
Black-Box Attacks against RNN
Based Malware Detection Algorithms

Weiwei Hu, Ying Tan∗
Key Laboratory of Machine Perception (MOE), and Department of Machine Intelligence

School of Electronics Engineering and Computer Science, Peking University, Beijing, 100871 China
{weiwei.hu, ytan}@pku.edu.cn

Abstract

Recent researches have shown that machine learning based
malware detection algorithms are very vulnerable under the
attacks of adversarial examples. These works mainly focused
on the detection algorithms which use features with fixed di-
mension, while some researchers have begun to use recurrent
neural networks (RNN) to detect malware based on sequen-
tial API features. This paper proposes a novel algorithm to
generate sequential adversarial examples, which are used to
attack a RNN based malware detection system. It is usually
hard for malicious attackers to know the exact structures and
weights of the victim RNN. A substitute RNN is trained to
approximate the victim RNN. Then we propose a generative
RNN to output sequential adversarial examples from the origi-
nal sequential malware inputs. Experimental results showed
that RNN based malware detection algorithms fail to detect
most of the generated malicious adversarial examples, which
means the proposed model is able to effectively bypass the
detection algorithms.

1 Introduction

Machine learning has been widely used in various commer-
cial and non-commercial products, and has brought great
convenience and profits to human beings. However, recent
researches on adversarial examples show that many ma-
chine learning algorithms are not robust at all when some-
one wants to crack them on purpose (Szegedy et al. 2013;
Goodfellow, Shlens, and Szegedy 2014). Adding some small
perturbations to original samples will make a classifier unable
to classify them correctly.

In some security related applications, attackers will try
their best to attack any defensive systems to spread their ma-
licious products such as malware. Existing machine learning
based malware detection algorithms mainly represent pro-
grams as feature vectors with fixed dimension and classify
them between benign programs and malware (Kolter and
Maloof 2006). For example, a binary feature vector can be
constructed according to the presence or absence of system
APIs (i.e. application programming interfaces) in a program
(Schultz et al. 2001). Grosse et al. (Grosse et al. 2016) and

∗Prof. Ying Tan is the corresponding author.
Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Hu et al. (Hu and Tan 2017) have shown that fixed dimen-
sional feature based malware detection algorithms are very
vulnerable under the attack of adversarial examples.

Recently, as recurrent neural networks (RNN) became
popular, some researchers have tried to use RNN for malware
detection and classification (Pascanu et al. 2015; Tobiyama et
al. 2016; Kolosnjaji et al. 2016). The API sequence invoked
by a program is used as the input of RNN. RNN will predict
whether the program is benign or malware.

This paper tries to validate the security of a RNN based
malware detection model when it is attacked by adversar-
ial examples. We proposed a novel algorithm to generate
sequential adversarial examples.

Existing researches on adversarial samples mainly focus
on images. Images are represented as matrices with fixed
dimension, and the values of the matrices are continuous.
API sequences consist of discrete symbols with variable
lengths. Therefore, generating adversarial examples for API
sequences will become quite different from generating adver-
sarial examples for images.

To generate adversarial examples from API sequences we
only consider to insert some irrelevant APIs into the original
sequences. Removing an API from the API sequence may
make the program unable to work. How to insert irrelevant
APIs into the sequence will be the key to generate adversarial
examples.

We propose a generative RNN based approach to gener-
ate irrelevant APIs and insert them into the original API
sequences. A substitute RNN is trained to fit the victim
RNN. Gumbel-Softmax (Jang, Gu, and Poole 2016) is used
to smooth the API symbols and deliver gradient information
between the generative RNN and the substitute RNN.

2 Adversarial Examples

Adversarial examples are usually generated by adding some
perturbations to the original samples. Szegedy et al. used a
box-constrained L-BFGS to search for an appropriate per-
turbation which can make a neural network misclassify an
image (Szegedy et al. 2013). They found that adversarial ex-
amples are able to transfer among different neural networks.
Goodfellow et al. proposed the “fast gradient sign method”
where added perturbations are determined by the gradients of
the cost function with respect to inputs (Goodfellow, Shlens,
and Szegedy 2014). An iterative algorithm to generate adver-

The Workshops of the Thirty-Second
AAAI Conference on Artificial Intelligence

245

sarial examples was proposed by Papernot et al. (Papernot et
al. 2016b). At each iteration the algorithm only modifies one
pixel or two pixels of the image.

Grosse et al. used the iterative algorithm proposed by Pa-
pernot et al. (Papernot et al. 2016b) to add some adversarial
perturbations to Android malware on about 545 thousand bi-
nary features (Grosse et al. 2016). For the best three malware
detection models used in their experiments, about 60% to
70% malware will become undetected after their adversarial
attacks.

Previous algorithms to generate adversarial examples
mainly focused on attacking feed-forward neural networks.
Papernot et al. migrated these algorithms to attack RNN (Pa-
pernot et al. 2016c). RNN is unrolled along time and existing
algorithms for feed-forward neural networks are used to gen-
erate adversarial examples for RNN. The limitation of their
algorithm is that the perturbations are not truly sequential. For
example, if they want to generate adversarial examples from
sentences, they can only replace existing words with others
words, but cannot insert words into the original sentences or
delete words form the original sentences.

Sometimes it is hard for the attackers to know the structures
and parameters of the victim machine learning models. For
example, many machine learning models are deployed in
remote servers or compiled into binary executables. To attack
a black-box victim neural network, Papernot et al. first got the
outputs from the victim neural network on their training data,
and then trained a substitute neural network to fit the victim
neural network (Papernot et al. 2016a). Adversarial examples
are generated from the substitute neural network. They also
showed that other kinds of machine learning models such as
decision trees can also be attacked by using the substitute
network to fit them (Papernot, McDaniel, and Goodfellow
2016).

Besides substitute network based approaches, several di-
rect algorithms for black-box attacks have been proposed
recently. Narodytska et al. adopted a greedy local search
to find a small set of pixels by observing the probability
outputs of the victim network after applying perturbations
(Narodytska and Kasiviswanathan 2016). Liu et al. used an
ensemble-based algorithm to generate adversarial examples
and the adversarial examples are able to attack other black-
box models due to the transferability of adversarial examples
(Liu et al. 2016) .

Several defensive algorithms against adversarial examples
have been proposed, such as feature selection (Zhang et al.
2016), defensive distillation (Papernot et al. 2016d) and re-
training (Li, Vorobeychik, and Chen 2016). However, it is
found that the effectiveness of these defensive algorithms is
limited, especially under repeated attacks (Grosse et al. 2016;
Chen, Li, and Vorobeychik 2016; Carlini and Wagner 2016).

3 RNN for Malware Detection

In this section we will show how to use RNN to detect mal-
ware. Malware detection is regarded as a sequential classifi-
cation problem (Pascanu et al. 2015; Tobiyama et al. 2016;
Kolosnjaji et al. 2016). RNN is used to classify whether an
API sequence comes from a benign program or malware.

We will also introduce some variants of RNN in this sec-
tion. Malware detection model is usually a black box to
malware authors, and they need to take the potential variants
into consideration when developing attacking algorithms.

Each API is represented as a one-hot vector. Assuming
there are M APIs in total, these APIs are numbered from 0 to
M − 1. The feature vector x of an API is an M -dimensional
binary vector. If the API’s number is i, the i-th dimension of
x is 1, and other dimensions are all zeros.

An API sequence is represented as x1,x2, ...,xT , where
T is the length of the sequence. After feeding the input
to RNN, the hidden states of RNN can be represented as
h1,h2, ...,hT .

In the basic version of RNN, the hidden state of the last
time step hT is used as the representation of the API se-
quence. The output layer uses hT to compute the probability
distribution over the two classes. Then cross entropy is used
as the loss function of API sequence classification.

The first variant of the RNN model introduced here is
average pooling (Boureau, Ponce, and LeCun 2010), which
uses the average states across h1 to hT as the representation
of the sequence, instead of the last state hT .

Attention mechanism (Bahdanau, Cho, and Bengio 2014)
is another variant, which uses weighted average of the hid-
den states to represent the sequence. An attention func-
tion A is defined to map the hidden state to a scalar value,
which indicates the importance of the corresponding time
step. The attention function is usually a feed-forward neu-
ral network. The attention function values across the whole
sequence are then normalized according to the formula

αt = exp(A(ht)))/
T∑

s=1
exp(A(hs)), where αt is the final

weight of time step t.
The above RNN models only process the sequence in the

forward direction, while some sequential patterns may lie
in the backward direction. Bidirectional RNN tries to learn
patterns from both directions (Schuster and Paliwal 1997).
In bidirectional RNN, an additional backward RNN is used
to process the reversed sequence, i.e. from xT to x1. The
concatenation of the hidden states from both directions is
used to calculate the output probability.

4 Attacking RNN based Malware Detection

Algorithms

Papernot et al. (Papernot et al. 2016c) migrated the adversar-
ial example generation algorithms for feed-forward neural
networks to attack RNN by unrolling RNN along time and
regarding it as a special kind of feed-forward neural network.
However, such model can only replace existing elements in
the sequence with other elements, since the perturbations are
not truly sequential. This algorithm cannot insert irrelevant
APIs to the original sequences. The main contribution of this
paper is that we proposed a generative RNN based approach
to generate sequential adversarial examples, which is able to
effectively mine the vulnerabilities in the sequential patterns.

The proposed algorithm consists of a generative RNN
and a substitute RNN, as shown in Figure 1 and Figure 2.
The generative model is based on a modified version of the

246

sequence to sequence model (Sutskever, Vinyals, and Le
2014), which takes malware’s API sequence as input and
generates an adversarial API sequence. The substitute RNN
is trained on benign sequences and the Gumbel-Softmax
(Jang, Gu, and Poole 2016) outputs of the generative RNN, in
order to fit the black-box victim RNN. The Gumbel-Softmax
enables the gradient to back propagate from the substitute
RNN to the generative RNN.

4.1 The Generative RNN

The input of the generative RNN is a malware API sequence,
and the output is the generated sequential adversarial example
for the input malware. The generative RNN generates a small
piece of API sequence after each API and tries to insert the
sequence piece after the API.

For the input sequence x1,x2, ...,xT , the hidden states
of the recurrent layer are h1,h2, ...,hT . At time step t, a
small sequence of Gumbel-Softmax output gt1, gt2, ..., gtL
with length L is generated based on ht, where L is a hyper-
parameter.

Sequence decoder (Cho et al. 2014) is used to generate the
small sequence. The decoder RNN uses the formula hD

τ =

Dec(xD
τ ,hD

τ−1) to update hidden states, where xD
τ is the

input and hD
τ is the hidden state of the decoder RNN which

is initialized with zero.
Formula 1 is used to get the hidden state when generating

gt1.

hD
1 = Dec(ht,h

D
0 = 0). (1)

When generating the first element at time step t, the input
is the hidden state ht.

Then a softmax layer is followed to generate the API.
Besides the M APIs, we introduce a special null API into the
API set. If the null API is generated at time step τ , no API will
be inserted to the original sequence at that moment. If we do
not use the null API, too many generated APIs will be inserted
into the sequence and the resulting sequence will become
too long. Allowing null API will make the final sequence
shorter. Since the M valid APIs have been numbered from 0
to M − 1, the null API is numbered as M .

The softmax layer will have M + 1 elements, which is
calculated as πt1 = softmax(W sh

D
1), where W s is the

weights to map the hidden state to the output layer.
Then we can sample an API from πt1. Let the one-hot

representation of the sampled API be at1.
The sampled API is a discrete symbol. If we give at1 to

the substitute RNN, we are unable to get the gradients from
the substitute RNN and thus unable to train the generative
RNN.

Gumbel-Softmax is recently proposed to approximate one-
hot vectors with differentiable representations (Jang, Gu, and
Poole 2016). The Gumbel-Softmax output gt1 has the same
dimension with πt1. The i-th element of gt1 is calculated by
Formula 2.

gi
t1 =

exp((log(πi
t1) + zi)/temp)

M∑

j=0

exp((log(πj
t1) + zj)/temp)

, (2)

where zi is a random number sampled from the Gumbel
distribution (Gumbel and Lieblein 1954) and temp is the
temperature of Gumbel-Softmax. In this paper we use a su-
perscript to index the element in a vector.

To generate the τ -th API at time step t when τ is greater
than 1, the decoder RNN uses Formula 3 to update the hidden
state.

hD
τ = Dec(W ggt(τ−1),h

D
τ−1). (3)

The decoder RNN takes the previous Gumbel-Softmax out-
put as input. W g is used to map gt(τ−1) to a space with the
same dimension as ht, in order to make the input dimension
of the decoder RNN compatible with Formula 1.

Calculating Gumbel-Softmax for τ > 1 can use the same
way as τ = 1 (i.e. Formula 2). We omit the formula here.

After generating small sequences from t = 1 to T and
inserting the generated sequences to the original sequence,
we obtained two kinds of results.

The first kind of result is the one-hot representation of the
final adversarial sequence Sadv:

Sadv = RemoveNull(x1,a11,a12, ...,a1L,x2,a21,

a22, ...,a2L,,xT ,aT1,aT2, ...,aTL).
(4)

The generated null APIs should be removed from the one-
hot sequence.

The second kind of result uses Gumbel-Softmax outputs
to replace one-hot representations:

SGumbel = x1, g11, g12, ..., g1L,x2, g21, g22, ...,

g2L,,xT , gT1, gT2, ..., gTL.
(5)

The null APIs’ Gumbel-Softmax outputs are reserved in
the sequence, in order to connect the gradients of loss func-
tion with null APIs. The loss function will be defined in the
following sections.

4.2 The Substitute RNN

Malware authors usually do not know the detailed structure
of the victim RNN. They do not know whether the victim
RNN uses bidirectional connection, average pooling or the
attention mechanism. The weights of the victim RNN is also
unavailable to malware authors.

To fit such victim RNN with unknown structure and
weights, a neural network with strong representation abil-
ity should be used. In this paper the substitute RNN uses
bidirectional RNN with attention mechanism since it is able
to learn complex sequential patterns. Bidirectional connec-
tion contains both the forward connection and the backward
connection, and therefore it has the ability to represent the
unidirectional connection. The attention mechanism is able to
focus on different positions of the sequence. Therefore, RNN
with attention mechanism can represent the cases without
attention mechanism such as average pooling and the using
of the last state to represent the sequence.

To fit the victim RNN, the substitute RNN should regard
the output labels of the victim RNN on the training data as the

247

+

Malware Input

Recurrent Layer

Decoder Layer

Bidirectional
Layer

Attention

Classification

Recurrent Layer

Decoder Layer

Generative RNN

+

Bidirectional
Layer

Attention

Classification

Subtitute RNN

Sampling

Adversarial Example

Black-Box Victim RNN

Cross Entropy

Inserting

Gumbel-Softmax

Figure 1: The architecture of the proposed model when trained on malware.

target labels. The training data should contain both malware
and benign programs.

As shown in Figure 1 and the previous section, for mal-
ware input two kinds of outputs are generated from the gen-
erative RNN, i.e. the one-hot adversarial example Sadv and
the Gumbel-Softmax output SGumbel.

We use the victim RNN to detect the one-hot adversarial
example, and get the resulting label v. v is a binary value
where 0 represents benign and 1 represents malware.

Then the substitute RNN is used to classify the Gumbel-
Softmax output SGumbel, and outputs the malicious probabil-
ity pS .

Cross entropy is used as the loss function, as shown in
Formula 6.

LS = −v log(pS)− (1− v)log(1− pS). (6)

For a benign input sequence, it is directly fed into the
victim RNN and the substitute RNN, as shown in Figure 2.
The outputs of the two RNNs v and pS are used to calculate
the loss function in the same way as Formula 6.

4.3 Training

The training objective of the generative RNN is to minimize
the predicted malicious probability pS on SGumbel. We also
add a regularization term to restrict the number of inserted
APIs in the adversarial sequence by maximizing the null
API’s expectation probability. The final loss function of the
generative RNN is defined in Formula 7.

LG = log(pS)− γEt=1∼T,τ=1∼Lπ
M
tτ , (7)

where γ is the regularization coefficient and M is the index
of the null API.

The training process of the proposed model is summarized
in Algorithm 1.

Algorithm 1 Training the Proposed Model
1: while terminal condition not satisfied do
2: Sample a minibatch of data, which contains malware

and benign programs.
3: Calculate the outputs of the generative RNN for mal-

ware.
4: Get the outputs of the substitute RNN on benign

programs and the Gumbel-Softmax output of malware.
5: Get the outputs of the victim RNN on the adversarial

examples and benign programs.
6: Minimize LS on both benign and malware data by

updating the substitute RNN’s weights.
7: Minimize LG on malware data by updating the gen-

erative RNN’s weights.
8: end while

5 Experiments

Adam (Kingma and Ba 2014) was used to train all of the
models. LSTM unit was used for all of the RNNs presented
in the experiments due to its good performance in processing
long sequences (Hochreiter and Schmidhuber 1997; Greff et
al. 2016).

248

+

Benign Input

Bidirectional
Layer

Attention

Classification

+

Bidirectional
Layer

Attention

Classification

Subtitute RNN

Black-Box Victim RNN

Cross Entropy

Figure 2: The architecture of the proposed model when trained on benign programs.

5.1 Dataset

We crawled 180 thousand programs with corresponding
behavior reports from a website for malware analysis
(https://malwr.com/). On the website users can upload their
programs and the website will execute the programs in virtual
machines. Then the API sequences called by the uploaded
programs will be posted on the website. 70% of the crawled
programs are malware.

The average length of the API sequences is 10578. Using
RNN to process such long sequences will consume a huge
volume of computation resources. However, we found that
except the API pieces at the beginning of the sequences, most
API pieces are repeated for many times in the sequences,
which means they come from loops. We found that removing
such redundant APIs does not influence the performance of
malware detection algorithms.

We tried to truncate long sequences to the length Lmax.
Only the beginning Lmax APIs are reserved if the sequence
length is greater than Lmax. Then we trained a bidirectional
LSTM with attention mechanism to classify the truncated
API sequences between benign programs and malware. We
increased Lmax gradually and found that the classification
accuracy converges to a stable value when Lmax reaches
1000.

Therefore, the first 1000 APIs in a sequence contains
enough sequential patterns to represent the whole sequence.
In our experiments we truncated long sequences to the length
1024.

In real-world applications, the adversarial example genera-
tion model and the victim RNN should be trained by malware
authors and anti-virus vendors respectively. The datasets that
they collected cannot be the same. Therefore, we use differ-
ent training sets for the two models. We selected 30% of our
dataset as the training set of the adversarial example genera-
tion model (i.e. the generative RNN and the substitute RNN),
and selected 10% as the validation set of the adversarial ex-
ample generation model. Then we selected another 30% and
10% as the training set and the validation set of the victim

RNN respectively. The remaining 20% of our dataset was
regarded as the test set.

5.2 The Victim RNNs

To validate the representation ability of the substitute RNN,
we used the several different structures for the black-box
victim RNN, as shown in the first column of Table 1. In
Table 1, the first LSTM model uses the last hidden state
as the representation of the sequence. BiLSTM represents
bidirectional LSTM. The suffixes “Average” and “Attention”
in the last four rows indicate the use of average pooling and
attention mechanism to represent the sequence.

We first tuned the hyper-parameters of BiLSTM-Attention
on the validation set. The final learning rate was set to 0.001.
The number of recurrent hidden layers and the number of
attention hidden layers were both set to one and the layer
sizes were both set to 128. We directly used the resulting
hyper-parameters to other victim models. We have tried to
separately tune the hyper-parameters for other victim RNNs
but the performance did not improve much compared with
using BiLSTM-Attention’s hyper-parameters.

Table 1 gives the area under curve (AUC) of the victim
RNNs before adversarial attacks.

Table 1: AUC of different victim RNNs before attacks.
Algorhthm Training Set Test Set

LSTM 94.57% 91.30%
BiLSTM 94.67% 92.80%
LSTM-Average 93.07% 92.66%
BiLSTM-Average 91.13% 91.14%
LSTM-Attention 95.98% 93.97%
BiLSTM-Attention 95.02% 93.83%

Overall, the attention mechanism works better than non-
attention approaches, since attention mechanism is able to
learn the relative importance of different parts in sequences.

249

LSTM and BiLSTM only use the last hidden state, and there-
fore the information delivered to the output layer is limited.
In this case bidirectional connection delivers more informa-
tion than unidirectional connection, and AUC of BiLSTM is
higher than LSTM. For average pooling and attention mecha-
nism, bidirectional LSTM does not outperform unidirectional
LSTM in AUC. Average pooling and attention mechanism
are able to capture the information of the whole API sequence.
Unidirectional LSTM is enough to learn the sequential pat-
terns. Compared with unidirectional LSTM, bidirectional
LSTM has more parameters, which makes the learning pro-
cess more difficult. Therefore, the bidirectional connection
does not improve the performance for average pooling and
attention mechanism.

5.3 Experimental Results of the Proposed Model

The hyper-parameters of the generative RNN and the substi-
tute RNN were tuned separately for each black-box victim
RNN. The learning rate and the regularization coefficient
were chosen by line search along the direction 0.01, 0.001,
et al.. The Gumbel-Softmax temperature was searched in the
range [1, 100]. Actually, the decoder length L in the genera-
tive RNN is also a kind of regularization coefficient. A large
L will make the generative RNN have strong representation
ability, but the whole adversarial sequences will become too
long, and the generative RNN’s size may exceed the capacity
of the GPU memory. Therefore, in our experiments we set L
to 1.

The experimental results of the proposed attack model are
shown in Table 2.

Table 2: Detection rate on original samples and adversarial
examples. “Adver." represents adversarial examples.

Training Set Test Set
Original Adver. Original Adver.

LSTM 92.54% 2.96% 90.74% 2.97%
BiLSTM 92.21% 1.06% 90.93% 0.95%
LSTM-Average 93.87% 1.40% 93.53% 1.36%
BiLSTM-Average 92.92% 1.83% 92.51% 1.67%
LSTM-Attention 93.67% 0.44% 92.45% 0.51%
BiLSTM-Attention 93.73% 3.02% 92.99% 3.03%

After adversarial attacks, all the victim RNNs fails to de-
tect most of the malware. For different victim RNNs, the
detection rates on adversarial examples range from 0.44% to
3.03%, while before adversarial attacks the detection rates
range from 90.74% to 93.87%. That is to say, most malware
will bypass the detection algorithms under our proposed at-
tack model.

The differences in adversarial examples’ detection rates
are very small between the training set and the test set for
these victim RNNs. The generalization ability of the pro-
posed model is quite well for unseen malware examples. The
proposed adversarial example generation algorithm can be
applied to both existing malware and unseen malware.

It can be seen that even if the adversarial example genera-
tion algorithm and the victim RNN use different RNN models
and different training set, most of the adversarial examples

are still able to attack the victim RNN successfully. The ad-
versarial examples can transfer among different models and
different training sets. The transferability makes it very easy
for malware authors to attack RNN based malware detection
algorithms.

6 Conclusions and Future Works

A novel algorithm of generating sequential adversarial exam-
ples for malware is proposed in this paper. The generative
network is based on the sequence to sequence model. A sub-
stitute RNN is trained to fit the black-box victim RNN. We
use Gumbel-Softmax to approximate the generated discrete
APIs, which is able to propagate the gradients from the sub-
stitute RNN to the generative RNN. The proposed model
has successfully made most of the generated adversarial ex-
amples able to bypass several black-box victim RNNs with
different structures.

Previous researches on adversarial examples mainly fo-
cused on images which have fixed input dimension. We have
shown that the sequential machine models are also not safe
under adversarial attacks. The problem of adversarial ex-
amples becomes more serious when it comes to malware
detection. Robust defensive models are needed to deal with
adversarial attacks.

In future works we will use the proposed model to attack
convolutional neural network (CNN) based malware detec-
tion algorithms, since many researchers have begun to use
CNN to process sequential data recently (Zhang, Zhao, and
LeCun 2015; Lee and Dernoncourt 2016). We will validate
whether a substitute RNN has enough capacity to fit a victim
CNN, and whether a substitute CNN has enough capacity
to fit a victim RNN. The research on the transferability of
adversarial examples between RNN and CNN is very im-
portant to the practicability of sequential malware detection
algorithms.

References

Bahdanau, D.; Cho, K.; and Bengio, Y. 2014. Neural machine
translation by jointly learning to align and translate. arXiv
preprint arXiv:1409.0473.
Boureau, Y.-L.; Ponce, J.; and LeCun, Y. 2010. A theo-
retical analysis of feature pooling in visual recognition. In
Proceedings of the 27th international conference on machine
learning (ICML-10), 111–118.
Carlini, N., and Wagner, D. 2016. Defensive distillation is
not robust to adversarial examples. arXiv preprint.
Chen, X.; Li, B.; and Vorobeychik, Y. 2016. Evaluation
of defensive methods for dnns against multiple adversarial
evasion models.
Cho, K.; Van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.;
Bougares, F.; Schwenk, H.; and Bengio, Y. 2014. Learning
phrase representations using rnn encoder-decoder for statisti-
cal machine translation. arXiv preprint arXiv:1406.1078.
Goodfellow, I. J.; Shlens, J.; and Szegedy, C. 2014. Ex-
plaining and harnessing adversarial examples. arXiv preprint
arXiv:1412.6572.

250

Greff, K.; Srivastava, R. K.; Koutník, J.; Steunebrink, B. R.;
and Schmidhuber, J. 2016. Lstm: A search space odyssey.
IEEE transactions on neural networks and learning systems.
Grosse, K.; Papernot, N.; Manoharan, P.; Backes, M.; and
McDaniel, P. 2016. Adversarial perturbations against deep
neural networks for malware classification. arXiv preprint
arXiv:1606.04435.
Gumbel, E. J., and Lieblein, J. 1954. Statistical theory of
extreme values and some practical applications: a series of
lectures.
Hochreiter, S., and Schmidhuber, J. 1997. Long short-term
memory. Neural computation 9(8):1735–1780.
Hu, W., and Tan, Y. 2017. Generating adversarial malware
examples for black-box attacks based on gan. arXiv preprint
arXiv:1702.05983.
Jang, E.; Gu, S.; and Poole, B. 2016. Categorical
reparameterization with gumbel-softmax. arXiv preprint
arXiv:1611.01144.
Kingma, D., and Ba, J. 2014. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980.
Kolosnjaji, B.; Zarras, A.; Webster, G.; and Eckert, C. 2016.
Deep learning for classification of malware system call se-
quences. In Australasian Joint Conference on Artificial Intel-
ligence, 137–149. Springer.
Kolter, J. Z., and Maloof, M. A. 2006. Learning to detect
and classify malicious executables in the wild. The Journal
of Machine Learning Research 7:2721–2744.
Lee, J. Y., and Dernoncourt, F. 2016. Sequential short-
text classification with recurrent and convolutional neural
networks. arXiv preprint arXiv:1603.03827.
Li, B.; Vorobeychik, Y.; and Chen, X. 2016. A general
retraining framework for scalable adversarial classification.
arXiv preprint arXiv:1604.02606.
Liu, Y.; Chen, X.; Liu, C.; and Song, D. 2016. Delving
into transferable adversarial examples and black-box attacks.
arXiv preprint arXiv:1611.02770.
Narodytska, N., and Kasiviswanathan, S. P. 2016. Simple
black-box adversarial perturbations for deep networks. arXiv
preprint arXiv:1612.06299.
Papernot, N.; McDaniel, P.; Goodfellow, I.; Jha, S.; Celik,
Z. B.; and Swami, A. 2016a. Practical black-box attacks
against deep learning systems using adversarial examples.
arXiv preprint arXiv:1602.02697.
Papernot, N.; McDaniel, P.; Jha, S.; Fredrikson, M.; Celik,
Z. B.; and Swami, A. 2016b. The limitations of deep learning
in adversarial settings. In Security and Privacy (EuroS&P),
2016 IEEE European Symposium on, 372–387. IEEE.
Papernot, N.; McDaniel, P.; Swami, A.; and Harang, R. 2016c.
Crafting adversarial input sequences for recurrent neural net-
works. In Military Communications Conference, MILCOM
2016-2016 IEEE, 49–54. IEEE.
Papernot, N.; McDaniel, P.; Wu, X.; Jha, S.; and Swami, A.
2016d. Distillation as a defense to adversarial perturbations
against deep neural networks. In Security and Privacy (SP),
2016 IEEE Symposium on, 582–597. IEEE.

Papernot, N.; McDaniel, P.; and Goodfellow, I. 2016.
Transferability in machine learning: from phenomena to
black-box attacks using adversarial samples. arXiv preprint
arXiv:1605.07277.
Pascanu, R.; Stokes, J. W.; Sanossian, H.; Marinescu, M.; and
Thomas, A. 2015. Malware classification with recurrent net-
works. In Acoustics, Speech and Signal Processing (ICASSP),
2015 IEEE International Conference on, 1916–1920. IEEE.
Schultz, M. G.; Eskin, E.; Zadok, E.; and Stolfo, S. J. 2001.
Data mining methods for detection of new malicious executa-
bles. In Security and Privacy, 2001. S&P 2001. Proceedings.
2001 IEEE Symposium on, 38–49. IEEE.
Schuster, M., and Paliwal, K. K. 1997. Bidirectional recurrent
neural networks. IEEE Transactions on Signal Processing
45(11):2673–2681.
Sutskever, I.; Vinyals, O.; and Le, Q. V. 2014. Sequence
to sequence learning with neural networks. In Advances in
neural information processing systems, 3104–3112.
Szegedy, C.; Zaremba, W.; Sutskever, I.; Bruna, J.; Erhan, D.;
Goodfellow, I.; and Fergus, R. 2013. Intriguing properties of
neural networks. arXiv preprint arXiv:1312.6199.
Tobiyama, S.; Yamaguchi, Y.; Shimada, H.; Ikuse, T.; and
Yagi, T. 2016. Malware detection with deep neural network
using process behavior. In Computer Software and Appli-
cations Conference (COMPSAC), 2016 IEEE 40th Annual,
volume 2, 577–582. IEEE.
Zhang, F.; Chan, P. P.; Biggio, B.; Yeung, D. S.; and Roli, F.
2016. Adversarial feature selection against evasion attacks.
IEEE transactions on cybernetics 46(3):766–777.
Zhang, X.; Zhao, J.; and LeCun, Y. 2015. Character-level
convolutional networks for text classification. In Advances
in neural information processing systems, 649–657.

251

