
Probabilistic Planning by
Probabilistic Programming

Vaishak Belle
University of Edinburgh and Alan Turing Institute

vaishak@ed.ac.uk

Abstract

Automated planning is a major topic of research in artificial
intelligence, and enjoys a long and distinguished history. The
classical paradigm assumes a distinguished initial state, com-
prised of a set of facts, and is defined over a set of actions
which change that state in one way or another. Planning in
many real-world settings, however, is much more involved: an
agent’s knowledge is almost never simply a set of facts that
are true, and actions that the agent intends to execute never
operate the way they are supposed to. Thus, probabilistic
planning attempts to incorporate stochastic models directly
into the planning process. In this article, we briefly report on
probabilistic planning through the lens of probabilistic pro-
gramming: a programming paradigm that aims to ease the
specification of structured probability distributions. In partic-
ular, we provide an overview of the features of two systems,
HYPE and ALLEGRO, which emphasise different strengths
of probabilistic programming that are particularly useful for
complex modelling issues raised in probabilistic planning.
Among other things, with these systems, one can instantiate
planning problems with growing and shrinking state spaces,
discrete and continuous probability distributions, and non-
unique prior distributions in a first-order setting.

Introduction
Automated planning is a major topic of research in artifi-
cial intelligence, and enjoys a long and distinguished history
(Fikes and Nilsson 1971). The classical paradigm assumes a
distinguished initial state, comprised of a set of facts, and is
defined over a set of actions which change that state in one
way or another. Actions are further characterised in terms
of their applicability conditions, that is, things that must be
true for the agent to be able to execute it, and effects, which
procedurally amounts to adding new facts to a state while
removing others. The scientific agenda is then to design al-
gorithms that synthesise a sequence of actions that takes the
agent from an initial state to a desired goal state.

From the early days, automated planning was motivated
by robotics applications. But it was observed that the real
world – or more precisely, the robot’s knowledge about the
world – is almost never simply a set of facts that are true,
and actions that the agent intends to execute never operate

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the way they are supposed to. One way to make sense of this
complication is to separate the “high-level reasoning,” in our
case the planner’s search space, from the low-level sensor-
motor details. On the positive side, such a move allows the
plan representation to be finite, discrete and simple. On the
negative side, significant expert knowledge has to go into
materialising this separation of concerns, possibly at the loss
of clarity on the behaviour of the system as a whole.

Incidentally, by testing the robot’s effectors repeatedly
in a controlled environment, one can approximate the un-
certain effects of an action in terms of a probability distri-
bution. Similarly, based on minimalistic assumptions about
the environment, expressed as a probabilistic prior, by re-
peated sampling, the robot can update its prior to converge
on a reasonable posterior that approximates the environment
(Thrun, Burgard, and Fox 2005). To that end, probabilis-
tic planning attempts to incorporate such models directly
into the planning process. There are to-date numerous lan-
guages and algorithmic frameworks for probabilistic plan-
ning, e.g., (Domshlak and Hoffmann 2007; Boutilier, Dean,
and Hanks 1999; Kaelbling, Littman, and Cassandra 1998;
Ong et al. 2010).

In this article, we briefly report on probabilistic plan-
ning through the lens of probabilistic programming (Gordon
et al. 2014). Probabilistic programming is a programming
paradigm that aims to ease the specification of structured
probability distributions; these languages are developed so
as to enable modularity and re-use in probabilistic machine
learning applications. Their atomic building blocks incorpo-
rate stochastic primitives, and the formal representation also
allows for compositionality. Here, we specifically provide
an overview of the features of two kinds of systems, both of
which have their roots in logic programming:

• HYPE (Nitti, Belle, and Raedt 2015): a planning frame-
work based on distributional clauses (Gutmann et al.
2011); and

• ALLEGRO (Belle and Levesque 2015): a high-level con-
trol programming framework that extends GOLOG (Re-
iter 2001).

These two systems emphasise different strengths of prob-
abilistic programming, which we think are particularly use-
ful for complex modelling issues raised in probabilistic plan-
ning. HYPE can easily describe growing and shrinking state

The Workshops of the Thirty-Second 
AAAI Conference on Artificial Intelligence

654



spaces owing to uncertainty about the existence of objects,
and thus is closely related to BLOG models (Milch et al.
2007; Srivastava et al. 2014). Since HYPE is an extension of
PROBLOG (Raedt, Kimmig, and Toivonen 2007), it stands
to benefit from a wide range of applications and machine
learning models explored with PROBLOG.1 The dynamical
aspects of the domain are instantiated by reifying time as an
argument in the predicates, and so it is perhaps most appro-
priate for finite horizon planning problems.

ALLEGRO treats actions as first-class citizens and is built
on a rich model of dynamics and subjective probabilities,
which allows it to handle context-sensitive effect axioms,
and non-unique probability measures placed on first-order
formulas. GOLOG has also been widely used for a range
of applications that apply structured knowledge (e.g., on-
tologies) in dynamical settings (Lakemeyer and Levesque
2007), and ALLEGRO stands to inherit these developments.
GOLOG has also been shown as a way to structure search in
large plan spaces (Baier, Fritz, and McIlraith 2007). Finally,
since there are constructs for iteration and loops, such pro-
grams are most appropriate for modelling non-terminating
behaviour (Claßen and Lakemeyer 2008).

In the sequel, we describe the essential formal and al-
gorithmic contributions of these systems before concluding
with open computational issues.

HYPE
PROBLOG aims to unify logic programming and proba-
bilistic specifications, in the sense of providing a language to
specify distributions together with the means to query about
the probabilities of events. As a very simple example, to ex-
press that the object c is on the table with a certain proba-
bility, and that all objects on the table are also in the room,
we would write (free variables are assumed to be quantified
from the outside):

.6 :: onTable(c).
inRoom(x) ← onTable(x).

This then allows us to query the probability of atoms such
inRoom(c).

A more recent extension (Gutmann et al. 2011) geared
for continuous distributions and other infinite event-space
distributions allows the head atom of a logical rule to be
drawn from a distribution directly, by means of the following
syntax:

h ∼ D ← b1, . . . , bn.

For example, suppose there is an urn with an unknown
number of balls (Milch et al. 2007). Suppose we pull a ball
at a time and put it back in the urn, and repeat these steps
(say) 6 times. Suppose further we have no means of iden-
tifying if the balls drawn were distinct from each other. A
probabilistic program for this situation might be as follows:

1dtai.cs.kuleuven.be/problog

n ∼ poisson(6).
pos(x) ∼ uni f orm(1, 10) ← between(1,� (n), x).

For simplicity, we assume here that the physical form of
the urn is a straight line of length 10, and the position of a
ball is assumed to be anywhere along this line.

HYPE is based on a dynamic extension that allows us to
temporally index the truth of atoms, and so can be used to
reason about actions. For example, the program:

numBehind(x, t + 1) ∼ poisson(1) ← removeObj(x, t).

says that on removing the object x at t, we may assume
that there are objects – typically one such object – behind x.
Such programs can be used in object tracking applications
to reason about occluded objects (Nitti 2016).

A common declaration in many robotics applications
(Thrun, Burgard, and Fox 2005) is to define actions and sen-
sors with an error profile, such as a Gaussian noise model.
These can be instantiated in HYPE using:

pos(x, t + 1) ∼ gaussian(� (pos(x, t)) + 1, var)
← move(x, t).

obs(x, t + 1) ∼ gaussian(� (pos(x, t)), var).

The first rule says that the position of x on doing a move
action is drawn from a normal distribution whose mean is x’s
current position incremented by one. The second one says
that observing the current position of x is subject to additive
Gaussian noise.

As an automated planning system, HYPE instantiates a
Markov decision process (MDP) (Puterman 1994). Recall
that MDPs are defined in terms of states, actions, stochastic
transitions and reward functions, which can be realised in
the above syntax using rules such as:

poss(act, t) ← conditions(t).
reward(num, t) ← conditions(t).

To compute a policy, which is a mapping from states and
time points to actions, HYPE combines importance sam-
pling and SLD resolution to effectively bridge the high-level
symbolic specification and the probabilistic components of
the programming model. HYPE allows states and actions to
be discrete or continuous, yielding a very general planning
system. Empirical evaluations are reported in (Nitti, Belle,
and Raedt 2015) and (Nitti et al. 2017).

ALLEGRO
The GOLOG language has been successfully used in a wide
range of applications involving control and planning (Lake-
meyer and Levesque 2007), and is based on a simple ontol-
ogy that all changes are a result of named actions (Reiter
2001). An initial state describes the truth values of prop-
erties, and actions may affect these values in non-trivial

655



context-sensitive ways. In particular, GOLOG is a program-
ming model where executing actions are the simplest in-
structions in the program, upon which more involved con-
structions for iteration and loops are defined. For example, a
program to clear a table containing an unknown number of
blocks would be as follows:

([πx onTable(x)?; removeObj(x)])∗;¬∃x onTable(x)?

Here, π is the non-deterministic choice of argument, semi-
colon denotes sequence, ? allows for test conditions, and ∗
is unbounded iteration. The program terminates successfully
because the sub-program before the final test condition re-
moves every object from the table.

As argued in (Lakemeyer and Levesque 2007), the rich
syntax of GOLOG allows us, on the one hand, to represent
policies and plans in an obvious fashion; for example:

a1; . . . ; an; P?

ensures that the goal P is true on executing the sequence of
actions. However, the syntax also allows open-ended search;
for example:

while ¬P πa. a

tries actions until P is made true. The benefit of GOLOG
then is that it allows us to explore plan formulations between
these two extremes, including partially specified programs
that are completed by a meta-language planner.

ALLEGRO augments the underlying ontology to reason
about probability distributions over state properties, and al-
low actions with uncertain (stochastic) effects. In logical
terms, the semantical foundations rests on a rich logic of
belief and actions. Consequently, it can handle partial prob-
abilistic specifications. For example, one can say c is on the
table with a certain probability as before: pr(onTable(c)) =
.6, but it is also possible to express the probability that
there is an object on the table without knowing which one:
pr(∃x onTable(x)) = .6. We can go further and simply
say that there is a non-zero probability of that statement:
pr(∃x onTable(x)) > 0, which means that any distribution
satisfying the formula is admissible. Such a feature can be
very useful: for example, in (Kaelbling and Lozano-Pérez
2013), it is argued that when planning in highly stochastic
environments, it is useful to allow a margin of error in the
probability distributions defined over state properties.

To model the case of Gaussian error models, actions with
uncertain effects are given a general treatment. For one
thing, the effects of actions are axiomatised using the notion
of successor state axioms which incorporate Reiter’s solu-
tion to the frame problem (Reiter 2001). So, for example,
changing the position of an object using a move action can
be expressed as:

pos(x, do(a, s)) = u ≡
(a = move(x, y) ∧ pos(x, s) = u + y)
∨(a 
= move(x, y) ∧ pos(x, s) = u)

This says that if the action of moving x was executed, its
position (along a straight line) is decremented by y units, and
for all other actions, the position is unaffected. To deal with
uncertain effects, we will distinguish between what the agent
intends and what actually happens. That is, let move(x, y, z)
be a new action type, where y is what the agent intends,
and z is what happens. Then, the successor state axiom is
rewritten as follows:

pos(x, do(a, s)) = u ≡
(a = move(x, y, z) ∧ pos(x, s) = u + z)
∨(a 
= move(x, y, z) ∧ pos(x, s) = u)

The story remains essentially the same, except that z deter-
mines the actual position in the successor state, but it is not
in control of the agent. A Gaussian error profile can be ac-
corded to this action by means:

l(move(x, y, z), s) = gaussian(z; y, var)
That is, the actual value is drawn from a Gaussian whose

mean is the intended argument y. Analogously, attributing
additive Gaussian noise in a sensor for observing the posi-
tion is defined using:

l(obs(x, z), s) = gaussian(z; pos(x, s), var)

That is, the observation z is drawn from a Gaussian whose
mean is the actual position of the object x.

As hinted above, as an extension to GOLOG, the syntax
of ALLEGRO is designed to compactly represent full or par-
tial plans and policies in a general way, and on termination,
ALLEGRO programs can be tested for any probabilistic or
expectation-based criteria. The foundations of ALLEGRO
was established in (Belle and Levesque 2015) with a discus-
sion on its empirical behaviour against a predecessor based
on goal regression.

Conclusions
Automated planning is often deployed in an application con-
text, and in highly stochastic and uncertain domains, the
planning model may be derived from a complex learning
and reasoning pipeline, or otherwise defined over non-trivial
state spaces with unknowns. In this article, we reported
on two probabilistic programming systems to realise such
pipelines. Indeed, combining automated planning and prob-
abilistic programming is receiving considerable attention re-
cently, e.g., (Srivastava et al. 2014). These languages are
general purpose, and their first-order expressiveness can not
only enable a compact codification of the domain but also
achieve computational leverage.

One of the key concerns with the use of probabilis-
tic programming and stochastic specifications generally is
that most systems perform inference by Monte Carlo sam-
pling. As is well-known, one is able to only obtain asymp-
totic guarantees with such methods, and moreover, han-
dling low-probability observations can be challenging. In
that regard, there have been recent logical approaches for

656



inferring in mixed discrete-continuous probability spaces
with tight bounds on the computed answers (Belle, Van den
Broeck, and Passerini 2015; Belle, Passerini, and Van den
Broeck 2015; Chistikov, Dimitrova, and Majumdar 2015).
Since HYPE, ALLEGRO and many such systems use proba-
bilistic inference as a fundamental computational backbone,
the question then is whether the aforementioned approaches
can enable robust planning and programming frameworks in
stochastic domains.

References
Baier, J. A.; Fritz, C.; and McIlraith, S. A. 2007. Exploit-
ing procedural domain control knowledge in state-of-the-art
planners. In Proc. ICAPS, 26–33.
Belle, V., and Levesque, H. J. 2015. Allegro: Belief-based
programming in stochastic dynamical domains. In IJCAI.
Belle, V.; Passerini, A.; and Van den Broeck, G. 2015. Prob-
abilistic inference in hybrid domains by weighted model in-
tegration. In IJCAI.
Belle, V.; Van den Broeck, G.; and Passerini, A. 2015.
Hashing-based approximate probabilistic inference in hy-
brid domains. In UAI.
Boutilier, C.; Dean, T.; and Hanks, S. 1999. Decision-
theoretic planning: Structural assumptions and computa-
tional leverage. Journal of Artificial Intelligence Research
11(1):94.
Chistikov, D.; Dimitrova, R.; and Majumdar, R. 2015. Ap-
proximate counting in smt and value estimation for proba-
bilistic programs. In TACAS, volume 9035. 320–334.
Claßen, J., and Lakemeyer, G. 2008. A logic for non-
terminating golog programs. In KR, 589–599.
Domshlak, C., and Hoffmann, J. 2007. Probabilistic plan-
ning via heuristic forward search and weighted model count-
ing. JAIR 30:565–620.
Fikes, R., and Nilsson, N. J. 1971. STRIPS: A new approach
to the application of theorem proving to problem solving. In
Proc. IJCAI, 608–620.
Gordon, A. D.; Henzinger, T. A.; Nori, A. V.; and Rajamani,
S. K. 2014. Probabilistic programming. In Proc. Interna-
tional Conference on Software Engineering.
Gutmann, B.; Thon, I.; Kimmig, A.; Bruynooghe, M.; and
De Raedt, L. 2011. The magic of logical inference in prob-
abilistic programming. TPLP 11:663–680.
Kaelbling, L. P., and Lozano-Pérez, T. 2013. Integrated task
and motion planning in belief space. I. J. Robotic Res. 32(9-
10):1194–1227.
Kaelbling, L. P.; Littman, M. L.; and Cassandra, A. R. 1998.
Planning and acting in partially observable stochastic do-
mains. Artificial Intelligence 101(1–2):99 – 134.
Lakemeyer, G., and Levesque, H. J. 2007. Cognitive
robotics. In Handbook of Knowledge Representation. El-
sevier. 869–886.
Milch, B.; Marthi, B.; Russell, S.; Sontag, D.; Ong, D.; and
Kolobov, A. 2007. BLOG: Probabilistic models with un-
known objects. Introduction to statistical relational learning
373.

Nitti, D.; Belle, V.; and Raedt, L. D. 2015. Planning in
discrete and continuous markov decision processes by prob-
abilistic programming. In ECML.
Nitti, D.; Belle, V.; De Laet, T.; and De Raedt, L. 2017.
Planning in hybrid relational mdps. Machine Learning 1–
28.
Nitti, D. 2016. Hybrid Probabilistic Logic Programming.
Ph.D. Dissertation, KU Leuven.
Ong, S. C. W.; Png, S. W.; Hsu, D.; and Lee, W. S. 2010.
Planning under uncertainty for robotic tasks with mixed ob-
servability. Int. J. Rob. Res. 29(8):1053–1068.
Puterman, M. L. 1994. Markov Decision Processes: Dis-
crete Stochastic Dynamic Programming. New York, NY,
USA: John Wiley & Sons, Inc., 1st edition.
Raedt, L. D.; Kimmig, A.; and Toivonen, H. 2007. Problog:
A probabilistic prolog and its application in link discovery.
In Proc. IJCAI, 2462–2467.
Reiter, R. 2001. Knowledge in action: logical foundations
for specifying and implementing dynamical systems. MIT
Press.
Srivastava, S.; Russell, S. J.; Ruan, P.; and Cheng, X. 2014.
First-order open-universe pomdps. In UAI, 742–751.
Thrun, S.; Burgard, W.; and Fox, D. 2005. Probabilistic
Robotics. MIT Press.

657


