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Abstract

Traffic speed prediction can benefit a wide range of IoT appli-
cations in intelligent transportation and smart city. Recent su-
pervised machine learning approaches heavily leverage vast
amount of historical time-series data. Consequently, they de-
grade dramatically in the areas where collecting a large traffic
data is not quite feasible. With the aim of predicting the traf-
fic speed of such urban areas, we propose a transfer learning
framework that exploits historical data of some other data-
abundant areas by utilizing various spatio-temporal seman-
tic features. Experimental results show that classic regression
models and our proposed kernel regression model can achieve
competitive performance comparing to baseline methods that
heavily rely on the historical data of target areas.

Introduction

Traffic speed prediction is a challenging problem and has
various downstream applications of Internet of Things (IoT),
many of which are fundamental to intelligent transportation
systems and smart city, such as congestion management, ur-
ban planning, vehicle routing, etc. (Pan, Demiryurek, and
Shahabi 2012; Xu et al. 2015; Mchugh 2015).

Most existing machine learning approaches heavily rely
on the vast amount of historical data for the areas being pre-
dicted (Ren et al. 2014; Clark 2003). However, accurate and
reliable historical traffic data collected from road sensors
is very expensive and available in urban areas where the
government can afford the large cost. Consequently, most
state-of-the-art time-series based models cannot be applied
directly on areas where little traffic data is available.

Another disadvantage of most existing approaches is that
they only focus on temporal features and do not explicitly
utilize semantic features from spatio-temporal patterns (Yao
etal. 2017; Lin et al. 2017), which benefit many practical ap-
plications of urban computing (Zheng et al. 2014). Research
on extracting such effective spatial features for traffic speed
prediction is almost missing from the literature.

The preliminary study aims to answer this research ques-
tions: How can we exploit the data of data-abundant areas
to predict traffic speed for areas without traffic data through
their semantic spatio-temporal features? To the best of our
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knowledge, we are among the first to study transfer learning
for traffic speed prediction (Xu et al. 2016). The contribu-
tions of this paper are as follows:

e We extract various spatial features in multiple levels and
combine them with temporal features to support this
transfer learning scenario, which also improves the trans-
parency of prediction models.

e Based on the features, we propose a novel clustering-
based transfer learning model. Experimental results show
that proposed model perform competitively with classic
regression methods, but using only distant supervision.

Transfer Learning Scenario

Consider we have a set of n road segments with traffic speed
sensors. At any given time ¢, each sensor ¢ provides a traffic
speed reading at this current time, denoted as v;[t]. Traffic
speed prediction problem is to predict a future traffic speed
like v;[t + h] at a previous time ¢. Most models utilize his-
torical traffic data to predict the future speed of the same
areas. However, when historical data such as v;[1 : ¢] is not
available, it is infeasible for them to predict.

In this scenario, a transfer learning (Pan and Yang 2010)
approach is supposed to exploit the data of some source ar-
eas S to build a prediction model for other target areas T,
where there is little traffic speed data. Mathematically, given
{vi[1 : t]|i € 8}, a transfer learning model is expected to be
able to predict {v;[1:t]|j € T}.

Traffic Estimates Dataset

In this section, we briefly introduce a public dataset named
UIUC New York City Traffic Estimates', on which we extract
spatial features and conduct our following experiments. This
dataset covers 700 million trips from 2010 to 2013 in New
York City. It contains accurate hourly traffic speed measure-
ment for almost all individual links of the NYC road net-
works. Specific data format is described as follows:

1. the road network is represented as a directed graph com-
posed of nodes and links;

2. each node is an intersection of the road network, with

multiple properties like latitude and longitude;

"https://publish.illinois.edu/dbwork/open-data/



Table 1: Statistics of five areas in New York City

Hudson | Manhattan | Brooklyn | Bronx | Queens
#link 730 8,578 7,790 2,113 8,173
#trips_sum 477k 52m 24m Sm 20m

3. each directed link is a small road segment connecting two
such nodes;

4. generally, a real street consists of multiple links; two-way
streets are often represented as two directed links with op-
posite directions;

5. each row of the traffic speed data is the average traffic
speed of a particular link at a particular hour.

To evaluate transfer learning approaches, we split the road
network into five different areas as shown in Table 1.

Spatiotemporal Features

In this section, we discuss the proposed spatial features ex-
tracted from OpenStreetMap? and temporal features that
act as fundamental components of our proposed transfer
learning approach. The proposed spatial features capture the
traffic-related geographical characteristics for each link in
road networks.

Basic Information Features

An example of extracting the basic information for a par-
ticular link is shown in Figure 1. We have 5 features for
representing the basic information of each link: 1ength,
#begin_node_in_links, #begin_node_out_links,
#end.node_in_links and #end.node_out_links.
For each link, the 1ength is the real distance between the
begin and the end node of this link. The other 4 features
represent the number of in and out links connected to both
nodes of a link, which may provide information about cross-
roads or one-ways.
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Figure 1: An example for extracting basic information fea-
tures.

Road Density Features

Additionally, we believe traffic speed is highly relevant
to road density, which can be measured by the number

“https://www.openstreetmap.com

Figure 2: An example of extracting the road density features
with three different radius. The origin is begin/end node of a
certain link, and each blue circle is a link intersection.

of neighboring nodes and links within the same area. To
be more specific and capture the sensitivity about direc-
tions, we compute road density respectively for each end
in terms of the density of neighboring node , and the den-
sity of neighboring in and out link, according to three radius
(100/300/500m), as shown in Figure 2. Consequently, we
have 2 x 3 x 3 = 18 road density features in total.

Categorical POI Density Features

Points of interest (POI) are specific locations that people
may find useful or interesting, such as restaurants, shopping
halls, parks, etc. Since such places are very influential to
the traffic, we query nearby POIs? for each node with three
different radius (100/300/500m) using HERE Places API*.
Figure 3 shows such an example for extract road density fea-
tures and POI density features.

Temporal Features

Our temporal feature is simply a distributed representation
of the time information. It is basically a concatenation of
several one-hot vectors, where each vector represents the
month, the day of a week, the hour of a day and whether
it is workday respectively.

Transfer Learning Approach

Obtaining the above features for link and time, we first ap-
ply several classic machine learning models for regression
(Linear Regression, Neural Network model®, Support Vector
Regression). They are trained on source areas with above-
explored spatio-temporal features and then predict traffic
condition on target areas as a test. Afterwards, we present
a novel transfer learning approach named CTMP.

>The 11 major POI types we consider are {Eat, Drink, Go-
ing Out, Sights & Museums, Transport, Accommodation, Shop-
ping, Business & Services, Facilities, Facility, Administrative Ar-
eas/Buildings, Natural or Geographical}.

*https://developer.here.com/documentation/places/topics/
introduction.html

5 A two-layer fully connected network model.
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Figure 3: An example for extracting POI Features. Different
colors indicate different POI types.

We introduce our novel Clustering-based Transfer Model
for Prediction (CTMP), which first clusters links in both
source and target areas based on their spatial features and
then do time series based prediction for the target links based
on neighboring source links with historical data.

Intuition Behind the CTMP

Our intuition behind CTMP is that given a link in target areas
with spatial features, we can first find the most similar links
in source areas and then leverage the source data to predict
the speed of links in target areas.

The assumption here is that links with similar spatial fea-
tures should also share similar traffic patterns. However,
simply clustering road links based on spatial features per-
forms not very well in practice, because not all the features
are equally important and the importances cannot be ob-
tained in such an unsupervised way. Therefore, we incorpo-
rate a regularization term in the distance metric for feature
reduction and selection.®

Clustering with Regularized Distance Metric

We use the s; and s; to denote two spatial feature vec-
tors of any two links ¢ and j respectively. We capture
the distance between the two feature vectors by comput-
ing s_dis(¢, ) 1 — cos(s;,s;). To regularize the time
series similarities between two links, we add a regulariza-
tion term t_dis(4, j), which has multiple options. A desirable
option is the Dynamic Time Wrapping (DTW) (Keogh and
Pazzani 2001) similarities between the weekly HAM traffic
speed series of the two links. Thus, the total distance be-
tween two links can be regarded as follows, where A is a
hyper parameter to control the weight of temporal distance:
dis(i, 7) = s_dis(4, ) + At-dis(z, 7).

With such supervision in the source area data, we can
use K-means as our clustering algorithm. For each query
instance (I,t)7, we first find the closest k neighboring

SCTMP model can be seen as a combination of clustering and
Nadaraya-Watson kernel regression.
"The link [ has no historical data in the transfer scenario.
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source links with historical data {l;,...Iy}. We compute
all the distances between them and the target link [ re-
spectively, and obtain the set of spatial feature distances
{dis(l, 1), ..., dis(l, ) }. Also, we can get the predicted typ-
ical traffic speed for such neighboring links based on exist-
ing time-series models at the time ¢: {y(l1,t),...,y(lg,t)}.
Finally, we can compute the predicted result for the query
instance (1, ¢) is:

L dis(1,1;) '
y(l,t) = ; (Wy(lut)>

Evaluation

To evaluate the performance of our extracted features and
proposed feature-based transfer regression models, we con-
duct a series of experiments to check both the performance
of local transfer and cross-region transfer. In this section,
we first discuss the setup of our experiments, then the base-
line methods and finally present the discussion of the exper-
imental results.

Experiment Setup

We first split the data into training set and test set with re-
spect to the time. Specifically, we first split the data in 2013
into two parts by timespan: Jan. - Jun. and Jul. - Dec. Three
scenarios are shown as follows:

1. No Transfer task is to predict the future speed (the second
half year) of a link with the historical (the first half year)
data of the link.

2. Local Transfer task is to consider the data in first half year
as training data and second half year data as test data. We
train the models for each region with their data and test
the models with the testing data in the same region.

3. Cross-region Transfer task is to use a model trained on the
first half year data of a source region to predict the traffic
speed of another target region in the second half year.

Baseline Methods

We compare with the most representative time-series based
regression models: ARIMA (Box 2013) and HAM (Pan,
Demiryurek, and Shahabi 2012).

Experimental Results

We first show the performance of HAM and ARIMA models
on the No Transfer Task with two metrics (RMSE and MAE)
in Table 2. We found that HAM performs substantially better
than the ARIMA model with both metrics, which is proba-
bly due to the time interval in the dataset is one hour, quite
longer than common time interval length for ARIMA model.

Also, we present the results of both Local Transfer (LT)
and Cross-region Transfer (CT) in Figure 4. It can be con-
cluded from each sub-figure that our methods achieve the
similar RMSE with the HAM without explicitly using his-
torical data for links in target areas. Also, we can find that
when the two regions are similar to each other, then when we
cross-region transfer one to another the performance is still
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Figure 4: Local Transfer and Cross-region Transfer performances in terms of RMSE; Each sub-figure is a about region, and
each cluster is either a Local Transfer (LT) or a Cross-region Transfer (CT).

Table 2: No Transfer performance of HAM and ARIMA

HAM | HAM | ARIMA | ARIMA
RMSE | MAE RMSE MAE

Total 5.1802 | 3.3152 | 6.7106 4.2806
Hudson 8.2871 | 6.0331 | 11.5791 | 8.8327
Manhattan | 4.4532 | 2.7495 | 5.2845 3.1740
Brooklyn | 5.2661 | 3.4681 | 6.8584 4.6273
Bronx 7.6168 | 5.5544 | 11.2118 | 8.5488
Queens 6.0233 | 4.0720 | 8.2514 5.7618

good. Sometimes, even our CT methods can achieve very
similar results then HAM without using any historical data
on the predicted areas, such as “Manhattan” — “Queens” in
the last sub-figure. Apart from that, we found that a larger
region like “Manhattan” which contains various kinds of
links will have better CT performance than other regions.
Whereas, neural network model is relatively unstable. As
for different prediction models, we conclude that our pro-
posed CTPM performs substantially better than other classic
feature-based methods.
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