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Abstract

We proposed a deep learning method for interpretable di-
abetic retinopathy (DR) detection. The visual-interpretable
feature of the proposed method is achieved by adding the
regression activation map (RAM) after the global averag-
ing pooling layer of the convolutional networks (CNN). With
RAM, the proposed model can localize the discriminative re-
gions of an retina image to show the specific region of interest
in terms of its severity level. We believe this advantage of the
proposed deep learning model is highly desired for DR de-
tection because in practice, users are not only interested with
high prediction performance, but also keen to understand the
insights of DR detection and why the adopted learning model
works. In the experiments conducted on a large scale of retina
image dataset, we show that the proposed CNN model can
achieve high performance on DR detection compared with
the state-of-the-art while achieving the merits of providing
the RAM to highlight the salient regions of the input image.

Introduction
Diabetes is an widespread disease in the world, and up to
2014 around 422 million people worldwide have this dis-
ease1. Diabetic retinopathy (DR) is an eye disease caused
by the long-standing diabetes. Basically, DR affects blood
vessels in the light-sensitive tissue (i.e. retina). It becomes
the leading cause of vision impairment and blindness for
working-age adults in the world today(Silberman et al.
2010), and around half of Americans with diabetes have this
disease to some extent. A widely-known challenge for DR
is that it has no early warning sign, even for diabetic mac-
ular edema. Thus, it is highly desired that DR can be de-
tected in time. Unfortunately, in practice the current DR de-
tection solution is nearly infeasible to meet this requirement.
Specifically, the current solution requires a well-trained clin-
ician to manually evaluate digital color fundus photographs
of retina, and DR is identified by locating the lesions asso-
ciated with vascular abnormalities due to diabetes. Though
this current solution is effective, it is time-consuming and
highly relies on the expertise of well-training practitioners.
To solve this issue, in the past few years considerable efforts
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1http://www.who.int/mediacentre/factsheets/fs312/en/

have been put on developing an automated solution for DR
detection.

Most of previous automated solutions consists of two
parts: feature extraction and detection/prediction algorithm
(Pinz et al. 1998; Silberman et al. 2010; Sopharak, Uyyanon-
vara, and Barman 2009; Wu et al. 2006). Feature extraction
is the main focus as standard machine learning algorithms
can be directly used as the detection/prediction algorithm.
This type of approaches are effective to some extent but
also suffer from several shortcomings. First, as reviewed in
Section , the extracted features are all hand-crafted features.
Thus, these features highly depend on the parameters of the
used feature extraction tools and they are sensitive to the
quality of fundus photography, like object view, exposed-
ness, artifacts, noise, out-of-focus, etc. Second, feature ex-
traction is a solo task rather than embedded into the whole
DR detection framework. The above-mentioned features ex-
traction methods can be considered as the universal image
feature extraction methods that are applicable to most com-
puter vision tasks, and they are not dedicated to the specific
task, e.g., DR detection task considered in this paper. It is
worth noting that color fundus photography is more chal-
lenging than the standard scene or object images that most
image feature extraction methods were developed based on,
since the key signals are often tiny in fundus photography
and they often look indiscriminating from noise and arti-
facts. Thus, these two challenges make it highly desirable
to develop a systematical feature representation approach to
effectively characterize the nature of features particularly re-
lated to the DR detection task.

Recently, the convolutional neural networks (CNN) has
achieved tremendous success in computer vision area. It
can model high-level abstractions in data relative to spe-
cific prediction task (Deng 2014; LeCun et al. 1989; 1998;
Yang et al. 2015). In CNN, a multiple layers network is
built up for automating feature design. Specifically, each
layer in deep architecture performs a non-linear transforma-
tion on the outputs of the previous layer, so that the data
are represented by a hierarchy of features from low-level
to high-level. The key attribute of the CNN is conducting
different processing units (e.g. convolution, pooling, sig-
moid/hyperbolic tangent squashing, rectifier and normaliza-
tion ) alternatively. Such a variety of processing units can
yield an effective nonlinear representation of local salience
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of the signals. Then, the deep architecture allows multiple
layers of these processing units to be stacked, so that this
deep learning model can characterize the salience of signals
in different scales. Also, in CNN, feature extraction and pre-
diction algorithm are unified as a single model. Thus, the
extracted features own more discriminative power, since the
entire CNN model is trained under the supervision of output
labels. Briefly speaking, the features extracted by the CNN
are task dependent and non-handcrafted.

In this paper, we also adopt CNN as the key predictive
algorithm, but aim to develop a more efficient CNN ar-
chitecture that is particularly useful for large-scale dataset.
Specifically, the CNN we built has no fully connected layer
and only have convolutional and pooling layers. This set-
ting significantly reduces the number of parameters (fully-
connected layers often bring more parameters than convo-
lutional layers in the conventional CNN) and provides bet-
ter conditions for interpretability of neural network as pre-
sented below. We show in experiments that with less pa-
rameters and no fully-connected layers the proposed CNN
architecture can achieve the comparative prediction perfor-
mance. The key advantage of the proposed network structure
is that it can provide a regression activation maps (RAM)
of input image to show the contribution score of each pixel
of input image for DR detection task. This RAM output,
to some extent, somehow mitigates the well-known uninter-
pretable shortcoming of CNN as a black box method. We be-
lieve that this RAM output make the proposed solution more
self-explained and can motivate the practitioners to trace the
cause of the disease for every patient.

Related Work
The two-step (i.e., feature extraction and prediction) auto-
mated DR detection approaches dominated the field of DR
detection for many years. Given color fundus photography,
this type of approaches often extracted visual features from
the images on the parts of blood vessels, fovea and optic
disc (Pinz et al. 1998; Wu et al. 2006). The generic feature
extraction methods developed in computer vision area were
widely used here, e.g, hough transform, gabor filters and in-
tensity variations. With the extracted features, an object de-
tection or object registration algorithm like support vector
machines and k-NN were used to identify and localize ex-
udates and hemorrhages (Silberman et al. 2010; Sopharak,
Uyyanonvara, and Barman 2009). As mentioned before, this
type of approaches are not as effective as the recent deep
learning approaches, such as (Antony and Brggemann 2015;
Lim et al. 2014; Pratta et al. 2016; Wang et al. 2015). All
these deep learning approaches adopted the standard archi-
tecture like AlexNet and GoogLeNet to build their CNN,
and based on the experimental results these deep learning
approaches significantly outperform the traditional two-step
approaches. Moreover, the recent DR detection competition
held in Kaggle (Kag 2015)2 witnessed that all top solutions
adopted CNN as the key algorithm. However, all these CNN
approaches require complex neural network structures, and
it is hard for practitioners to understand the insight of CNN

2https://www.kaggle.com/c/diabetic-retinopathy-detection

and clearly explain that which region of the color fundus
photography is the main cause of the disease.

Understanding the insights of CNN has always been a
pain point, though CNN yields excellent predictive perfor-
mance. It is well-known that deriving theoretical results is
quite challenging due to the nonliner and non-convex na-
ture of CNN. To mitigate this issue, considerable efforts
have been put on visualizing the CNN. A deconvolutional
networks approach was proposed to visualize activated pat-
tern in each hidden unit (Zeiler and Fergus 2014). This
method is limited as it is hard to summarize all hidden
units’s patterns into one pattern, and also only the hid-
den neurons in the hidden layers are analyzed though the
networks considered also contain the fully-connected lay-
ers. The work (Bazzani et al. 2016; Oquab et al. 2014;
Zhou et al. 2015) and the reference therein include the ob-
jection location task besides the conventional object classi-
fication problem, so their CNN can predict the label of an
image and also identify the region of the object related to
the class label. Though this type of CNNs can predict the
location of the object of interest, it still cannot reveal the
insight of CNN. Recently, (Dosovitskiy and T.Brox 2016;
Mahendran and Vedaldi 2015) have presented the methods
to invert the representation of images in each layer of the
CNN. However, these approaches can only indicate what in-
formation is preserved in each layer of the CNN.

The most work most related to our method is (Zhou et
al. 2016) in which class activation map is proposed to char-
acterize the weighted activation maps after global average
pooling or global maximum pooling layer. This idea has re-
cently been generalized to time series analysis to localize
the significant regions in the raw data (Wang, Yan, and Oates
2016). In this paper, we extend the method (Zhou et al. 2016)
from a classification to a regression setting and shed light on
DR detection problem.

Regression Activation Maps (RAM)
Inspired by (Zhou et al. 2016), we present in this section the
idea of generating the RAM of an input image to localize the
discriminative region towards the regression outcomes. It is
known that the convolutional units of each layers of CNN
act as visual concept detectors to identify low-level concepts
like textures or materials, to high-level concepts like objects
or scenes. Deeper into the network, the units become in-
creasingly discriminative. However, the fully-connected lay-
ers will make it difficult to identify the importance of differ-
ent units for identifying the output labels (regression values,
in our networks). Instead, using GAP and the linear output
unit, we can directly visualize the region of interest (ROI)
that are most discriminative for a given regression value. As
we use regression for the purpose of classification, each sin-
gle RAM obtained for each single image explicitly depict
the ROI on different clinical level.

The network architectures of our convolutional nets are
shown in Table 1. Since we consider regression problem
the output layer has one neuron outputting a real value. The
key difference between our neural network and conventional
neural networks like AlexNet (Krizhevsky, Sutskever, and
Hinton 2012) and GoogLeNet (Szegedy et al. 2015) lie in

515



Table 1: Two proposed convolutional network structures: Net-5 and Net-4.
Net-5 Net-4

layer Unit Filter Stride Size Filter Stride Size

1 Input 448 448
2 Conv 32 5 2 224 4 2 224
3 Conv 32 3 224 4 225
4 MaxPool 3 2 111 3 2 112
5 Conv 64 5 2 56 4 2 56
6 Conv 64 3 56 4 57
7 Conv 64 3 56 4 56
8 MaxPool 3 2 27 3 2 27
9 Conv 128 3 27 4 28

10 Conv 128 3 27 4 27
11 Conv 128 3 27 4 28
12 MaxPool 3 2 13 3 2 13
13 Conv 256 3 13 4 14
14 Conv 256 3 13 4 13
15 Conv 256 3 13 4 14
16 MaxPool 3 2 6 3 2 6
17 Conv 512 3 6 4 6
18 Conv 512 3 6 N/a N/a
19 GlobalPool
20 Dense 1

that our network uses global averaging pooling (GAP) layer
to connect the last convolutional layer and the output layer,
instead of using fully-connected layers. The idea of GAP
layer is that each neuron in GAP obtains the spatial average
of the feature maps from the last convolutional layer so that
the value of each neuron in GAP reflects its contribution to
the final prediction. Specifically, supposing the last convo-
lutional layer contains K feature maps {gk(i, j)|∀i, j}, k =
1, ...,K and (i, j) is the spatial coordinate locating an en-
try in the feature map k. In the GAP layer, each feature map
gk(i, j) in the last convolutional layer is mapped into a scaler
tk by the function tk =

∑
i,j gk(i, j). Then, the weighted

sum of the output of the GAP layer ŷ =
∑K

k=1 tkwk is the
value of the neuron in the output layer, where ŷ is the pre-
dicted label and wk is the weight of neuron k for the output
of the global averaging pooling layer.

Given the network structure in Table 1, the regression ac-
tivation maps (RAM) is defined as below:

G(i, j) =
K∑

k=1

gk(i, j)wk

Thus, RAM is essentially a weighted sum of the feature
maps in the last convolutional layer. The weights herein are
the connections between the outputs of the global averaging
pooling layer and the neuron in the output layer. Therefore,
the final prediction can also expressed as:

ŷ =

K∑

k=1

wk

∑

i,j

gk(i, j) =
∑

i,j

G(i, j)

Intuitively, RAM contains the immediate information for
prediction (feature maps in the last convolutional layer and

weights before the final regression output), and also main-
tain the correspondence between last convolutional feature
map and input images. Therefore, RAM can localize the dis-
criminative region towards the regression outcomes. The il-
lustration of the adopted neural network structure and RAM
are show in Figure 1.

Experiments

Datasets

The color retina images are downloaded from the Kaggle
website3. The training dataset contains 35126 high resolu-
tion images under a variety of imaging conditions. These
retina images were obtained from a group of subjects, and
for each subject two images were obtained for left and right
eyes, respectively. The labels were provided by clinicians
who rated the presence of diabetic retinopathy in each im-
age by a scale of “0, 1, 2, 3, 4”, which represent “no DR”,
“mild”, “moderate”, “severe”, “proliferative DR” respec-
tively. As mentioned in the description of the dataset, the
images in the dataset come from different models and types
of camera, which can affect the visual appearance of left
vs. right. The samples images are shown in Fig 2. Also,
the dataset doesn’t have the equal distributions among the
5 scales. As one can expect, normal data with label “0” is
the biggest class in the whole dataset, while “proliferative
DR” data is the smallest class. Fig 3 shows counts of images
for different scales in the training dataset.

3https://www.kaggle.com/c/diabetic-retinopathy-detection/data
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Figure 1: Illustration of adopted neural network structure (a) and regression activation mapping (b).

Figure 2: Sample images of color retina images dataset.

Table 2: Performance statistics of the benchmark and our approaches on test dataset.
Baseline Ours

Kappa score (Public Leaderboard) 0.8542 0.85034
Kappa score (Private Leaderboard) 0.8448 0.8412

Parameter # (net-5) 12.4M 9.7M
Training time (second/epoch) 422.1 367.3

Parameter # (net-4) 12.5M 9.8M
Training time (second/epoch) 451.7 398.2

RAM No Yes

Benchmark method
We consider the publicly-available method (Antony and
Brggemann 2015) as the benchmark method, which was
ranked as the second place in the Kaggle competition. This
method crops away all background and resize the images to
squares of 128, 256 and 512 pixels. The interested readers
may refer to (Antony and Brggemann 2015) for more de-
tailed settings of the baseline method. We summarize the

main features of the baseline methods as follow:
Resampling First, sample all classes such that all classes

are represented equally on average. Then, gradually re-
duce the over sampling of rare classes.

Initialization and pretraining Orthogonal initialization is
used to initialize weights and biases. First, train smaller
networks on 128 pixel images. Then, use the trained
weights to (partially) initialize medium networks for
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Figure 3: Counts of images for different scales in the training
dataset.

training on 256 pixel images. Finally, use the trained
weights of medium networks to (partially) initialize large
network for training on 512 pixel images.

Data augmentation The common image transformation
like translation, stretching, rotation, flipping and color
augmentation are used for data augmentation.

Feature blending Use the last pooling layer of the convo-
lutional networks as extracted features, and then blend all
these extracted features from 50 networks outputs (with
different augmentation). Then, a fully-connected neural
network is used on the blended features as the final pre-
dictor.

Experimental Settings
We trained our convolutional neural network in Table 1 on
a single Tesla-P100 GPU. For nonlinearity, we use leaky
(0.01) rectifier units following each convolutional layer. The
networks are trained with Nesterov momentum with fixed
schedule over 250 epochs. For the nets on 256 and 128 pixel
images, we stop training after 200 epochs. L2 weight decay
with factor 0.0005 are applied to all layers. As we treat the
problem as a regression problem, the loss function is mean
squared error.The convolutional networks have untied bi-
ases. Batch size is fixed at 32 for all networks. 4. Following
the evaluation setting (Kag 2015), the quadratic weighted
Kappa score is adopted as the performance metric of pre-
diction. Specifically, the predicted regression values are dis-
cretized at the thresholds (0.5, 1.5, 2.5, 3.5) to obtain inte-
ger levels for computing the Kappa scores and making sub-
missions. All the features mentioned in Section were also
adopted in our model training.

Performance of Kappa Score
Following (Antony and Brggemann 2015), we split 35126
images into training and validation datasets in a ratio of 9
to 1 for local evaluation purpose, and we also submit our
prediction results on the test dataset to Kaggle to obtain the

4Codes are available at
https://github.com/cauchyturing/kaggle diabetic RAM.

Kappa score. Table 2 summarizes the performance of both
benchmark and our approach on the test dataset. By sim-
ply replacing the fully-connected layer with the global aver-
age pooling layer, our networks achieved very competitive
Kappa score compared with the benchmark while reducing
the parameter size by about 21.8% and speed-up the training
by 11.8%-13.1%. As mentioned in Section , feature blending
strategy was used. Thus, the final Kappa score is an average
of six per patient blends for the two convolutional network
architectures and three different sets of trained weights.

Considering that the key signals in the retina images like
Micro-aneurysms are very small with respect to the retina,
we also evaluate the performance of the our model with re-
spect to different size of input images. On the validation set,
our networks achieve the Kappa scores of around 0.70 for
256 pixel images, 0.80 for 512 pixel images and 0.81 for
768 pixel images on both Net-5 and Net-4 settings without
feature blending. This observation suggests that the larger
input images the better prediction performance but there is
no much gain when the image size is greater than 512. Tak-
ing computation cost into consideration, we limit the input
image size to be not greater than 512.

Discriminative Localization by RAM

Network settings for RAM To generate RAM, we used
Net-5 with the 128 and 256 pixel images as the input. We
also removed several convolutional layers of Net-5 for each
input size to increase the resolution of RAM, since the local-
ization ability of RAM can be significantly improved when
the last convolutional layer before GAP had a higher spatial
resolution (Zhou et al. 2016). Specifically, we made the fol-
lowing modifications: For Net-5 on the 128 pixel images, we
removed the layers after Conv-11 and all the strides excepts
the Maxpool-8, which resulting in a mapping resolution of
54× 54. For Net-5 on the 256 pixel images, we removed the
layers after Conv-15 and last two max pooling layer, which
resulted in a mapping resolution of 56 × 56. Each of these
networks were then fine-tuned 5 on the training data.

Fusion of multiple RAMs Figure 4(a) and (b) show the
RAMs from the input images of size 128 and 256 pixels re-
spectively and their corresponding Kappa scores 5.06 and
4.63. We noticed that these RAMs reflect different ROIs that
may both have contributions to the final Kappa score predic-
tion. Thus, we consider the fusion of multiple RAMs gen-
erated from the different scales of input images. The fusion
of the RAMs (a) and (b), i.e., the average of the values in
RAM matrices, is plotted in Figure 4(c). By referring to the
original image shown in Figure 4(d), we argue that Figure
4(c) can better capture the ROI of original image. We also
found the similar phonomania from other examples. So we
conclude that the fusion of different RAMs from various res-
olutions is simple and effective to depict the comprehensive
ROI, so the fused RAM is only reported in the following
analysis.

5Train from the scratch has the similar performance but a little
bit slower.
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Figure 4: The example RAM generated from the (a). 128 pixel image and (b). 256 pixel image. Note that the RAM output by
the neural network is of size 56X56, and they are the up-sampled by Lanczos interpolation functions as shown in plots (a) and
(b). The ensembled RAM averaged from both resolutions are shown in (c).(d) is the original image.
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Figure 5: Ground truth and the corresponding RAMs. The two scores are from the 128 and 256 pixel images, respectively.

Analysis on RAM For the mild-conditioned patients,
RAM learned to discover the narrowing of the retinal arter-
ies associated with reduced retinal blood flow (Figure 5(d)),
where the vessel shows dark red. The dysfunction of the neu-
rons of the inner retina, followed in later stages (moderate)
by changes in the function of the outer retina are captured
in Figure 5(c), as such dysfunction protects the retina from
many substances in the blood (including toxins and immune
cells), leading to the leaking of blood constituents into the
retinal neuropile. When the patients belong to the next stage
(severe), as the basement membrane of the retinal blood ves-
sels thickens, capillaries degenerate and lose cells leading
to loss of blood flow and progressive ischemia and micro-
scopic aneurysms which appear as balloon-like structures
jutting out from the capillary walls. RAM, as shown in Fig-
ure 5(b), learned to converge its focus on the border where
the balloon-like structures occurs. As the disease progresses

to the proliferative stage, the lack of oxygen in the retina
causes fragile, new, blood vessels to grow along the retina
and in the clear, gel-like vitreous humour that fills the in-
side of the eye. In Figure 5(a), RAM shows the model put
its attention on the grey dots scattering around, which un-
doubtedly demonstrate the proliferative stage. We also note
that if the patient has no DR and the score predicted by the
model is smaller than 0.5, then the RAM uniformly shows
the dot-like focus near the pupil (5(e)).

We also observed that the proposed model may have the
conservative diagnostics behavior, which means that the pre-
dicted regression value is often smaller than the ground
truth. The examples of this case are plotted in Figure 6. One
plausible reason is that the training dataset has considerably
large number of normal images as shown in Figure 3 so the
learned model might be biased to the “0” class. Other rea-
sons could be due to image quality and the sensitivity on the
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Figure 6: Examples of the conservative diagnostic by the neural networks on different severity levels.

ambiguous features between different levels. Specifically, in
Figure 6(a), though our model ignores the proliferate on the
top left corner, it can capture the leaking of blood in the re-
gion of retinal neuropile. To identify leaking of blood in reti-
nal neuropile may even be challenging for the clinicians. In
(b) and (c), the original images contain very limited informa-
tion about the balloon-like jitter and the blood leaking due
to partial exposedness, so the RAM are scattered on the dard
red vessels which are caused by the reduced retinal blood
flow.

Based on the above analysis, RAM provides the reason-
able transparency on our deep learning model to see why and
how it makes the decision. The visual explanation of RAM
may assist the clinicians to quickly identify the pathogenesis
of disease.

Conclusions

Practically, clinicians can identify DR by the presence of le-
sions associated with the vascular abnormalities caused by
the disease. While this approach is effective, its resource de-
mands are high. In this work, we provided a deep learn-
ing model that includes regression activation maps layer
(RAM). The RAM layer can provide the robust interpretabil-
ity of the proposed detection model in a single pass by mon-
itoring the pathogenesis so that the proposed model can be
taken as an assistant for clinicians. With this feature, the pro-
posed model can still yield the competitive performance of
DR detection, compared with the state-of-the-art methods.
In future, we would consider to extend the proposed method
to other medical application problems.
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