT) lowest level leaves (PT),
2(PT-HLT) in-between level that includes mostly lowest
level nodes (PT) and some higher level nodes (HLT), and
3(SOC) highest level of the hierarchy (SOC). The accuracy
is best at the top of the hierarchy, poorest at the lowest level,
and in-between for the in-between level. Consistent results
using three different learning models are shown to empha-
size that our approach is generic.

chosen for each surface. The accuracy gap between each sur-
face is significant; it should be noted that we have not penal-
ized the accuracy reported here based on the level of the code
in the hierarchy. The results are very consistent among mul-
tiple algorithms. This shows that the long-tailed distribution
of the data impacts all learning methods in the same way.
Hence, a systematic solution to find the optimal surface on a
hierarchical vocabulary would help to improve the results of
a learning problem regardless of the algorithm being used.

Related work

To the best of our knowledge the problem considered in
this paper is not addressed in the current literature. How-
ever, there exist work related to clustering and classification
techniques when a long-tailed distribution of data is present.
Zhu et. al present an idea of sharing the training examples
of rare categories in order to overcome this challenge (Zhu,
Anguelov, and Ramanan 2014). The method proposed in
(Jiang 2013) suggests to determine the number of classes for
a classification problem based on their distribution. It sug-
gests to group the data values into two parts around the arith-
metic mean and continues the partitioning for values above
the mean iteratively until the head part values are no longer
long-tailed distributed. This way the number of classes is
naturally determined by the data. None of these methods ad-
dresses the problem of classifying long-tailed data distribu-
tions with respect to a given hierarchical vocabulary where
there is no flexibility in determining the number of classes.
We propose a novel approach that determines the abstract-
ness level, expressed as a surface in the hierarchy, that can be
used to train the main classification algorithm, and allows to
apply different classification algorithms to the classes where
the main algorithm determines only the higher level cate-
gory.

Discussion and conclusions
We formulate the challenge of training sufficiently accurate
classifiers on long tail dataset distributions when a hierarchy
or ontology of classes exists. We propose a generic method
for addressing this challenge. Our method defines an opti-
mization problem, balancing learning accuracy with cover-
age of the lowest level hierarchy nodes in the label tree.

Our experiments indicate that indeed there is a trade-off
between the learning accuracy and the hierarchy abstraction
level. This supports our suggested method which is to treat
the challenge as a multi-goal optimization problem.

However, we have yet to experiment with the many po-
tential optimization algorithms that could apply. Different
cost functions can be explored, as well as different accuracy
measures, as briefly discussed in Section Methodology.
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