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Abstract

We study in this work the importance of depth in convolu-
tional models for text classification, either when character
or word inputs are considered. We show on 5 standard text
classification and sentiment analysis tasks that deep mod-
els indeed give better performances than shallow networks
when the text input is represented as a sequence of charac-
ters. However, a simple shallow-and-wide network outper-
forms deep models such as DenseNet with word inputs. Our
shallow word model further establishes new state-of-the-art
performances on two datasets: Yelp Binary (95.9%) and Yelp
Full (64.9%).

Introduction

Following the success of deep learning approaches in the
ImageNet competition, there has been a surge of interest in
the application of deep models on many tasks, such as im-
age classification (Krizhevsky, Sutskever, and Hinton 2012),
speech recognition (Hinton et al. 2012). Each new coming
model proposes better and better architectures of the net-
work to facilitate training through longer and longer chains
of layers, such as Alexnet (Krizhevsky, Sutskever, and
Hinton 2012), VGGNet (Simonyan and Zisserman 2014),
GoogleLeNet (Szegedy et al. 2015), ResNet (He et al.
2016a) and more recently Densenet (Huang, Liu, and Wein-
berger 2016).

Several works have explained this success in computer vi-
sion, in particular (Zeiler and Fergus 2014) and (Donahue et
al. 2014): deep model is able to learn a hiearchical feature
representation from pixels to line, contour, shape and object.
These studies have not only helped to demistify the black-
box of deep learning, but have also led the path to other ap-
proaches like transfer learning (Yosinski et al. 2014), where
the first layers are believed to bring more general informa-
tion and the last layers to convey specific information on the
target task.

This paradigm has also been applied in text classification
and sentiment analysis, with deeper and deeper networks
being proposed in the literature: (Kim 2014) (shallow-and-
wide CNN layer), (Zhang, Zhao, and LeCun 2015) (6 CNN
layers), (Conneau et al. 2016) (29 CNN layers). Besides the
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development of deep networks, there is a debate about which
atom-level (word or character) would be the most effective
for Natural Language Processing (NLP) tasks. Word embed-
dings, which are continuous representations of words, ini-
tially proposed by (Bengio et al. 2003) and widely adopted
after word2vec (Mikolov et al. 2013) have been chosen as
the main standard representations for most NLP tasks. Based
on this representation, a common belief is that, similarly to
vision, the model will learn hiearchical features from the
text: words combine to form n-grams, phrases, sentences...

Several recent works have extended this model to char-
acters instead of words. Hence, (Zhang, Zhao, and LeCun
2015) propose for the first time an alternative character-
based model, while (Conneau et al. 2016) take a further step
by introducing a very deep char-level network. Nevertheless,
it is still not clear which atom-level is the best and whether
very deep networks at the word-level are really better for text
classification.

This work is motivated by these questions and we hope to
bring elements of a response by providing a full comparison
of a shallow-and-wide CNN (Kim 2014) both at the charac-
ter and word levels on the 5 datasets described in (Zhang,
Zhao, and LeCun 2015). Moreover, we propose an adapta-
tion of a DenseNet (Huang, Liu, and Weinberger 2016) for
text classification and sentiment analysis at the word-level,
which we compare with the state-of-the-art.

This paper is structured as follows. First we summarize
the related work and then describe the shallow CNN and in-
troduce our adaptation of DenseNet for text. We then evalu-
ate our approach on the 5 datasets of (Zhang, Zhao, and Le-
Cun 2015) and show our experimental results. Experiments
show that the shallow-and-wide CNN on word-level can beat
a very deep CNN on char-level. The paper concludes with
some open discussions for future research about deep struc-
tures on text.

Related work

Text classification is an important task in Natural Language
Processing. Traditionally, linear classifiers are often used for
text classification (Joachims 1998), (McCallum and Nigam
1998), (Fan et al. 2008). In particular, (Joulin et al. 2016)
show that linear models could scale to a very large dataset
rapidly with a proper rank constraint and a fast loss approx-
imation. However, a recent trend in the domain is to exploit
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deep learning methods, such as convolutional neural net-
works: (Kim 2014), (Zhang, Zhao, and LeCun 2015), (Con-
neau et al. 2016) and recurrent networks: (Yogatama et al.
2017), (Xiao and Cho 2016). Sentiment Analysis is also an
active topic of research in NLP for a long time, with real-
world applications in market research (Qureshi, O’Riordan,
and Pasi 2013), finance (Bollen, Mao, and Zeng 2011), so-
cial science (Dodds et al. 2011), politics (Kaya, Fidan, and
Toroslu 2013). The SemEval challenge has been setup in
2013 to boost this field and is still bringing together many
competitors who have been using an increasing proportion
of deep learning models over the years (Nakov et al. 2013;
Rosenthal et al. 2014; Nakov et al. 2016). 2017 is the fifth
edition of the competition, with at least 20 teams (over 48
teams) using deep learning and neural network methods. The
top 5 winning teams all use deep learning or deep learning
ensembles. Other teams use classifiers such as Naive Bayes
classifier, Random Forest, Logistic Regression, Maximum
Entropy and Conditional Random Fields (Rosenthal, Farra,
and Nakov 2017).

Convolutional neural networks with end-to-end training
have been used in NLP for the first time in (Collobert and
Weston 2008; Collobert et al. 2011). The authors introduce
a new global max-pooling operation, which is shown to be
effective for text, as an alternative to the conventional lo-
cal max-pooling of the original LeNet architecture (Lecun et
al. 1998). Moreover, they proposed to transfer task-specific
information by co-training multiple deep models on many
tasks. Inspired by this seminal work, (Kim 2014) proposed a
simpler architecture with slight modifications of (Collobert
and Weston 2008) consisting of fine-tuned or fixed pre-
training word2vec embeddings (Mikolov et al. 2013) and
its combination as multi-channel. The author showed that
this simple model can already achieve state-of-the-art per-
formances on many small datasets. (Kalchbrenner, Grefen-
stette, and Blunsom 2014) proposed a dynamic k-max pool-
ing to handle variable-length input sentences. This dynamic
k-max pooling is a generalisation of the max pooling opera-
tor where k can be dynamically set as a part of the network.

All of these works are based on word input tokens, fol-
lowing (Bengio et al. 2003), which introduced for the first
time a solution to fight the curse of dimensionality thanks
to distributed representations, also known as word embed-
dings. A limit of this approach is that typical sentences and
paragraphs contain a small number of words, which prevents
the previous convolutional models to be very deep: most of
them indeed only have two layers. Other works (Severyn and
Moschitti 2015) further noted that word-based input repre-
sentations may not be very well adapted to social media in-
puts like Twitter, where tokens usage may be extremely cre-
ative: slang, elongated words, contiguous sequences of ex-
clamation marks, abbreviations, hashtags,... Therefore, they
introduced a convolutional operator on characters to auto-
matically learn the notions of words and sentences. This
enables neural networks to be trained end-to-end on texts
without any pre-processing, not even tokenization. Later,
(Zhang, Zhao, and LeCun 2015) enhanced this approach and
proposed a deep CNN for text: the number of characters in
a sentence or paragraph being much longer, they can train

for the first time up to 6 convolutional layers. However, the
structure of this model is designed by hand by experts and
it is thus difficult to extend or generalize the model with ar-
bitrarily different kernels and pool sizes. Hence, (Conneau
et al. 2016), inspired by (He et al. 2016b), presented a much
simpler but very deep model with 29 convolutional layers.

Besides convolutional networks, (Kim et al. 2016) intro-
duced a character aware neural language model by combin-
ing a CNN on character embeddings with an highway LSTM
on subsequent layers. (Radford, Józefowicz, and Sutskever
2017) also explored a multiplicative LSTM (mLSTM) on
character embeddings and found that a basic logistic regres-
sion learned on this representation can achieve state-of-the-
art result on the Sentiment Tree Bank dataset (Socher et al.
2013) with only a few hundred labeled examples.

Capitalizing on the effectiveness of character embed-
dings, (Dhingra et al. 2016) proposed a hybrid word-
character model to leverage the avantages of both worlds.
However, their initial experiments show that this simple hy-
bridation does not bring very good results: the learned rep-
resentations of frequent and rare tokens of words and char-
acters is different and co-training them may be harmful. To
alleviate this issue, (Miyamoto and Cho 2016) proposed a
scalar gate to control the ratio of both representations, but
empiricial studies showed that this fixed gate may lead to
suboptimal results. (Yang et al. 2017) then introduced a fine-
grained gating mechanism to combine both representations.
They showed improved performance on reading comprehen-
sion datasets, including Children’s Book Test and SQuAD.

Model

We describe next two models architectures, respectively
shallow and deep, that we will compare in Section on sev-
eral text classifications tasks. Both models share common
components that are described next.

Common components

Lookup-Table Layer Every token (either word or charac-
ter in this work) i ∈ V ocab is encoded as a d-dimensional
vector using a lookup table LookupW (.):

LookupW (i) = Wi, (1)

where W ∈ R
d×|Vocab| is the embedding matrix, Wi ∈ R

d

is the ith column of W and d is the number of embedding
space dimensions. The first layer of our model thus trans-
forms indices of an input sentence s1, s2, · · · , sn of n tokens
in Vocab into a series of vectors Ws1,Ws2, · · · ,Wsn.
Classification Layer

The embedding vectors that encode a complete input sen-
tence are processed by one of our main models, which out-
puts a feature vector x that represents the whole sentence.
This vector is then passed to a classification layer that ap-
plies a softmax activation function (Costa 1996) to compute
the predictive probabilities for all K target labels:

p(y = k|X) =
exp(wT

k x + bk)
∑K

k′=1 exp(w
T
k′ x + bk′ )

(2)
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where the weight and bias parameters wk and bk are trained
simultaneously with the main model’s parameters. The loss
function is then minimized by cross-entropy error.

Shallow-and-wide CNN

Our first shallow-and-wide CNN model is adapted
from (Kim 2014).

Figure 1: Shallow-and-wide CNN, from (Zhang and Wallace
2015): 3 convolutional layers with respective kernel window
sizes 3,4,5 are used. A global max-pooling is then applied
to the whole sequence on each filter. Finally, the outputs of
each kernel are concatenated to a unique vector and fed to a
fully connected layer.

Let xi ∈ R
d be an input token (word or character). An in-

put h-grams xi:i+h−1 is transformed through a convolution
filter wc ∈ R

hd:

ci = f(wc · xi:i+h−1 + bc) (3)

with bc ∈ R a bias term and f the non-linear ReLU function.
This produces a feature map c ∈ R

n−h+1, where n is the
number of tokens in the sentence. Then we apply a global
max-over-time pooling over the feature map:

ĉ = max{c} ∈ R (4)

This process for one feature is repeated to obtain m fil-
ters with different window sizes h. The resulting filters are
concatenated to form a shallow-and-wide network:

g = [ĉ1, ĉ2, · · · , ĉm] (5)

Finally, a fully connected layer is applied:

ŷ = f(wy · g + by) (6)

Implementation Details The kernel window sizes h for
character tokens are Nf = (15, 20, 25) with m = 700 fil-
ters. For word-level, Nf = (3, 4, 5) with m = 100 filters.

DenseNet

Skip-connections In order to increase the depth of deep
models, (He et al. 2016a) introduced a skip-connection that
modifies the non-linear transformation xl = Fl(xl−1) be-
tween the output activations xl−1 at layer l − 1 and at layer
l with an identity function:

xl = Fl(xl−1) + xl−1 (7)

Figure 2: Character-level DenseNet model for Text classi-
fication. 3, Temp Conv, 128 means temporal convolutional
operation with kernel window size = 3 and filter size = 64;
pool/2 means local max-pooling with kernel size = stride
size = 2, it will reduce the size of the sequence by a half.

This allows the gradient to backpropagate deeper in the
network and limits the impact of various issues such as van-
ishing gradients.
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Dense Connectivity (Huang, Liu, and Weinberger 2016)
suggested that the additive combination of this skip con-
nection with Fl(xl−1) may negatively affect the information
flow in the model. They proposed an alternative concatena-
tion operator, which allows to create direct connections from
any layer to all subsequent layers, called DenseNet. Hence,
the lth layer has access to the feature maps of all preceding
layers, x0, · · · , xl−1, as input:

xl = Fl([x0, x1, · · · , xl−1]) (8)
This can be viewed as an extreme case of a ResNet. The

distance between both ends of the network is shrinked and
the gradient may backpropagate more easily from the output
back to the input, as illustrated in Figure 3.

Figure 3: Dense Block. Multiple convolutional filters out-
put 2D matrices, which are all concatenated together before
going into another dense block.

Convolutional Block and Transitional Layer Follow-
ing (He et al. 2016b), we define Fl(.) as a function of three
consecutive operations: batch normalization (BN), rectified
linear unit (ReLU) and a 1x3 convolution.

To adapt the variability of the changing dimension of the
concatenation operation, we define a transition layer which
composes a 1x3 convolution and a 1x2 local max-pooling
between two dense blocks. Given a vector cl−1 outputed by
a convolutional layer l − 1, the local max-pooling layer l
outputs a vector cl:

[
cl
]
j
= max

i

[
cl−1

]
k×(j−1)≤i<k×j

(9)

where 1 ≤ i ≤ n and k is the kernel pooling size. The
word-level DenseNet model is the same as the character-
level model shown in Figure 2, except for the last two lay-
ers, where the local max-pooling and two fully connected
layers are replaced by a single global average pooling layer.
We empirically observed that better results are thus obtained
with word tokens.

Implementation Details The kernel window size with
both character and word tokens is h = 3 tokens. For word-
level, the kernel of the last local max-pooling is 8 while it
is equal 3 for char-level (because the size of the sequence
is shorter). Following (Conneau et al. 2016), we experi-
ment with two most effective configurations for word and
character-level: Nb = (4− 4− 4− 4) and Nb = (10− 10−
4−4), which are the number of convolutional layers in each
of the four blocks.

Experimental evaluation

Tasks and data

We test our models on the 5 datasets used in (Zhang, Zhao,
and LeCun 2015) and summarized in Table 2. These datasets
are:

• AGNews: internet news articles (Del Corso, Gulli, and
Romani 2005) composed of titles plus descriptions and
classified into 4 categories: World, Entertainment, Sports
and Business, with 30k training samples and 1.9k test
samples per class.

• Yelp Review Polarity: The Yelp review dataset is obtained
from the Yelp Dataset Challenge in 2015. Each polarity
dataset has 280k training samples and 19k test samples.

• Yelp Review Full: The Yelp review dataset is obtained
from the Yelp Dataset Challenge in 2015. It has four po-
larity star labels: 1 and 2 as negative, and 3 and 4 as pos-
itive. Each star label has 130k training samples and 10k
testing samples.

• DBPedia: DBPedia is a 14 non-overlapping classes
picked from DBpedia 2014 (wikipedia). Each class has
40k training samples and 5k testing samples.

• Yahoo! Answers: ten largest main categories from Yahoo!
Answers Comprehensive Questions and Answers version
1.0. Each class contains 140k training samples and 5k
testing samples, including question title, question content
and best answer. For DenseNet on word-level, we only
used 560k samples because of lack of memory.

Hyperparameters and Training

For all experiments, we train our model’s parameters with
the Adam Optimizer (Kingma and Ba 2014) with an initial
learning rate of 0.001, a mini-batch size of 128. The model
is implemented using Tensorflow and is trained on a GPU
cluster (with 12Gb RAM on GPU). The hyperparameters are
chosen following (Zhang, Zhao, and LeCun 2015) and (Kim
2014), which are described below. On average, it takes about
10 epochs to converge.

Character-level Following (Zhang, Zhao, and LeCun
2015), each character is represented as a one-hot encoding
vector where the dictionary contains the following 69
tokens: ”abcdefghijklmnopqrstuvwxyz0123456789−,
; .!? : ”/| #%̂& � ′̃+ =<> ()[]”. The maximum se-
quence length is 1014 following (Zhang, Zhao, and LeCun
2015); smaller texts are padded with 0 while larger texts
are truncated. The convolutional layers are initialized
following (Glorot and Bengio 2010).

Word-level The embedding matrix W is initialized ran-
domly with the uniform distribution between [−0.1; 0.1] and
is updated during model’s training using backpropagation.
The embedding vectors have 300 dimensions and are initial-
ized with word2vec vectors pretrained on 100 billion words
from Google News (Mikolov et al. 2013). Out-of-vocabulary
words are initialized randomly. A dropout of 0.5 is used on
shallow model to prevent overfitting.
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Models AGNews Yelp Bin Yelp Full DBPedia Yahoo

Char shallow-and-wide CNN 90.7 94.4 60.3 98.0 70.2
Char-DenseNet Nb = (4− 4− 4− 4) Global Average-Pooling 90.4 94.2 61.1 97.7 68.8

Char-DenseNet Nb = (10− 10− 4− 4) Global Average-Pooling 90.6 94.9 62.1 98.2 70.5
Char-DenseNet Nb = (4− 4− 4− 4) Local Max-Pooling 90.5 95.0 63.6 98.5 72.9

Char-DenseNet Nb = (10− 10− 4− 4) Local Max-Pooling 92.1 95.0 64.1 98.5 73.4
Word shallow-and-wide CNN 92.2 95.9 64.9 98.7 73.0

Word-DenseNet Nb = (4− 4− 4− 4) Global Average-Pooling 91.7 95.8 64.5 98.7 70.4*
Word-DenseNet Nb = (10− 10− 4− 4) Global Average-Pooling 91.4 95.5 63.6 98.6 70.2*

Word-DenseNet Nb = (4− 4− 4− 4) Local Max-Pooling 90.9 95.4 63.0 98.0 67.6*
Word-DenseNet Nb = (10− 10− 4− 4) Local Max-Pooling 88.8 95.0 62.2 97.3 68.4*

bag of words (Zhang, Zhao, and LeCun 2015) 88.8 92.2 58.0 96.6 68.9
ngrams (Zhang, Zhao, and LeCun 2015) 92.0 95.6 56.3 98.6 68.5

ngrams TFIDF (Zhang, Zhao, and LeCun 2015) 92.4 95.4 54.8 98.7 68.5
fastText (Joulin et al. 2016) 92.5 95.7 63.9 98.6 72.3

char-CNN (Zhang, Zhao, and LeCun 2015) 87.2 94.7 62.0 98.3 71.2
char-CRNN (Xiao and Cho 2016) 91.4 94.5 61.8 98.6 71.7

very deep char-CNN (Conneau et al. 2016) 91.3 95.7 64.7 98.7 73.4
Naive Bayes (Yogatama et al. 2017) 90.0 86.0 51.4 96.0 68.7

Kneser-Ney Bayes (Yogatama et al. 2017) 89.3 81.8 41.7 95.4 69.3
MLP Naive Bayes (Yogatama et al. 2017) 89.9 73.6 40.4 87.2 60.6

Discriminative LSTM (Yogatama et al. 2017) 92.1 92.6 59.6 98.7 73.7
Generative LSTM-independent comp. (Yogatama et al. 2017) 90.7 90.0 51.9 94.8 70.5

Generative LSTM-shared comp. (Yogatama et al. 2017) 90.6 88.2 52.7 95.4 69.3

Table 1: Accuracy of our proposed models (10 top rows) and of state-of-the-art models from the literature (13 bottom rows).

Dataset #y #train #test Task

AGNews 4 120k 7.6k ENC
Yelp Binary 2 560k 38k SA
Yelp Full 5 650k 38k SA
DBPedia 14 560k 70k OC
Yahoo 10 1 400k 60k TC

Table 2: Statistics of datasets used in our experiments: num-
ber of training tokens (#train), of test tokens (#test) and
of target labels (#y); ENC: English News Categorization.
SA: Sentiment Analysis, OC: Ontology Classification, TC:
Topic Classification

The shallow-and-wide CNN requires 10 hours of train-
ing on the smallest dataset, and one day on the largest. The
DenseNet respectively requires 2 and 4 days for training.

Experimental results

Table 1 details the accuracy obtained with our models (10
rows on top) and compare them with state-of-the-art results
(13 rows at the bottom) on 5 corpus and text classification
tasks (columns). The models from the litterature we compare
to are:

• bag of words: The BOW model is based on the most fre-
quent words from the training data (Zhang, Zhao, and Le-
Cun 2015)

• ngrams: The bag-of-ngrams model exploits the most fre-
quent word n-grams from the training data (Zhang, Zhao,
and LeCun 2015)

• ngrams TFIDF: Same as the ngrams model but uses
the words TFIDF (term-frequency inverse-document-
frequency) as features (Zhang, Zhao, and LeCun 2015)

• fastText: A linear word-level model with a rank con-
straint and fast loss approximation (Joulin et al. 2016)

• char-CNN: Character-level Convolutional Network with
6 hand-designed CNN layers (Zhang, Zhao, and LeCun
2015)

• char-CRNN: Recurrent Layer added on top of a Charac-
ter Convolutional Network (Xiao and Cho 2016)

• very deep CNN: Character-level model with 29 Convo-
lutional Layers inspired by ResNet (Conneau et al. 2016)

• Naive Bayes: A simple count-based word unigram lan-
guage model based on the Naive Bayes assumption (Yo-
gatama et al. 2017)

• Kneser-Ney Bayes: A more sophisticated word count-
based language model that uses tri-grams and Kneser-Ney
smoothing (Yogatama et al. 2017)

• MLP Naive Bayes: An extension of the Naive Bayes
word-level baseline using a two layer feedforward neural
network (Yogatama et al. 2017)

• Discriminative LSTM: Word-level model with logistic
regression on top of a traditional LSTM (Yogatama et al.
2017)

• Generative LSTM-independent comp.: A class-based
word language model with no shared parameters across
classes (Yogatama et al. 2017)

• Generative LSTM-shared comp.: A class-based
word language model with shared components across
classes (Yogatama et al. 2017)
Figure 4 visually compares the performances of 3

character-level models with 2 word-level models. Character-
level models include: our shallow-and-wide CNN model
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Figure 4: Comparison of character (in blue, on the left) and word-level (in red, on the right) models on all datasets. On character-
level, we compare our shallow-and-wide model with the 6 CNN layers of (Zhang, Zhao, and LeCun 2015) and the 29-layers
CNN of (Conneau et al. 2016). On word-level, we compare the shallow-and-wide CNN with our proposed DenseNet.

with two models on the litterature 6 CNN layers (Zhang,
Zhao, and LeCun 2015), 29 CNN layers (Conneau et al.
2016). On word-level, we present our shallow-and-wide
CNN with the best DenseNet Nb = (4 − 4 − 4 − 4) us-
ing Global Average-Pooling.

The main conclusions of these experiments are threefold:

Impact of depth for character-level models Deep
character-level models do not significantly outperform the
shallow-and-wide network. A shallow-and-wide network
(row 1 in Table 1) achieves 90.7%, 94.4%, 98.0% on AG-
News, Yelp Bin, DBPedia respectively, comparing to 91.3%,
95.7%, 98.7% of a very deep CNN (Conneau et al. 2016).
Although the deep structure achieves a slight gain in per-
formance on these three datasets, the difference is not
significant. Interestingly, a very simple shallow-and-wide
CNN can get very close results to the deep 6 CNN layers
of (Zhang, Zhao, and LeCun 2015) which structure must be
designed meticulously.

For the smallest dataset AGNews, we suspect that the
deep model char-CNN performs badly because it needs
more data to take benefit from depth. The deep structure
gives an improvement of about 4% on Yelp Full and Ya-
hoo (first row of Table 1 vs. very deep char CNN), which
is interesting but does not match the gains observed in
image classification. We have tried various configurations:
Nf = (15, 20, 25), Nf = (10, 15, 20, 25) and Nf =
(15, 22, 29, 36) on shallow models but they didn’t do better.

Impact of depth for word-level models The DenseNet is
better with 20 layers Nb = (4−4−4−4) than with 32 layers
Nb = (10−10−4−4) and Global Average-Pooling is better
than the traditional Local Max-pooling. It is the opposite to
char-level. This is likely a consequence of the fact that the
observed sequence length is much shorted with words than
with characters.

However, the main striking observation is that all deep
models are matched or outperformed by the shallow-and-
wide model on all datasets, although it is still unclear

whether this is because the input sequences are too short
to benefit from depth or for another reason. Further exper-
iments are required to investigate the underlying reasons of
this failure of depth at word-level.

State-of-the-art performances with shallow-and-wide
word-level model With a shallow-and-wide network on
word-level, we achieved a very close state-of-the-art (SOTA)
result on AGNews, SOTA on 2 datasets DBPedia, Yahoo and
set new SOTA on 2 datasets: Yelp Binary and Yelp Full. We
also empirically found that a word-level shallow model may
outperform a very deep char-level network. This confirms
that word observations are still more effective than character
inputs for text classification. In practice, quick training on
word-level with a simple convolutional model may already
produce good result.

Discussion

Text representation - discrete, sparse Very deep models
do not seem to bring a significant advantage over shallow
networks for text classification, as opposed to their perfor-
mances in other domains such as image processing. We be-
lieve one possible reason may be related to the fact that im-
ages are represented as real and dense values, as opposed
to discrete, artificial and sparse representation of text. The
first convolutional operation results in a matrix (2D) for im-
age while it results in a vector (1D) for text. The same deep
network applied to two different representations (dense and
sparse) will obviously get different results. Empirically, we
found that a deep network on 1D (text) is less effective and
learns less information than on 2D (image).
Local vs Global max-pooling

A global max-pooling (Collobert and Weston 2008),
which retrieves the most influencial feature could already be
good enough for sparse and discrete input text, and gives
similar results than a local max-pooling with a deep net-
work.
Word vs Character level
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Char-level could be a choice but word-level is still the
most effective method. Moreover, in order to use char-level
representation, we must use a very deep model, which is less
practical because it takes a long time to train.

Conclusion
In computer vision, several works have shown the impor-
tance of depth in neural networks and the major benefits that
can be gained by stacking many well-designed convolutional
layers in terms of performances. However, such advantages
do not necessarily transfer to other domains, and in particu-
lar Natural Language Processing, where the impact of depth
in the model is still unclear. This work exploits a number
of additional experiments to further explore this question
and potentially bring some new insights or confirm previ-
ous findings. We further investigate another related ques-
tion about which type of textual inputs, characters or words,
should be chosen at a given depth. By evaluating on sev-
eral text classification and sentiment analysis tasks, we show
that a shallow-and-wide convolutional neural network at the
word-level is still the most effective, and that increasing the
depth of such convolutional models with word inputs does
not bring significant improvement. Conversely, deep models
outperform shallow networks when the input text is encoded
as a sequence of characters, but although such deep models
approach the performances of word-level networks, they are
still worse on the average. Another contribution of this work
is the proposal of a new deep model that is an adaptation of
DenseNet for text inputs.

Based on the litterature and the results presented in this
work, our main conclusion is that deep models have not yet
proven to be more effective than shallow models for text
classification tasks. Nevertheless, further researches should
be realized to confirm or infirm this observation on other
datasets, natural language processing tasks and models. In-
deed, this work derives from reference deep models that
have originally been developed for image processing, but
novel deep architectures for text processing might of course
challenge this conclusion in the near future.
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