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Abstract

Clinical decision support has gained significant attention in
recent years, especially with the advancement of data ana-
lytics techniques. One active research area in this domain
is survival prediction or deterioration prediction of critical
care patients, such as intensive care unit (ICU) patients. Usu-
ally, ICUs are equipped with continuous monitoring devices,
which monitor vital signs such as heart rate, blood pressure,
Oxygen saturation and so on. In addition to this, ICU pa-
tients also undergo different pathological (i.e., lab) tests. Re-
cent studies claim that vital signs can be used to predict the
near future status of a patient, with the help of predictive an-
alytics. However, in this work, we investigate the usefulness
of lab test results in patient survival prediction, which have
been rarely used for this purpose. We propose a framework
for utilizing the lab test data for this clinical prediction task.
We encounter several challenges associated with this task, in-
cluding variable-length feature vector, longitudinal features,
missing data, class imbalance and high dimensionality. The
proposed work addresses most of these challenges under this
single framework. In this framework we propose a novel or-
thogonal clustering technique to reduce data dimensions as
well as missing data. We also propose a systematic approach
to inject informative background knowledge into the data and
increase the prediction performance. The proposed technique
has been evaluated on a real ICU patients database, achiev-
ing notable success in reducing 66% of the data dimensions
without discarding any feature, while improving the weighted
average F1-score 5% on average and achiving about 3 times
speedup. We believe that the proposed technique will provide
a powerful framework in the field of clinical and healthcare
data analytics and healthcare decision support.

1 Introduction

Research in clinical prediction and decision support has
gained increasing attention in recent years with the prolif-
eration of digital healthcare data, advancement of data ana-
lytics techniques, and availability of high performance com-
puting services. There are many different sources and forms
of healthcare data, such as electronic health records (EHR),
medical imaging, medical text data (e.g. nurse notes), and
public health data. In this work, we are interested mainly on
utilizing EHR data of intensive care unit (ICU) patients for
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survival prediction of ICU patients. ICU patients are kept
under close monitoring and testing using sophisticated de-
vices. This monitoring can be continuous (e.g. vital signs),
or intermittent, such as the lab tests results. In addition to
these, there are records of medication, nurse notes, demo-
graphic data as well as administrative (e.g. admissions) and
procedural (e.g. caregiver name) information.

Recent research demonstrates the possibilities of utiliz-
ing some of these data, such as vital signs, to predict pa-
tient situation (e.g. deterioration) ahead of time and warn
caregivers to take timely and reliable measures to save the
patient’s life. Therefore, the main goal in this direction of
research is to construct an automated early warning system
based on reliable prediction. There are many challenges in-
volved in building such a system, some of which are men-
tioned in the literature ((Mao et al. ; Fialho et al. 2012;
Baumgartner, Rdel, and Knoll 2012; Cheng et al. 2013)).
Our goal is also aligned with this goal, i.e., construction of
an early warning system. However, instead of vital signs,
we focus on using the laboratory test results, which have
been rarely used for survival prediction. We would like to
investigate the challenges and prospects of using test results
for survival prediction prediction and propose effective so-
lutions that would complement the findings in the literature
that utilizes vital signs.

There are several challenges that need to be addressed
to utilize the lab test data by considering each lab test as
a feature. The first challenge is a variable length feature vec-
tor, which occurs because each patient undergoes a different
subset (possibly overlapping) of lab tests. Therefore, there
will be no uniform feature vector across all patients. How-
ever, most learning algorithms require uniform feature vec-
tor, which forces us to introduce missing values into the fea-
ture vector of each patient. Second, the data suffers from
high dimensionality, which occurs because of the large num-
ber different possible tests that can be done on a patient.
Third, class imbalance is observed, as is observed in many
medical domains. Finally, the lab tests are longitudinal fea-
tures, i.e., the same test may be done more than once on a
patient. Therefore, the challenge is how to effectively and
efficiently handle the multiple values of the same feature.

In this work, we target the first three challenges, i.e., miss-
ing values, high dimensionality, and class imbalance. The
first two challenges are interrelated, because the missing val-
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ues are introduced mainly because of high dimensionality,
and they bring noise, redundancy, and sparsity in the dataset.
One obvious solution is to apply some kind of feature selec-
tion. However, because of the sparsity and missing values,
traditional feature selection techniques do not perform well.
This situation is aggravated by the class imbalance problem.
We propose a novel framework based on orthogonal cluster-
ing of the data, which involves vertical clustering (i.e., fea-
ture clustering) followed by horizontal clustering (i.e., pa-
tient clustering) that significantly reduce the feature dimen-
sions and noise in the dataset. After the clustering, we apply
missing value replacement and class balancing on each clus-
ter, and train a classification model from each cluster. Then
the ensemble of models is used to classify new patient data.

Our contributions are as follows. First, we propose an or-
thogonal clustering (vertical + horizontal) approach to re-
duce data dimension as well as missing data without los-
ing any feature (i.e., performing any feature selection). To
the best of our knowledge, this is the first work to propose
such clustering for missing data reduction. Second, we pro-
pose a framework that systematically handles the missing
data, high dimension, and class imbalance problem. Third,
we demonstrate how carefully chosen background knowl-
edge can be integrated into existing data in order to improve
prediction. Fourth, we apply the proposed technique on a
real patient dataset, and achieve notable improvement over
state-of-the-art techniques in terms of prediction accuracy
and running time. We believe our approach will be very use-
ful in clinical prediction (e.g. survival or mortality) of ICU
patients and a useful tool can be developed from it for to aid
in clinical decision support.

The rest of the paper is organized as follows. Section 2
discusses the works relevant to our technique. Section 3 de-
scribes the proposed approach in details. Then Section 4 re-
ports the experiment details and analyzes the results. Finally,
Section 5 concludes with directions to future research.

2 Related work
There are mainly two broad categories of works related to
the proposed one. The first category deals with different
clinical and healthcare support aspects of ICU patients. The
other category of related work applies machine learning in
general for medical decision support.

First we discuss the works that specially deal with ICU
patients. Mao et al. (Mao et al. ), developed a data-mining
approach to predict deterioration of patients in the ICU.
They used time-series data obtained from different sensors
attached to patient’s body, such as blood pressure, heart
rate, O2 saturation and so on. They preprocessed these time-
series data and derived several features. Finally, they applied
different feature selection and optimization techniques to
build prediction model, which observes good prediction rate.
Pirracchio et al. (Pirracchio et al. 2015) proposed a learn-
ing algorithm to predict mortality of ICU patients and suc-
cessfully used in real hospitals. Cismondi et al. (Cismondi et
al. 2013) addressed a different goal involved with ICU pa-
tients, namely, how to reduce unnecessary lab testing in the
ICU. However, they only focus on gastrointestinal bleeding.
In our work, we are targeting all cases in the ICUs.

Some other relevant work dealing with ICU patients are
as follows. Fialho et al. (Fialho et al. 2012) proposed a fea-
ture selection technique to find the best features in order to
predict ICU readmissions. Cheng et al. (Cheng et al. 2013)
proposed a clinical decision support system using associa-
tion rule mining that finds associations among various vari-
ables such as patients’ conditions, length of ICU stays and
so on, and reports interesting findings.

Our proposed work is different from the above in that
most of the above works use vital signs or demographic vari-
ables, whereas we use only lab test results. Also, we study
different background knowledge, carefully choose some of
them that are most informative, and add them to the data,
which most other works did not consider.

The other category of related work are all approaches that
in general deal with data mining based solutions for devel-
oping clinical decision support systems. Herland et al. (Her-
land, Khoshgoftaar, and Wald 2013) did a comprehensive
survey on this topic, i.e., clinical data mining applications
on big data in health informatics. Celi et al. (Celi et al. 2011)
applied a statistical approach to predict mortality among pa-
tients with acute kidney injury. Cai et al. (Cai et al. 2016)
proposed a Bayesian network approach to develop models
using EHR for real-time prediction of several targets, in-
cluding length of hospital stay, mortality, and readmission
of hospitalized patients.

Our proposed orthogonal clustering approach can be
thought of a variant of bi-clustering (Pontes, Girldez, and
Aguilar-Ruiz 2015). However, the main difference between
the proposed clustering and bi-clustering is that the proposed
clustering is done without using any feature value, but by
considering missing data in computing the distance measure.
Whereas other clustering techniques use the values of each
feature to compute vector distance. Although our approach
also applies data mining technique for survival prediction of
ICU patients, it is more focused towards improving the pre-
diction performance as well as efficiency in running time.
Therefore, we believe it is applicable to any clinical deci-
sion support problem in general.

3 Proposed method

In this section first we give an overview of the proposed tech-
nique and then describe it in details.

3.1 High level description

Figure 1 shows the high level architecture of our approach.
The ICU patients data are stored in a database. We use the
lab test results data from the database, and combine it with
some other tables such as demographic and administrative
information. Then the data are cleaned and we choose only
good quality data for training. Then we extract features from
the processed data, where each feature corresponds to a lab
test. Then we apply feature clustering followed by patient
clustering on the feature set. This is followed by missing
value replacement and class balancing process for each clus-
ter. Then each cluster is used to build a prediction model us-
ing a classifier learning algorithm, thereby generating an en-
semble of models. Finally, these ensembles are used to pre-
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Figure 1: Architecture of the proposed approach

dict survival of new patients based on lab test results. Each
of these steps are discussed below.

3.2 Database

The source of all datasets in this work is MIMIC-III
(Physionet-MIMICIII ). The database is collected by the
Multi-parameter Intelligent Monitoring in Intensive Care
(MIMIC) project at the Laboratory of Computational Phys-
iology at MIT, funded by the National Institute of Biomedi-
cal Imaging and Bioengineering. The data was collected be-
tween 2001 to 2012 and contain more than 50,000 hospital
admissions.

The database consists of 25 different tables, each contain-
ing different types of information, such as demographic data,
hospital admission data, ICU stay data, medication informa-
tion, lab test results, nurse notes and so on. Among these
tables, we mainly use the lab test data (called Labevents) as
well as some demographic and admission related informa-
tion from other tables as discussed below.

The lab test data contains lab test result for each test done
on each patient. For each lab test done, there is a record con-
taining the numeric value of the result, a flag (binary) indi-
cating whether the result was normal or abnormal, the unit
of measurement, and date/time of the test performed.

We use the Patient table that contains contains the date
of birth, gender, and whether the patient died or survived.
We also use the Admissions table, which contains the date of
admission, date of discharge, ethnicity, and diagnosis of the
patient. We compute the age of a patient by joining the Pa-
tient table and Admissions table and deducting date of birth
from the date of admission. Finally, we also use the ICUS-
tays table that contains the length of stay of the patient.

3.3 Data merging, selection, and cleaning

We merge data from the Labevents table with the Patient ta-
ble to assign class labels to each patient (i.e., dead/alive),
which gives us a binary classification problem. In order to
add background knowledge, we merge the corresponding

Figure 2: Illustration of orthogonal clustering

data from other tables (mentioned above). Data cleaning and
selection are done as follows: First, we discard all lab test
records that contain null or undefined values. Second, we
choose only the patients with age 65 or more, as this group
has the highest prevalence of ICU mortality. Third, we dis-
card all patients who did not undergo any lab test. Finally,
we only consider lab test records of the last ICU stay of a
patient if he stayed more than once in ICU.

3.4 Feature extraction

Features are extracted from the Labevents table as follows.
First we enumerate a list of all different lab tests done on
the selected patients, which we will denote as the feature
set. Then for each patient, we extract the test results for each
feature from the records of that patient. This requires search-
ing through several millions of lab test records. If the test
was not administered on the patient, then the feature value is
regarded as missing, and if the test was administered more
than once, we take the last value. However, a more appropri-
ate treatment for this case (i.e., more than one values) can be
done by adapting a longitudinal feature treatment approach;
but we vow to address this issue in future.
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3.5 Orthogonal clustering (ORCU)

We divide the dataset into smaller clusters using a technique
that we call Orthogonal clustering or ORCU, in short. This
is a two stage clustering process, where in the first stage
we vertically cluster the dataset by clustering the features
and in the second stage, we horizontally partition the stage-
1 clusters by clustering the subjects. The clustering is done
based on the lab test profiles, that is, for the stage-1, we par-
tition the dataset by grouping features such that each group
of features (i.e., lab tests) are administered (approximately)
on the same subset of patients. For the stage-2, we parti-
tion each stage-1 clusters by grouping the subjects such that
each group is described by (approximately) the same subset
of features (i.e., lab tests). Figure 2 illustrates the orthogonal
clustering approach with a toy example.

Note that during the clustering we do not look into the
feature values in the dataset; rather we only see whether a
feature has a missing value in a feature vector or not. Both
clustering processes reduce high dimensionality of data, as
well as reduce sparsity. After stage-2 clustering, we perform
missing value replacement, class balancing, and training a
classification model from each cluster, which forms an en-
semble of models. Missing value replacement on the clus-
tered data is more useful than on the original data, as the pro-
portion of missing values is much less in the latter. However,
note that our main focus is not proposing a new approach for
replacing missing value restore class balancing. Therefore,
for both operations, we use the available techniques, such as
replacing missing value with a mean or mode, and restore
class balancing using SMOTE (Chawla et al. 2002).

In order to explain the clustering process, first we detail
the notations and define some terms here.

Notations and definitions: Let DM,N be a dataset with
M subjects, and N features, where S = {S1, ..., SM} is the
set of Subjects, i.e., patients; and F = {F1, ..., FM} is the
set of feature, i.e., lab tests. Therefore, the dataset DM,N

is an MxN matrix, where each cell d[i][j] consists of the
feature value (i.e., test result) of the i-th patient Si for the
j-th feature Fj . Also, we denote each row and column of the
matrix as follows: The i-th row, i.e., the feature vector for
Subject Si is
DM,N [i] = {d[i][1], ..., d[i][N ]}
And the j-th column, i.e., the column for Feature Fj is
DT

M,N [j] = {d[1][j], ..., d[M ][j]}T
Definition 1 (Feature coverage vector FV (Si)) : The fea-
ture coverage vector FV (Si) of a Subject Si is the set of fea-
tures having non-missing values for this subject. Therefore,
FV (Si) = {Fj1 , ..., Fjq} , where the feature Fjk , 1 ≤ k ≤ q
has a non-missing value in the feature vector of Subject Si

(i.e., d[i][jk] is not missing value).

In other words, FV (Si) represents the set of lab tests that
were actually administered on the patient Si. All other fea-
tures have missing values in the feature vector of Si.
Definition 2 (Subject coverage vector SV (Fj)) : The
subject coverage SV (Fj) of a Feature Fj is the set of
subjects having non-missing values for this feature in the
feature vector. Therefore, SV (Fj) = {Si1 , ..., Sir} , where

the subject Sik , 1 ≤ k ≤ r has a non-missing value for
feature Fj in its feature vector (i.e., d[ik][j] is not missing
value).

In other words, SV (Fj) represents the set of patients on
whom the test Fj was actually administered. All other pa-
tients have missing values for Fj in their feature vector.

Definition 3 (Total missing count, TMC(DM,N )) : The
total missing count TMC(DM,N ) in the dataset is the total
number of missing values in all the feature vectors. This can
be expressed with the following equation:

TMC(DM,N ) =

M∑

i=1

(N − |FV (Si)|) (1)

Now we define the distance between coverage vectors.

Definition 4 (Vector distance, Dist(A,B)) : Let A and B
be two coverage vectors, where both of them are feature cov-
erage vectors or both of them are subject coverage vectors.
The distance between A and B is the normalized vector dis-
similarity, i.e., Jaccard distance:

Dist(A,B) =
|A ∪B| − |A ∩B|

|A ∪B| (2)

The value of which is between 0 (exactly the same) and 1
(most distant). The distance value indicates what percent-
age of the combined vector will have missing values when
vectors A and B are combined. For example, if the distance
is 0.7, it means 70% of the combined feature vector (i.e.,
A ∪B) will have missing values.

Vertical (stage-1) clustering by grouping features This
is done by iterative binary clustering of the dataset. The bi-
nary clustering is done as follows. First, we randomly initial-
ize two clusters, say C[0] and C[1], with the subject cover-
age of two randomly chosen features. Then for each remain-
ing features f , we compute the distance between the subject
coverage f and the clusters, and place f in the nearest clus-
ter. After this placement, the subject coverage of the clus-
ter is updated as necessary. Algorithm 1 sketches the binary
clustering technique. Lines 1-3 of the algorithm initializes
two clusters with randomly chosen features and correspond-
ing subject vectors. Then the for loop in lines 4-17 considers
each remaining feature, chooses the nearest cluster by dis-
tance (lines 10-16), and adds to the cluster.

Horizontal (stage-2) clustering by grouping subjects
This is done by iterative binary clustering of each of the
stage-1 clusters. The binary clustering is done as follows.
First, we randomly initialize two clusters, say C[0] and C[1],
with the feature coverage of two randomly chosen subjects.
Then for each remaining subject s, we compute the distance
between the feature coverage of s and the clusters, and place
s in the nearest cluster. After this placement, the feature cov-
erage of the cluster is updated as necessary. The algorithm
can be obtained by a transformation of Algorithm 1 by using
feature coverage instead of subject coverage, therefore, we
omit the details.
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Algorithm 1 Feature-Clustering
Input: DM,N : Dataset to cluster
Output: {C[1], C[2]} such that C[1] ∪ C[2] = DM,N and

C[1] ∩ C[2] = φ and
TMC(C[1]) + TMC(C[2]) < TMC(DM,N )

1: V i ← RandomSelect(SV (Fi)) // Randomly choose a feature
coverage vector

2: V j ← SV (Fj) such that Dist(SV (Fi), SV (Fj)) is the max
3: C[1] = V i, C[2] = V j
4: for all SV (Fk) ∈ DM,N do
5: if Fk ∈ FV (C[1]) or Fk ∈ FV (C[2]) then
6: continue //already in a cluster
7: end if
8: d1 = Dist (SV (C[1]), SV (Fk)) //equation 2
9: d2 = Dist (SV (C[2]), SV (Fk)) //equation 2

10: if d1 < d2 then
11: FV (C[1]) ← FV (C[1]) ∪ Fk //add to feature set
12: SV (C[1]) ← SV (C[1]) ∪ SV (Fk) //add to subject cov
13: else
14: FV (C[2]) ← FV (C[2]) ∪ Fk //add to feature set
15: SV (C[2]) ← SV (C[2]) ∪ SV (Fk) //add to subject cov
16: end if
17: end for

Algorithm 2 Orthogonal Clustering and Ensemble Training
Input: DM,N : Training Data (feature matrix)
Output: Clusters of data {C[1], ...C[m]} such that

∪m
i=1(C[i]) = DM,N

E: the ensemble classifier, E = {E1, ...Em}
1: Q ← φ //Queue
2: X ← DM,N

3: C ← φ
4: if splitCond(X , stage-1) then
5: Q ⇐ (X , stage-1) //Enque
6: end if
7: while Q <> φ do
8: (X , stg) ⇐ Q //Deque

/* Perform vertical (stage-1) clustering (algorithm 1) or
horizontal (stage-2) clustering */

9: if stg = stage-1 then
10: B[1], B[2] ← Feature-Clustering(X) //vertical
11: else
12: B[1], B[2] ← Subject-Clustering(X) //horizontal
13: end if
14: for i ← 1 to 2 do
15: if splitCond(B[i],stg) then
16: Q ⇐ (B[i], stg) //Enque for further clustering
17: else
18: if stg = stage-1 then
19: Q ⇐ (B[i], stg-2) //Enque for stage-2 clustering
20: else
21: C ← C ∪B[i]

/* No more splitting, add to the cluster list */
22: end if
23: end if
24: end for
25: end while
26: m ← |C| //number of data groups
27: for i ← 1 to m do
28: C[i] ← Replace-missingvalue(C[i])
29: C[i] ← Class-balancing(C[i])
30: Ei ← TrainClassifier(C[i])
31: end for

Algorithm 2 sketches the overall ORCU algorithm. First
we check if the dataset should be split (line 4), based on
an split-condition. The condition is that the cross validation
accuracy of the dataset should be at least same as the par-
ent dataset (i.e., the dataset from which we got this dataset).
Since at the beginning, there is no parent dataset, we set the
threshold to 50% (i.e., if cross validation acc < 50% then
don’t split). If the condition is true, the dataset is put into
a queue (line 5) for further processing. The while loop be-
tween lines 7-25 repeatedly splits the data into smaller clus-
ters (lines 9-13). When stage-1 splitting condition is not sat-
isfied (lines 17-23), we try applying stage-2 splitting (line
19), otherwise, we add the cluster to the processed clus-
ter list (line 21). Finally, each cluster goes through missing
value replacement and class balancing (line 28-29), and we
train a classification model from each cluster, which gives
us an ensemble of models.

3.6 Ensemble classification

The ensemble of models E = {E1, ..., Em} trained in the
previous phase is used to classify new patients to predict the
mortality. Algorithm 3 sketches the ensemble classification
technique. We apply a weighted majority voting technique
where the weight of each model is inversely proportional to
the distance (feature coverage vector based) between the test
instance and the corresponding dataset of the model. That
is, lower distance has higher weight and vice-versa. This en-
sures that if there is a larger disparity in the feature sets, the
weight will be smaller.

Algorithm 3 Classify
Input: x: Instance to classify, E = {E1, ..., Em}: Ensem-

ble of classifiers
Output: y: The predicted class

1: for i ← 1 to m do
2: yi ← Classify(x,Ei) //Classify
3: C[i] ← Dataset (i.e., cluster) for Ei

4: ui ← Dist(FV (x), FV (C[i])) //equation 2
5: end for
6: U ← minmi=1 ui

7: for i ← 1 to m do
8: wi = U/ui //weight calculation
9: end for

10: W ← ∑m
i=1 wi

11: y ← ∑m
i=1 wiyi/W

4 Experiments

In this section we describe the experiments and analyze the
results.

4.1 Data set and preprocessing

The source of all datasets in this experiment is MIMIC-III
(Physionet-MIMICIII ), as described in Section 3.2.

We first organize the patients into different demographic
groups based on their age. Then we keep only the age group
with 65 or more age, which exhibits the highest prevalence
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of ICU mortality. The total number of patients our working
dataset is 5,602. Among them, approximately 43% are la-
beled alive, and the rest are labeled dead.

4.2 Competing approaches:

Base: This is the Baseline, with no preprocessing applied.
BMR: Baseline with Missing value Replacement applied.
BSMC: Baseline with feature Selection, Missing value re-
placement and Class balancing applied. Feature selection is
done using gain ratio criteria, and number of selected fea-
tures is set equal to the average number of features in each
cluster obtained by the proposed method (ORCUE).
ORCUE: Proposed ORthogonal ClUstering and Ensemble
classification approach.

4.3 Parameters and other setup

Base classifiers: We use NaiveBayes (NB), Decision Tree
(J48) Random Forest (RF), and Support Vector Machine
(SVM) from the WEKA API (wek ). For each base learner
we use the default parameter settings available in WEKA.
For missing value replacement, we use the WEKA attribute
filter ReplaceMissingValue, which replaces the missing val-
ues with mean/median of the attribute. For class balancing
we use the WEKA instance filter SMOTE, which generates
synthetic data for the minority class. We generate the minor-
ity data such that minority/majority ratio becomes 45/55 in
the dataset.

4.4 Evaluation

Evaluation metric: Unless mentioned otherwise, we use
F1-measure:

F1 = 2.
precision.recall

precision+ recall
. (3)

We calculate the F1 for each class (i.e., “Alive”, and “Dead”)
and then report the weighted average F1, as follows:

FA =
F1Alive ∗ CountAlive + F1Dead ∗ CountDead

CountAlive + CountDead
(4)

Evaluation data: We arrange the data in order of hospi-
tal admission time. Then we take the first two-thirds as the
training data and the last one-third as the evaluation data,
which are used for all competing approaches.

Performance comparison in terms of FA : Figure 3
shows the performance of each competing approach in terms
of FA on the lab test data for each classifier. We observe
that except NB, ORCUE exhibits the best performance. For
example, for the RF classifier, the FA score of ORCUE is
66%, whereas that of the nearest competitor BSMC is only
51%. Overall (averaging all classifier performance), OR-
CUE achieves 65%, which is 7% higher than the overall
performance (58%) of the nearest competitors (Base and
BSMC). The overall performance of BMR is the lowest
(55.7%). This shows the disadvantage of missing value re-
placement on a dataset where there is a very high proportion
of missing data.

 40
 45
 50
 55
 60
 65
 70

NB J48 RF SVM Overall

F A

Classifier

Base
BMR

BSMC
ORCUE

Figure 3: FA on Lab test data

Figure 4: Prevalence and survival rates of top diagnosis for
the patient in the dataset

Adding informative background knowledge: We study
different background knowledge and carefully choose the
best informative of them to the data. There are mainly two
different categories of background knowledge added to the
lab test features. First, we add the diagnosis information of
each patient. ICU patients are diagnosed with different dis-
eases and this information is available in the Admissions ta-
ble. Statistics of prevalence rate (%) and survival rate (%) of
the top diagnosis in our dataset are shown in Figure 4.

Among these diagnoses, we use the ones that exhibit rela-
tively high predictive power; i.e., have high survival (or mor-
tality) rate. For example, we choose Coronary Artery Dis-
ease as it has high survival rate (70%), as well as Pneumonia,
that has high mortality rate (72%). We use each diagnosis as
a binary feature, that is, if the patient is diagnosed with the
corresponding diagnosis, then feature value is 1; otherwise
it is 0. We will denote this data as Lab+Diag data.

The second category of background knowledge that we
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Figure 5: Performance in (a) Lab+Diag data and (b) Lab+Dmg data (c) Performance comparison in the three datasets for
ORCUE

add to the lab tests are demographic and administrative data,
namely, the age of the patient and length of stay (los) in the
ICU. We will denote this data as Lab+Dmg data.

Figures 5(a,b,c) report the effect of adding selected infor-
mative background knowledge on prediction performance
of different approaches. Figures 5(a) and (b) show the FA

values of the competing approaches when the lab test data
are augmented with the Diagnosis data, and demographic
data (age & length of stay), respectively. The relative perfor-
mances of the competing approaches are similar to what we
observe with only the lab test data, i.e., ORCUE still exhibits
the best performance, followed by BSMC and Base. The
advantage of adding the background knowledge becomes
more evident with the Figure 5(c), which shows the rela-
tive performance of ORCUE on the three datasets (Labtest
only, Lab+Diag, and Lab+Dmg). For NB and J48 classi-
fiers, we observe about 2% improvement when Diagnosis
data are added, whereas for SVM, about 1% improvement is
observed after adding Diagnosis data. On the other hand, NB
and SVM observers 1% and 2% improvements, respectively,
when Demographic data are added. On average, we observe
about 0.7% and 0.6% improvements in FA when Diagnosis
data and Demographic data are added, respectively. This in-
dicates the effectiveness of careful selection and inclusion
of background knowledge. We believe thoughtful inclusion
of more background knowledge can further improve the pre-
diction accuracies.

Table 1: Summary result on all datasets (average of all learn-
ers)

Competitor Labtest Lab+Diag Lab+Dmg Overall
Base 58.3 61.4 61.1 60.3
BMR 55.7 59.2 58.1 57.7
BSMC 57.9 61.5 60.1 59.8
ORCUE 64.7 65.5 65.2 65.1

Table 1 summarizes the findings above. Here we report
the FA of each approach for each dataset averaged over all
the classifiers. We observe that ORCUE achieves the highest
value for all datasets. On the labtest data, ORCUE is about

Figure 6: Average running time of each competing approach

6% higher than the nearest competitor, which is Base (64.7
vs 58.3). For the Lab+Diag and Lab+Dmg, we observe 4%
higher value for ORCUE from the nearest competitor, and
on average (shown in the overall column), ORCUE achieves
5% higher FA than any competitor. This indicates the effec-
tiveness of the proposed approach, which is mainly achieved
because of the two-stage clustering by lab test profiles that
reduces high dimensionality, noise, and sparsity in the data
without losing much useful features.

Performance comparison in terms of running time: We
report the running times, with a breakdown of training
and classification times for each competing approach, aver-
aged over all datasets and learning algorithms, in Figure 6.
The training time for BMR includes missing value replace-
ment time, that of BSMC includes feature selection, miss-
ing value replacement, and class balancing, and that of OR-
CUE includes clustering time, missing value replacement,
and class balancing time. We report two variations of OR-
CUE, namely parallel and serial. The parallel version runs
the stage-2 clustering, training of each cluster, and ensemble
classification in parallel; whereas the serial version runs ev-
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erything sequentially. The highest total running time is ob-
served for BSMC (25.7 seconds), and the lowest for OR-
CUE parallel (9.4 seconds). Therefore ORCUE parallel is
about 2.7 times faster than BSMC. ORCUE serial is also
faster then BSMC. The high running time of BSMC occurs
because of the feature selection, missing value replacement
and class balancing processes. The main reason for ORCUE
having lowest running time is that of efficient clustering
as well as reduced dimension and noise. The total running
times of other baselines (i.e., Base and BMR) are also higher
than ORCUE parallel because of their high dimensionality
and missing values.

Other statistics: Finally, we summarize the overall im-
provement of ORCUE over traditional predictive learning
approach in table 2. We show different metrics such as the
rate of data reduction due to ORCUE over original datasets,
improvements in prediction accuracies and running times.
These statistics are taken by averaging the results from all
base learners. The overall improvement is noteworthy and
an indication of the usefulness of the proposed technique.

Table 2: Overall improvements due to ORCUE
Criteria Value

Total features before ORCU 624
Average features After ORCU 210

Data reduction by ORCU 66%
Missing value reduction by ORCU 45%

Overall improvement in prediction (compared to BSMC) 5%
Overall speedup achievement (compared to BSMC) 275%

5 Conclusion

We have proposed a framework for utilizing lab test data for
ICU patient survival prediction with a novel orthogonal clus-
tering technique. We also showed how to effectively inte-
grate background knowledge into the dataset to improve pre-
diction accuracy. The proposed technique has been proved
to be very effective in reducing the data size, improving the
prediction accuracy and significantly reducing the running
time. We believe that the proposed work will be a valuable
contribution to healthcare decision support, health data ana-
lytics as well as Big data analytic techniques where the data
exhibits similar characteristics.

In future, we would like to address the issue of longitudi-
nal feature that is observed with the lab tests. Furthermore,
we would like increase the effectiveness of the prediction
performance by combining the lab test data with the vital
signs data. Finally, we would like to apply this technique to
other areas of clinical decision support systems where the
data exhibits similar properties.
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