
R2PG: Risk-Sensitive and
Reliable Policy Gradient

Bo Liu,1 Ji Liu,2 Kenan Xiao1

1Department of Computer Science and Software Engineering, Auburn University, AL
2Department of Computer Sciences, University of Rochester, NY
boliu@auburn.edu, jliu@cs.rochester.edu, kzx0010@auburn.edu

Abstract

Policy gradient approaches have gained great success in many
complex dynamic decision-making problems, such as the
game of Go. However, policy gradient methods suffer from
high variance, which implies weak risk control in real appli-
cations. Therefore, it is valuable to introduce variance reduc-
tion techniques into policy gradient methods to help control
the variance in the policy improvement process. Meanwhile,
risk-sensitive management in dynamic decision problems is a
primary concern in many fields, such as finance and process
control. In this paper, we developed a policy search frame-
work for reinforcement learning with variance-related crite-
ria and a variance reduction technique. Our starting point is
a standard formulation for the variance of the cost-to-go in
episodic tasks. Using this formula, variance-reduced policy
search algorithms are proposed. The convergence to local op-
tima of the proposed algorithms is proved, and their applica-
bility is demonstrated on financial-portfolio domains.

1 Introduction
Policy gradient methods, which originate from the REIN-
FORCE algorithm (Williams 1992), is a family of stochastic
gradient policy improvement methods based on the likeli-
hood ratio trick (Williams 1992). Such family of algorithms
is known to be on-policy stable, yet suffers from a huge vari-
ance. Two techniques have been widely used to reduce the
variance, i.e., the baseline method (Peters and Schaal 2006)
and the actor-critic method (Greensmith, Bartlett, and Bax-
ter 2004).Both can be interpreted as additive control variate
methods aim at reducing the variance of the learning pro-
cess.

To reduce variance, only controlling the variance in the
learning process may not be enough. Another widely used
technique is to use risk-sensitive objective functions instead
of the vanilla objective function, which only considers max-
imizing the expected sum of return. Such kind of meth-
ods are widely used in risk management, robust decision-
making, etc. (Chow and Ghavamzadeh 2014; Tamar, Cas-
tro, and Mannor 2012). The risk is usually depicted by the
variance of the expected sum of return. The basic motiva-
tion of risk-sensitive approaches, therefore, is to consider the
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variance control term in the objective function. The mean-
variance trade-off objective function, which is a standard
risk-sensitive objective function, is widely used in the risk-
sensitive policy improvement approaches. However, the reg-
ular likelihood-ratio based stochastic policy gradient meth-
ods can not apply directly to solve such objective func-
tions, as pointed out by (Prashanth and Ghavamzadeh 2013;
Tamar, Castro, and Mannor 2012). The major reason is sim-
ilar to the double sampling problem, e.g., the variances can
not be accurately estimated from a single trajectory. Re-
cently, a stochastic composition optimization framework is
proposed for such problems (Wang, Fang, and Liu 2017),
which demonstrates great potential in convergence rate ac-
celeration (Wang, Liu, and Fang 2016) and variance reduc-
tion (Lian, Wang, and Liu 2016).

This paper is motivated by two factors. First, to the best of
our knowledge, there is little research that focuses on both
the risk-awareness and reliability of policy gradient algo-
rithms, i.e., both a risk-sensitive objective function and the
variance reduction technique are used. Secondly, stochas-
tic variance reduction methods, such as the SVRG method
(Johnson and Zhang 2013),have shown promising perfor-
mances in stochastic optimization problems. It is intrigu-
ing to apply such stochastic variance reduction techniques
to policy gradient algorithms as a counterpart to the existing
control variate based approaches. Motivated by these two
factors, we first extend the stochastic composition gradient
method with variance reduction method to non-convex prob-
lems, then propose a novel policy gradient algorithm which
takes both the risk-sensitivity and learning reliability into
consideration.

Here is a road map to the rest of the paper. In Section 2, the
background on stochastic variance reduction is introduced.
In Section 3, two novel algorithms are proposed based on
the stochastic variance reduction techniques. A detailed ex-
perimental study in Section 4 validates the effectiveness of
the proposed algorithm.

2 Stochastic Variance Reduction
Stochastic variance reduction technique is one of most no-
table achievements in stochastic optimization. Two most
widely used methods, SVRG (Johnson and Zhang 2013),
and SAGA (Defazio, Bach, and Lacoste-Julien 2014),
achieve the same low computational cost per iteration as
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well as a fast, linear convergence rate compared with con-
ventional stochastic gradient approaches by utilizing the
structure of the problem. Both of these two approaches
require the objective function f(x) to be a well-defined
strongly convex function with a finite-sum structure, i.e.,

f(x) =

n∑
i=1

Fi(x). (2.1)

Furthermore, there are several attempts to extend SVRG
to other problems, such as non-strongly-convex and sum
of non-convex problems(Zhu and Yuan 2016), non-convex
problems (Reddi et al. 2016) (Zhu and Hazan 2016), Rie-
mannian SVRG (Zhang, Reddi, and Sra 2016), and saddle-
point problems (Palaniappan and Bach 2016). The SVRG
algorithm has a nested loop structure. In the outer loop, it
stores a reference points x̃, which is updated at the outer
loop,and remains unchanged in the inner loop iterations of
the algorithm. In the inner loop, the algorithm computes

∇f (x̃) = 1/n
n∑

i=1

∇Fi(x̃) at the reference point x̃. It es-

timates the gradient at each iteration based on the reference
gradient

∇f̃ (xk) = ∇Fik(xk)−∇Fik(x̃) +∇f (x̃) , (2.2)

where ik is uniformly randomly sampled from {1, 2, · · · , n}
at k-th inner iteration, k is the index of inner loop.
The key improvement of SVRG is that the variance
E[‖∇f̃(xk)−∇f(xk)‖2] decreases to zero as xk converges
to the optimal. This variance reduction also uses the fixed
step that has the linear convergence rather than the decreas-
ing step in SGD to sub-linear convergence.

2.1 Stochastic Composite Gradient Variance
Reduction

The stochastic composite gradient variance reduction is pro-
posed by Lian et.al. (Lian, Wang, and Liu 2016), which con-
siders the finite-sum scenario for composition optimization:

min
x

f (x) =
1

n

n∑
i=1

Fi(
1

m

m∑
j=1

Gj (x)). (2.3)

We define

G (x) =
1

m

m∑
j=1

Gj (x), F (G (x)) =
1

n

n∑
i=1

Fi (G (x)).

(2.4)

In the compositional-SVRG algorithm, there are two aspects
using variance reduction technique. The first one is similar
to SVRG method but instead of estimating the gradient, it
estimates G(x) through,

Ĝk =
1

A

∑
1≤j≤A

(
GAk[j] (xk)−GAk[j] (x̃v)

)
+G (x̃v) ,

(2.5)

where x̃v is current outer iteration, xk is the current itera-
tion. A is the sampling times to form the mini-batch multi-
set Ak, which is the key operation in analyzing the query

complexity of the non-convex composition problem. The
second one is also similar to the SVRG method that esti-
mates the gradient of function, but considers the indepen-
dence of two random variables ik and jk, which are uni-
formly sampled from {1, 2, · · · , n} and {1, 2, · · · ,m}, that
is E[(∂Gjk(x))

�
Fik(y)] = (∂G(x))�F (y). Furthermore,

G (x̃v) is estimated from (2.5) rather than sums of Gj . Thus,
the estimate gradient of f(x) is

∇f̂k(xk) = (∂Gjk(xk))
�∇Fik(Ĝk)

−(∂Gjk(x̃v))
�∇Fik(G(x̃v)) +∇f(x̃v), (2.6)

where Ĝk is defined in (2.5), ∇f (x̃v) =
1/n

∑n
j=1∇G (x̃v)Fj (G (x̃v)).

For the non-convex composition problem, when the sam-
pling times A approximates to infinite, the expectation of
estimate (2.6) of function ∇f(x) approximately equals to
(2.2), that is

E[∇f̂k(xk)] ≈ E[(∂Gjk(xk))
�∇Fik(G(xk))]. (2.7)

This is because the infinite sample approximates to sums of
function Gi, that is Ĝk ≈ G (xk). Our analysis also shows
that SVRG for non-convex stochastic problems and non-
convex composition problems have the same convergence
rate. Moreover if using the estimated gradient ∇f̃ (xk) in
(2.2) to compute the gradient information of composition
problem, that is apply G(xk) instead of G̃k, m queries will
be needed to compute G(xk), which leads to a question on
how many sampling times A is needed when the best query
complexity is achieved.

3 Algorithm Design
In this section, we will design the risk-sensitive and reli-
able policy gradient-based algorithms. The objective func-
tion Jλ(θ) is described as follows:

Jλ(θ) = Eπ[R(θ)]− λVar[R(θ)]. (3.1)

We denote J(st) = Eπ[R(θ)|st], and Var(st) =
Var[R(θ)|st]. The gradient approach to solve Jλ(θ) is

θt+1 = θt + ηt (∇J(θt)− λ∇Var(θt)) , (3.2)

where ηt is the stepsize. The sample-based estimation of
∇Var(θ) is computed as

∇Var(θ) = ∇M(θ)− 2J(θ)∇J(θ).

The computation of Eq. (3.2), therefore, involves the com-
putation of the following three items, i.e. ∇J(θ),∇M(θ),
and J(θ)∇J(θ). The unbiased estimates of the two gradi-
ents, ∇J(st) and ∇M(st), can be obtained from a single
trajectory via the likelihood ratio method as follows:

∇J(θ) = E[Rτ
1ωτ (θ)], ∇M(θ) = E[(Rτ

1)
2ωτ (θ)],

where Rτ
1 =

∑τ
t=1 rt is accumulated rewards, τ is the

length of a trajectory, t is the number of time steps in a
trajectory and ωτ (θ) is likelihood ratio derivative, which is
computed as

ωτ (θ) =
τ∑

t=1

∇ lnπθ(at|st). (3.3)
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The sample-based estimation of J(st)∇J(st), however, is
more complicated. If a generative model is available, i.e.,
for every state-action pair (s, a), we can sample twice (or
even multiple times) from the underlying Markov chain to
obtain the successive state s′, and thus the sample-based es-
timation of the above three items are all available. However,
if a generative model is not available, then the computation
of J(st)∇J(st) requires double sampling and can not be ex-
actly estimated from a single trajectory, as also pointed out
in (Tamar, Castro, and Mannor 2012) (The reason is similar
to the fact that the variance of a random variable can not be
estimated from a single trajectory). To this end, we are going
to introduce the stochastic composite gradient (Lian, Wang,
and Liu 2016) technique to address this problem.

3.1 Stochastic Composite Policy Gradient
In this section, we will use accelerated stochastic compos-
ite gradient descent method(Wang, Fang, and Liu 2017) to
address this problem. We first rewrite the objective function
Eq.(3.1) as follows:

max
θ

Ĵλ(θ) =
(
J(θ)− λ(M(θ)− J(θ)2)

)
, (3.4)

where

J(θ) =
τ∑

t=1

rt,M(θ) = (
τ∑

t=1

rt)
2. (3.5)

And next, we can rewrite it as the nested function form:

Fi(y) =
(
y0 − λ

(
y1 − y20

))
i

(3.6)

Gj(θ) =
(
[Rτ

1 , (R
τ
1)

2]�
)
i

(3.7)

y ∈ R
2, and y0, y1 denote the first and second entry of y,

respectively. Here the outer function is known, its gradient
can be calculated, and we can get the gradient of the inner
function by likelihood ratio derivative:

∇Fi(y) =
(
[1 + 2λy0,−λ]�

)
i

(3.8)

∇Gj(θ) =
(
[Rτ

1ωτ (θ), (R
τ
1)

2ωτ (θ)]
�)

j
(3.9)

Algorithm 1 describes the stochastic composition policy gra-
dient method.

3.2 R2 Policy Gradient
It is interesting to reduce the variance of Algorithm 1 even
further. The original mean-variance objective function is re-
formulated in the finite-sum form:

max
θ

Ĵλ(θ) =
(
J(θ)− λ(M(θ)− J(θ)2)

)
, (3.10)

where

J(θ) =
τ∑

t=1

rt,M(θ) = (
τ∑

t=1

rt)
2. (3.11)

which can be reformulated into the composite finite-sum
structure as follows:

Fi(y) = (y1 − λ
(
y1 − y20

)
)i

Gj(θ) = ([Rτ
1 , (R

τ
1)

2]�)j ,

Algorithm 1 Stochastic Composition Optimization (Wang,
Fang, and Liu 2017)
Require: K, βk,ηk (learning rate)
Ensure: Initialize θ0, y0.

for k = 1, 2, 3, · · · ,K do
Uniformly randomly pick ik and jk from {1, ..., n} and
{1, ...,m}
Compute the value of G at θk to obtain Gjk(θk) and
∇Gjk(θk).

yk+1 = (1− βk)yk + βkGjk(θk)

Compute∇F at yk+1 to obtain∇Fik(yk+1).

θk+1 = θk + ηk(∇Gjk(θk))
T∇Fik(yk+1),

end for

where (·)i (resp. (·)j) denotes the i-th (resp. j-th) trajectory.
y ∈ R

2, and y0, y1 denote the first and second entry of y,
respectively. Here the outer function is known, its gradient
can be calculated, and we can get the gradient of the inner
function by likelihood ratio derivative:

∇Fi(y) =
(
[1 + 2λy0,−λ]�

)
i

∇Gj(θ) =
(
[Rτ

1ωτ (θ), (R
τ
1)

2
ωτ (θ)]

�)
j

R2PG algorithm is introduced in Algorithm 2.

4 Experimental Study
4.1 Portfolio Management
We conduct empirical studies for the proposed algorithm by
comparing to the state-of-the-art risk sensitive policy gradi-
ent algorithm by Tamar et al. (Tamar, Castro, and Mannor
2012). We consider a portfolio domain in (Tamar, Castro,
and Mannor 2012) that is composed of two types of assets.
A liquid asset has a fixed interest rate rl and can be sold
at any time step t = 1, · · · , T . A non-liquid asset has a
time related interest rate rnl(t), and can be sold only af-
ter a maturity period of N steps. Besides, the non-liquid
asset surfers a default risk with a probability prisk. In our
model, the investor may change his portfolio by investing a
fixed fraction α of his total available cash in a non-liquid as-
set at each time step. We assume that at each t the interest
rate rnl(t) high-low takes one of two values rlownl or rhighnl ,
and the transitions between these values occur stochastically
with switching probability pswitch. The state of the model
at each time step is represented by a vector x(t) ∈ RN+2

,where x1 ∈ [0, 1] is the fraction of the investment in liquid
assets, x2, · · · , xN+1 ∈ [0, 1] is the fraction in non-liquid
assets with time to maturity of 1, · · · , N time steps, respec-
tively, and xN+2(t) = rnl(t) − E[rnl(t)]. We assume that
all investments are in liquid assets at time t = 0, the startup
cash is 100. Our reward is just logarithm of return rate. The
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Algorithm 2 Robust and Reliable Policy Gradient (R2PG)
Require: K(Inner iteration), V (Outer iteration), η (learn-

ing rate), and θ̃1.
for v = 1, 2, · · · , V do

G(θ̃v) =
1

m

m∑
j=1

Gj(θ̃v) (3.12)

∇f(θ̃v) =
1

n

n∑
i=1

Fi(G(θ̃v)) (3.13)

θ1 = θ̃v (3.14)

for k = 1, 2, · · · ,K do
Sample from {1, ...,m} for A times to form mini-
batch multiset Ak

Estimate Ĝk from (2.5)
Uniformly randomly pick ik and jk from {1, ..., n}
and {1, ...,m}
Estimate∇f̂k (θk) from (2.6)

θk+1 = θk + η∇f̂k (θk)

end for
θ̃v+1 is randomly chosen from {θk}, k ∈ {1, · · · ,K}

end for

binary action at each step is determined by a softmax pol-

icy as π(a|s, θ) = eφ(s,a)�θ

∑
eφ(s,·)�θ

. We conduct empirical stud-
ies for the proposed two algorithms by comparing them to
Tamar’s algorithms. Figure 1 shows the distribution of the
accumulated reward. As anticipated, the R2 PG method got
the low-variance and better mean than Tamar’s method and
stochastic composite policy gradient method due to applying
the variance reduction technique.

4.2 American-style Option
We also apply R2PG algorithm on an American-style Op-
tion(call & put) domain in (Tamar, Mannor, and Xu 2014).
American-style option is a contract which gives the buyer
(the owner or holder of the option) the right, but not the obli-
gation, to buy or sell an underlying asset at a specific strike
price K at before a specified date, or before some maturity
time T . We represent the state xt as the price of the asset
at time t ≤ T , the reward of executing a put option at that
time is gput(xt), where gput(x) = max(0,K −x), whereas
for a call option we have gcall(x) = max(0, x − K). This
American-style may be formulated as an Random MDP as
follows. The state at t time is {xt, t}. The action is binary,
where 1 stands for executing the option and 0 for continuing
to hold it. Once an option is executed, or t = T , a transition
to terminal state occurs and the reward will be given. Other-
wise, the state transits to next state {xt+1, t+1} where xt+1

id determined by a stochastic kernel P̂ (x′|x, t). The reward
for executing a = 1 at state x is g(x) and 0 if a = 0 or t = T .

Figure 1: Distribution of the accumulated reward

Figure 2: Distribution of the accumulated reward

We consider a mixed investment g(x) = gput(x)+ gcall(x).
Our price fluctuation model M follows a Bernoulli distri-

bution, xt+1 =

{
fuxt,w.p. p

fdxt,w.p. 1− p
,where the up and

down factors, fu and fd are constant. We assume that K
is equal to the initial price x0 at time t = 0. The binary
action at each step is determined by a softmax policy as

π(a|s, θ) = eφ(s,a)�θ

∑
eφ(s,·)�θ

. We conduct empirical studies for
the proposed two algorithms by comparing them to Tamar’s
algorithms. Figure 2 shows the distribution of the accumu-
lated reward. As anticipated, the R2 PG method got the low-
variance and better mean than Tamar’s method and stochas-
tic composite policy gradient method due to applying the
variance reduction technique.

5 Conclusions
There are many interesting future directions along this re-
search topic. Besides stochastic policy gradient, determinis-
tic policy gradient (Silver et al. 2014) has shown great po-
tential in large discrete action space. Secondly, it is interest-
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ing to explore other variance techniques based on the finite-
sum structure. It should be noted that SVRG/SAGA is not
the only solution technique for such finite-sum structured
problems. There might be other methods which have not
been fully explored, which are worthwhile trying in the pol-
icy search framework. Another interesting future direction
is to explore other interesting variance reduction techniques
in policy gradient approaches other than utilizing the finite-
sum problem structure. Previous algorithms rely on control
variate methods such as the baseline method and actor-critic
method, and in this paper variance reduction based on finite-
sum structure is explored. It is interesting to see if other
stochastic variance reduction technique can be used.
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