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Abstract

In many Human-Robot Interaction (HRI) scenarios, robots
are expected to actively engage humans in interaction tasks
for an extended period. We consider a successful robot to be
alert to Engagement Breakdown (EB), a situation in which
humans prematurely end the interaction before the robot had
the chance to receive a complete feedback. In this paper, we
present a method for early EB prediction using Echo State
Networks (ESNs), a variant of Recurrent Neural Networks.
The method is based on Action Units (AUs) of human fa-
cial expressions. We apply the proposed architecture to a real-
world dataset and show that the architecture accurately pre-
dicts EB behavior using 30 seconds of facial expression fea-
tures.

Introduction

For many Human-Robot Interaction (HRI) tasks, we wish
to have robots that actively engage humans for an extended
period. For example, a competent chatbot should maintain
a stimulating conversation for several rounds; a successful
educational robot for children should engage children in in-
teraction for a period without distracting them. In general,
we consider successful social robots as the ones that not
only provide interactions, but actively maintain those inter-
actions.

To maintain an interaction, robots have to be particularly
alert to so-called Engagement Breakdown (EB), a situation
in which humans prematurely end the interaction, allowing
the robot no chance to receive the complete feedback it ex-
pects (Ben Youssef et al. 2017). We aim to predict EB at an
early stage during an interaction, such that re-engagement
strategies can be launched to prolong the interaction time.

In this paper, we present an architecture that predicts EB
based on human facial expressions from a narrow window of
HRI experience (called thin-slices in Psychology terminol-
ogy (Ambady and Rosenthal 1992)). Following the Affec-
tive Computing approach to affect measurement (D’Mello,
Kappas, and Gratch 2017), we build the prediction archi-
tecture with two components. In the feature extraction com-
ponent, we extract the facial muscle movements of humans
using Facial Action Coding System (Ekman and Friesen
1978). In the affect estimate component, we use Echo State
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Networks (Jaeger and Haas 2004), a variant of Recurrent
Neural Networks, to model the link between facial expres-
sion features and EB behaviors. We evaluate the effective-
ness of the proposed architecture on the UE-HRI dataset
(Ben Youssef et al. 2017), which is a newly published open-
source dataset containing video clips of spontaneous inter-
actions between humans and a humanoid robot. Experimen-
tally, we show that our model accurately predicts EB using
only 30 seconds of facial features, up to EB behavior in 10
minutes.

The contributions of this paper are two-fold. First, from
the perspective of HRI, we present an EB prediction tech-
nique, facilitating the design and implementation of an EB-
alert mechanism for robots. Second, from the perspective of
affective computing, we empirically validate that there is a
computational model that links the affect estimate of EB and
machine-readable facial expression features, such that the
underlying emotion theory that explains the link could be
investigated.

Related Work

Recognized as an essential human response to computer-
mediated activities (Laurel 1991), engagement has been
widely studied in Human-Computer Interaction and Human-
Robot Interaction. Authors of seminal works argue that En-
gagement has four distinct stages (O’Brien and Toms 2008):
Point of engagement, period of sustained engagement, dis-
engagement, and re-engagement. In this paper, we are partic-
ularly interested in the second and third stage, i.e., the period
of sustained engagement and the disengagement.

There are roughly three perspectives from which to study
engagement in HRI (Leite et al. 2015): From the first
perspective, researchers examine “which features or social
cues robots should be endowed with to increase partic-
ipant’s engagement with the robot” (Sidner et al. 2005;
ACM 2014; Vázquez et al. 2014). From the second per-
spective, researchers investigate how robots can automati-
cally recognize engagement and disengagement (Bohus and
Horvitz 2009; Xu, Li, and Wang 2013; Leite et al. 2015;
Higashinaka et al. 2016). From the third perspective, re-
searchers aim to “predict engagement or, more importantly,
dis-engagement behaviors in real-time, so that the robot or
agent can employ repair mechanisms to keep users engaged
in the interaction.” Our work is in line with the third per-
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spective.
Existing automatic engagement and dis-engagement pre-

diction schemes exploit various features, such as gaze
(Nakano and Ishii 2010; Bohus and Horvitz 2009), body
posture (Leite et al. 2015), voice (Leite et al. 2015), smiles
(Xu, Li, and Wang 2013), and gestures (Rich et al. 2010).
However, all these features are, arguably, hand-designed and
need ad-hoc implementations. In this work, we propose to
use Action Units (AUs), a set of fully standardized facial ex-
pression features based on anatomic features of human fa-
cial muscle. Regarded as a common standard to systemati-
cally categorize the physical expression of human emotions
(Calvo et al. 2015), AUs could potentially facilitate end-to-
end EB prediction with minimal manual intervention.

A very relevant methodology was first proposed in
(Jaques et al. 2016) to study bonding, a closely related pro-
cess to engagement. Similar to our approach, they use thin-
slices of facial expressions to train a classifier to predict
whether a person will experience bonding up to a delayed
time. Different to our approach, however, they train their
classifier based on conversations between human partici-
pants and their human partners. They then argue that the
trained classifier facilitates the design of an intelligent vir-
tual agent (IVA). However, the required training data of
inter-human conversation seems to be a restriction to de-
ploying an IVA; when one wants to upgrade the prediction
ability of an IVA, one has to recruit human participants to
perform new inter-human conversations, analyze the data,
and then feed the examined results to the IVA. Our proposed
method, on the other hand, does not require training data of
inter-human communication. Instead, we train the model di-
rectly based on the interaction between humans and robots.
This approach gives us the advantage of improving EB pre-
diction ability “on the fly”. As the robots collect more and
more interaction data during their lifetime, they are able to
train themselves to predict EB without the manual loading
of new training data.

The primary challenge of our approach lies in the fact that
it is generally difficult to infer affective states of humans
based on their facial expressions in a reliable way. This chal-
lenge has two elements. First, unlike the case of inter-human
conversation, when it comes to human-robot interactions,
participants are much less expressive in their facial move-
ments, and therefore it is more difficult to extract and ana-
lyze their facial expressions. Second, even if it was possible
to accurately extract the facial expressions of humans, they
are only weakly linked to the affective states of humans. As
argued in (Kappas 2003), in many instances, there is no co-
herence or only limited coherence between facial activation
and underlying affective states. To address the first and sec-
ond challenge, we need an architecture that is robust enough
to distill the limited coherence between facial expressions
and EB behavior. We show that this can be accomplished by
leveraging Recurrent Neural Networks.

Preliminaries

We start by reviewing the main concepts surrounding our
task.

Engagement Breakdown Prediction

Engagement Breakdown (EB) is defined as a situation in
which humans fail to complete an interaction with a robot
and leave the robot before it had the chance to receive full
feedback (Ben Youssef et al. 2017). In an EB prediction task,
one aims to forecast the likelihood of EB in real time before
it happens. Note that EB prediction is far from trivial even
for humans; in previous studies, researchers observed that
the human prediction of EB in chat dialogues is tantamount
to random guessing (Higashinaka et al. 2016).

Affective Computing

Affective computing (AC) (Picard 1997; Calvo et al. 2015)
adopts a computational approach to study affect. With the
assumption that a link exists between an affect estimate and
machine-readable signals, AC makes inferences on the like-
lihoods of affective states from the signals. The link modeled
by AC does not have to be strong; it is enough to assume that
a “beyond-chance probabilistic” (Roseman 2011) link exists
such that it connects machine-readable signals with affect
estimates.

There are two main challenges in AC approaches
(D’Mello, Kappas, and Gratch 2017). The first is to ob-
tain affect abstractions (called affect descriptors or features)
from raw signals recorded by sensors. The second is to pro-
duce affect estimates from the features. In our architecture,
we address the challenge of affect abstractions by tracking
the Action Units (AU) features of facial muscle movement,
and we address the challenge of affect estimation by using
Echo State Networks, which will be introduced in a follow-
ing section.

Thin-slicing

Thin-slicing is a term in psychology describing the ability
of humans to predict various objective outcomes in social
and clinical psychology based on short observations. Sem-
inal works (Ambady and Rosenthal 1992) have shown that
humans are competent in making instant inferences based
on limited interaction experiences. For instance, researchers
have shown that humans can make consensus judgment on
college and high-school teachers based on a brief and silent
video in under 30 seconds (Ambady and Rosenthal 1993).
Thin-slicing also has implications for the areas of first im-
pressions (Carney, Colvin, and Hall 2007), speed dating
(Houser et al. 2007), and deception detection (Albrecht-
sen, Meissner, and Susa 2009). More recently, (Jaques et
al. 2016) has shown that with thin-slices of facial expres-
sions and body language, a classifier can be trained to predict
bonding between intelligent virtual agents and their users.
Encouraged by previous success, we propose to use thin-
slice facial expressions to predict EB in HRI.

Echo State Network

Inspired by the brain’s ability to process information, Echo
State Networks (ESNs) (Jaeger and Haas 2004) are a variant
of Recurrent Neural Networks (RNNs) that process time-
dependent information. Previously, ESNs have been suc-
cessfully used in tasks such as system identification (Jaeger
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2003), nonlinear channel equalization (Jaeger and Haas
2004; Boccato et al. 2011), speech recognition (Triefen-
bach et al. 2010), robot control (Antonelo, Schrauwen, and
Stroobandt 2008), and chaotic time-series prediction (Li,
Han, and Wang 2012). ESNs enjoy the advantage of being
able to process sequential information in a computationally
cheap way, giving rise to reliable in-stream EB prediction in
less than a minute.

Given an input signal u(n) ∈ R
Nu , the update equations

for ESN are

x̃(n) = tanh
(
Win[1;u(n)] +Wx(n− 1)

)
,

x(n) = (1− α)x(n− 1) + αx̃(n),
(1)

where x(n) ∈ R
Nx is a vector of reservoir neuron acti-

vations and x̃(n) ∈ R
Nx is its update, all at time step

n, tanh(·) is applied element-wise, [·; ·] stands for a verti-
cal vector concatenation, Win ∈ R

Nx×(1+Nu) and W ∈
R

Nx×Nx are the input and recurrent weight matrices, respec-
tively, and α ∈ (0, 1] is the leaking rate.

The linear readout layer is defined as

y(n) = Wout[1;u(n);x(n)], (2)

where y(n) ∈ R
Ny is network output, and Wout ∈

R
Ny×(1+Nu+Nx) is the output weight matrix.
To train an ESN, one follows the general procedure as

outlined in (Lukoševičius 2012):

1. Generate a random reservoir (Win,W, α);

2. Use the input signal u(n) to drive the network according
to Equation 1, and then collect the corresponding reser-
voir activation states x(n).

3. Compute the linear readout weights Wout from the reser-
voir using linear regression, minimizing the Mean Square
Error between y(n) and ytarget(n).

4. Use the trained network on new input data u(n) comput-
ing y(n) by exploiting the trained output weights Wout.

There are numerous reasonable ways one can use ESNs to
carry out classification tasks. We will spell out our designed
ESN architecture in more detail in later sections.

Proposed Approach

Problem Setting

We consider human-robot interaction in a open world, where
participants are free to interact with the robot and free to
leave the robot whenever they want. Given the facial ex-
pressions of the human, which are videotaped by the robot’s
camera, we wish to predict the likelihood of EB based on
a short sequence of facial expression features (called thin-
slice features). The restriction to a short span is crucial for
real applications yet challenging for designing a working ar-
chitecture. It is crucial in that if the required timespan is too
long, say 5 minutes, then it is very likely that the user will
leave the robot before it collects enough data to make a pre-
diction, making the early EB prediction effort futile. This is
challenging in that our algorithm has to distill informative

facial expression features that are coherent to EB/non-EB
behavior in an efficient way under severe time pressure. In
our problem, we fix the length of thin-slice facial features at
900 video frames, which is 30 seconds in real time.

More formally, we formulate our problem as follows.
Suppose we are given episodes of human-robot interaction
which are recorded by the sensors of the robot. An episode
either ends with an EB (the participant leaves the robot with-
out completing the interaction task) or an NEB (no EB hap-
pens, the participant finishes the interaction task). As we
are interested in predicting EB/NEB behavior based on thin-
slice HRI experience, in the training phase, we subdivide the
interaction episode into thin-slices such that each thin-slice
contains facial features that last for T frames. Denote one
thin-slice as S = (I1, · · · , IT ), where S is the thin-slice,
It is a video frame at the time t, and T is the length of the
thin-slice. The architecture is supposed to predict the EB or
NEB as the aftermath of the interaction episode. Note that
an interaction episode might contain many such thin-slices.
For each thin-slice in the training sample, we assign a bi-
nary classification label (0 for NEB and 1 for EB) to indicate
whether EB happens as the interaction ends; this is designed
as we aim to predict EB in a delayed time. Our goal is to
learn a model M from the training data, such that in the test-
ing phase, M takes a new thin-slice of facial feature S as
input and gives out 0 or 1 as output, indicating our hypothe-
sis of NEB or EB up to a delayed time.

We address the problem in three steps. In the first step, we
convert the raw videos recorded from the sensor into affec-
tive features. In the second step, we train a machine learning
model with these affective features. In the third step, with
new incoming data, we evaluate the prediction accuracy of
the model. A flow chart for these three steps is shown in
Figure 1.

From Video Clips to AU Features

When formulating the EB prediction problem in the pre-
vious section, we take thin-slices of facial expression fea-
tures as given. To acquire such features from raw videos,
we use the Facial Action Coding System (FACS) (Ekman
and Friesen 1978), a fully standardized classification sys-
tem that codes facial expressions based on anatomic fea-
tures of human faces. With the FACS, any facial expression
can be decomposed as a combination of elementary com-
ponents called Action Units (AUs). In particular, we use
the automated software Emotient FACET, a computer vi-
sion program which provides frame-based estimates of the
likelihood of 19 AUs. As not all AUs are equally useful for
EB prediction tasks, we only maintain NAU number of AUs,
NAU ≤ 19.

From Affect Descriptors to EB Prediction

In the previous section, we acquired thin-slices of facial ex-
pression features, which are multi-channel time series data
describing the movements of each AU. With these time se-
ries data, we leverage a Recurrent Neural Network architec-
ture to learn the coherence between facial expression and EB
behavior. In this work we use Echo State Networks as they
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Figure 1: Flow chart of the proposed architecture. We first convert the sequence of video frames into thin-slices of facial
expression features. Then we train the ESN with the extracted thin-slices. The trained ESN will make inference on EB/NEB
behavior given the new input thin-slices. The ESN illustration is adapted from (Lukoševičius 2012).

can be trained in a computationally cheap way while pro-
ducing fast outputs such that the EB prediction can be made
in-stream.

More specifically, to train the ESN, we first randomly
generate the recurrent weight W and input weight Win

of Equation 1. We then drive the ESN with input vector
ui(t) = Si(t, :) for t = 1, · · · , T , where each Si(t, :) is
a vector of AU features at time t of i-th training thin-slice,
resulting to the reservoir state vector xi(1), · · · ,xi(T ). We
let qi(n) = [xi(n);ui(n)] denote the extended state vec-
tor of dimension Nx +NAU, obtained by column-wise con-
catenate the reservoir state vector with the input vector. We
now need to map the information contained in the states
qi(1), ...,qi(T ) into EB/NEB hypotheses h1 and h2, giving
values between 0 and 1 after inputting the i-th thin-slice to
the ESN. Let ytarget,i be the teacher signal for each training
thin-slice i, where ytarget,i =

[
1
0

]
if the i-th sample is an EB

sample and ytarget,i =
[
0
1

]
if it is a NEB sample.

To make our ESN more compact and to boost the train-
ing speed even further, we choose a small integer D such
that it partitions the T -length time series into Γ = �T/
D� sub-intervals each with length D, where �·� is a floor
function that rounds down a real number to the greatest
integer that is less than or equal to it. For the j-th sub-
interval, we only maintain one extended state vector which
represents the overall input-reservoir dynamics of the ESN
throughout that sub-interval. A natural choice for this ex-
tended state vector would be the arithmetic average of all
extended states in these sub-intervals (Lukoševičius 2012):
Define q̃i(j) =

∑j·D
k=(j−1)·D+1 q

i(k)/D, j = 1, · · · ,Γ. We
use two output units (ym)m=1,2 , connect each of them to
the q̃i(j) by an 1 × (Nx + d) sized output weight vector
wm , and compute wm by linear regression of the targets
ytarget,i
m on all q̃i(j), where m = 1 and 2, j = 1, · · · ,Γ. This

architecture was first formally introduced in section 4.7 of
(Lukoševičius 2012).

Training (EB + NEB) Testing (EB + NEB)
Videos 16 (11 +5) 16 (11 + 5)
Thin-slices 96 (38 + 58) 103 (51 + 52)

Table 1: The training and testing data split-up in the UE-
HRI dataset. Recordings for training and testing are assigned
randomly under the constraint that each training and testing
set contains 11 EB and 5 NEB recordings.

Experiments

Dataset Description

To evaluate the proposed EB prediction model, we use the
UE-HRI dataset (Ben Youssef et al. 2017), a recently pub-
lished open-source dataset containing spontaneous interac-
tions between humans and a humanoid robot. The videos
of the UE-HRI were collected in a hallway of a univer-
sity, where participants were free to establish, maintain, and
break interactions with the robot. Among the 54 episodes
of interactions in the UE-HRI dataset, 32 of them are from
mono-user interaction, i.e., the human interacts with the
robot on a one-on-one basis throughout the video recording.
In this study, we only use the data of mono-user interaction.
In these 32 mono-user interaction recordings, 22 users left
the interaction before the end (labeled as EB), and 10 users
stayed until the end (labeled as NEB). Although for each
episode of the interaction the dataset provides a rich stream
of hierarchical information, from low-level ones, such as raw
video signals, to high-level ones, such as smile-degree, in
this study we only use the low-level ones, i.e., the raw videos
recorded from the sensors of the humanoid robot.

We use 16 recordings to train our model and the other 16
to test our model. The training and testing set split is per-
formed randomly, with the constraint that each training and
testing set contains 11 EB and 5 NEB recordings. After we
form the training and testing sets of recordings, we subdivide
each recording into thin-slices, each containing 30 seconds
of facial expressions. Note that for each interaction record-
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Action Unit Description
AU1 Inner Brow Raiser
AU2 Outer Brow Raiser
AU4 Brow Lowerer
AU6 Cheek Raiser
AU10 Upper Lip Raiser
AU12 Lip Corner Puller
AU14 Dimpler
AU17 Chin Raiser
AU18 Lip Puckerer
AU20 Lip stretcher
AU24 Lip Pressor
AU25 Lips part
AU43 Eyes Closed

Table 2: The 13 Action Units used in the proposed architec-
ture.

ESN parameters
No. internal units 1000
No. sub-intervals of extended states 300
Spectral radius of reservoir 0.1
Ridge regression constant 0.1
Leakage 0.2

Table 3: Parameter selection for the ESN model.

ing, the total time of its thin-slices might be much shorter
than the length of the recording. This is because not all video
frames contain a human face; the recordings start before the
interactions and last longer than the interactions. Also, when
participants bend over to sign the user agreement (i.e., the
agreement to be recorded) and to fill out questionnaires, the
video does not contain the face of the participants. We sum-
marize the training and testing data we use in Table 1.

Experiment Setup

Using 30-second facial expression thin-slices as described in
the previous section, we are now ready to train the ESN. We
first describe the input preprocessing for the facial expres-
sion thin-slices. Recall that the Emotient FACET provides
frame-based estimates of the likelihood of 19 AUs. After
examining the training data, we decide to discard 6 of these
AUs because these channels of AUs only sparsely contribute
to the facial movement during the interaction. We list the 13
AUs we use for ESN training in Table 2. We smoothen the
time series by subtracting its moving local average in the
neighborhood of 20 frames. We normalize the data between
0 and 1 as this may help to keep the inputs u(n) bounded,
avoiding outliers (Lukoševičius 2012).

A few hyper-parameters for ESN have to be selected to
govern the network dynamics. To select reasonable parame-
ters, we use a stratified 3-fold cross-validation and find the
parameters documented in Table 3 perform well in the met-
ric of cross-validation errors. Empirically, we find our ESN
is very robust against the jiggling of parameters.

Proposed method
F1 score 0.76
Accuracy 0.76
Precision 0.74
Recall 0.78
False Negative Rate 0.22
JS Divergence 4.24e-04

Table 4: EB prediction result using thin-slices in the testing
set. The numbers are rounded up to 2 fraction digits.

Experiment Results

With the preprocessed input data and selected parameters,
we feed all the training thin-slices of facial expression fea-
tures into the ESN. We train our ESN model using 96 thin-
slices from 16 episodes of interaction, and evaluate the
prediction result on 103 thin-slices from the remaining 16
episodes . The test results on these 103 thin-slices are re-
ported in Table 4. As suggested by (Higashinaka et al. 2016),
we use both classification-related metrics and distribution-
related metrics to evaluate our result. We also include the
False Negative Rate, a metric emphasized in (Bohus and
Horvitz 2009). The metrics we use are listed below.

• Accuracy: The number of correctly classified EB and
NEB slices divided by the total number of slices to be
classified.

• F1-score, Precision, Recall, False Negative Rate: The F1
score, precision, recall, and False Negative Rate (miss-
rate) for the classification of the EBs.

• JS-Divergence: Distance between the predicted distribu-
tion of EB/NEB and that of the ground-truth calculated
by Jensen-Shannon Divergence.

As our method is a first benchmark result on predicting
EB behavior on the UE-HRI dataset, we do not include any
other baseline for comparison. However, it is obvious to see
that the proposed method significantly outperforms a ran-
dom decision maker. This result is highlighted as we restrict
ourselves to using only 30 seconds of facial features.

We also want to emphasize the training speed of our
method. As introduced in the previous section, one advan-
tage of ESN is its computational cheapness in both learn-
ing and testing. Our experiment have been carried out using
MATLAB (release R2014b for Macintosh) on a 2GHz In-
tel Core i7 Macintosh notebook computer with 8 GB RAM.
The measured CPU-time of learning and testing are 38 and
39 seconds with variance 0.2 seconds, respectively.

Conclusion & Future Work

We considered the task of predicting Engagement Break-
down in Human-Robot Interaction. Inspired by the Affec-
tive Computing approach to affect measurement, we de-
signed an architecture that first extracts facial expression
features from sensor signals, and then produces affect esti-
mates based on these features using the Echo State Network.
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We empirically tested the proposed architecture on the UE-
HRI dataset, a newly published open-source dataset contain-
ing HRI recordings in an open-world setting. Establishing
the first baseline for EB prediction on the UE-HRI dataset,
we demonstrated the prediction accuracy and computational
efficiency of our architecture.

Future challenges include extending these results to (i)
environments with different HRI tasks and possibly with
different robots, (ii) environments with multi-party interac-
tion. Another future direction is to verify whether the same
features that predict EB in human-robot interaction apply
to human-IVA interaction, as is the scenario considered in
(Jaques et al. 2016). Furthermore, as (Jaques et al. 2016) has
shown that the facial features learned from inter-human in-
teraction provide design implications for an IVA, it is natural
to consider if the reverse holds; do the features learned from
EB in HRI have any implication on inter-human interaction?
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