
Learning Others’ Intentional Models in
Multi-Agent Settings Using Interactive POMDPs

Yanlin Han, Piotr Gmytrasiewicz
Department of Computer Science
University of Illinois at Chicago

Chicago, IL 60607

Abstract

Interactive partially observable Markov decision processes (I-
POMDPs) provide a principled framework for planning and
acting in a partially observable, stochastic and multi-agent en-
vironment, extending POMDPs to multi-agent settings by in-
cluding models of other agents in the state space and forming
a hierarchical belief structure. In order to predict other agents’
actions using I-POMDP, we propose an approach that effec-
tively uses Bayesian inference and sequential Monte Carlo
(SMC) sampling to learn others’ intentional models which
ascribe to them beliefs, preferences and rationality in action
selection. Empirical results show that our algorithm accu-
rately learns models of other agents and has superior per-
formance when compared to other methods. Our approach
serves as a generalized reinforcement learning algorithm that
learns other agents’ beliefs, and transition, observation and
reward functions. It also effectively mitigates the belief space
complexity due to the nested belief hierarchy.

Introduction

Partially observable Markov decision processes (POMDPs)
(Kaelbling, Littman, and Cassandra 1998) provide a princi-
pled, decision-theoretic framework for planning under un-
certainty in a partially observable, stochastic environment.
An autonomous agent operates rationally in such settings
by maintaining a belief of the physical state at any given
time, in doing so it sequentially chooses the optimal ac-
tions that maximize the expected value of future rewards.
Although POMDPs can be used in multi-agent settings, do-
ing so treats other agents’ actions as noise and folds the
effects of their actions into the state transition function,
such as recent Bayes-adaptive POMDPs (Ross, Chaib-draa,
and Pineau 2008), infinite generalized policy representation
(Liu, Liao, and Carin 2011), and infinite POMDPs (Doshi-
Velez et al. 2015). Therefore, an agent’s beliefs about other
agents are not part of the solutions of POMDPs.

Interactive POMDPs (I-POMDPs) (Gmytrasiewicz and
Doshi 2005) are a generalization of POMDP to multi-agent
settings. They replace POMDP belief spaces with interactive
hierarchical belief systems. Specifically, an I-POMDP aug-
ments the plain beliefs about the physical states in POMDP

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

by including models of other agents, which forms a hi-
erarchical belief structure that represents an agent’s belief
about the physical state, belief about the other agents and
their beliefs about others’ beliefs, and so on. The mod-
els of other agents included in the new augmented state
space consist of two types: intentional models and subinten-
tional models. An intentional model ascribes beliefs, prefer-
ences, and rationality to other agents (Gmytrasiewicz and
Doshi 2005), while a simpler subintentional model, such
as finite state controllers (Panella and Gmytrasiewicz 2017)
(Panella and Gmytrasiewicz 2016), does not. Solutions of I-
POMDPs map an agent’s belief about the environment and
other agents’ models to actions. It has been shown (Gmy-
trasiewicz and Doshi 2005) that the added sophistication of
modeling others as rational agents results in a higher value
function compared to one obtained from treating others as
noise, which implies the modeling superiority of I-POMDPs
for multi-agent systems over other approaches.

However, the interactive belief modification for I-
POMDPs results in a drastic increase of the belief space
complexity, adding to the curse of dimensionality: the com-
plexity of the belief representation is proportional to be-
lief dimensions due to exponential growth of agent mod-
els with increase of nesting level. Since exact solutions to
POMDPs are proven to be PSPACE-complete for finite time
horizon and undecidable for infinite time horizon (Papadim-
itriou and Tsitsiklis 1987), the time complexity of more gen-
eralized I-POMDPs, which may contain multiple POMDPs
or I-POMDPs of other agents, is at least PSPACE-complete
for finite horizon and undecidable for infinite horizon. Due
to this complexity, a solution which accounts for an agent’s
belief over an entire intentional model has not been imple-
mented up to date. There are partial solutions that depend on
what is known about other agents’ beliefs about the physical
states (Doshi and Gmytrasiewicz 2009), but they do not in-
clude the state of an agent’s knowledge about others’ reward,
transition, and observation functions. Indirect approach such
as subintentional finite state controllers (Panella and Gmy-
trasiewicz 2017) (Panella and Gmytrasiewicz 2016) does
not include any of these elements either. To unleash the
full modeling power of intentional models and to apply I-
POMDPs to realistic settings, a robust approximation algo-
rithm for computing the nested interactive belief and predict-
ing other agents’ actions is crucial to the trade-off between

The Workshops of the Thirty-Second
AAAI Conference on Artificial Intelligence

666

solution quality and computation complexity.
To address this issue, we propose a Bayesian approach

that utilizes customized sequential Monte Carlo sampling
(De Freitas, Doucet, and Gordon 2001) to obtain approxi-
mate solutions to I-POMDPs and implement the algorithms
in a software package.1 We assume that agents maintain be-
liefs over intentional models of other agents and make se-
quential Bayesian updates using observations from the envi-
ronment. Since this Bayesian inference task is analytically
intractable due to the need of computing high dimensional
integration, we devise a customized sequential Monte Carlo
method to descend the belief hierarchy, parametrize oth-
ers’ models and sample all model parameters at each nest-
ing level, starting from the interactive particle filter (I-PF)
(Doshi and Gmytrasiewicz 2009) for I-POMDP belief up-
date.

Recently there has been research progress on modeling
and learning other agents’ models in multi-agent systems,
but none of them have managed to learn over the entire
space of others’ models in the formulation of multi-agent
POMDPs. In particular, a previous work of Bayes Adaptive
I-POMDPs (BA-IPOMDPs) (Ng et al. 2012) incorporate
model learning in I-POMDPs by modeling transition and ob-
servation functions using additional Dirichlet distributions.
However, the BA-IPOMDP does not learn the reward func-
tion, which is a key component of I-POMDP. In some op-
ponent modeling approaches, Bayesian Policy Reuse have
been used to learn opponents’ policies in MDP settings. For
instance, in (Hernandez-Leal et al. 2016) and (Hernandez-
Leal and Kaisers 2017), they both have mixed online and of-
fline learning methods in MDP settings that combine game
and decision theoretic approaches to directly learn others’
policies, while our method learns others’ models and com-
putes their strategies as needed, which focuses on a concise,
decision theoretic framework in POMDP settings.

Our approach, for the first time, successfully recovers oth-
ers’ models over the entire intentional model space which
contains their beliefs, and transition, observation and reward
functions, making it a generalized reinforcement learning
method for multi-agent settings. By approximating Bayesian
inference using a customized sequential Monte Carlo sam-
pling method, we significantly mitigate the belief space
complexity of I-POMDPs.

Background

POMDP

A Partially observable Markov decision process (POMDP)
(Kaelbling, Littman, and Cassandra 1998) is a general re-
inforcement learning model for planning and acting in a
single-agent, partially observable, stochastic domain. It is
defined for a single agent i as:

POMDPi = 〈S,Ai,Ωi, Ti, Oi, Ri〉 (1)

Where the meaning for each element in the 6-tuple is:
• S is the set of states of the environment.
• Ai is the set of agent i’s possible actions

1https://github.com/solohan22/I-POMDP

• Ωi is the set of agent i’s possible observations

• Ti : S ×Ai × S → [0, 1] is the state transition function

• Oi : S ×Ai × Ωi → [0, 1] is the observation function

• Ri : S ×Ai → R is the reward function.

Given the definition above, an agent’s belief about the
state can be represented as a probability distribution over
S. The belief update can be simply done using the following
formula, where α is the normalizing constant:

b (s′) = αO(o, s, a)
∑
s∈S

T (s′, a, s)b(s) (2)

Conveniently, the equation above can be summarized as
b(s′) = SE(b, a, o).

To quantify the value of a belief state, we can associate
the utility with a belief state bi, which is composed of the
best immediate reward and the discounted expected sum of
utilities of the following belief states:

U(bi) =max
ai∈Ai

{∑
s∈S

bi(s)R(s, ai) (3)

+ γ
∑
oi∈Ωi

P (oi|ai, bi)× U(SE(bi, ai, oi))
}

Then the optimal action, a∗, is simply part of the set of
optimal actions, OPT (bi), for the belief state defined as:

OPT (bi) =argmax
ai∈Ai

{∑
s∈S

bi(s)R(s, ai) (4)

+ γ
∑
oi∈Ωi

P (oi|ai, bi)× U(SE(bi, ai, oi))
}

Particle Filter

The Markov Chain Monte Carlo (MCMC) method (Gilks,
Richardson, and Spiegelhalter 1996) is widely used to ap-
proximate probability distributions that are difficult to com-
pute directly. MCMC generates samples from a posterior
distribution π(x) over state space x, by simulating a Markov
chain p(x′|x) whose state space is x and stationary distribu-
tion is π(x). The samples drawn from p converge to the tar-
get distribution π as the number of samples goes to infinity.

In order to make MCMC work on sequential inference
task, especially sequential decision making under Markov
assumption, sequential Monte Carlo (SMC) methods have
been proposed and some of them are capable of dealing with
high dimensionality and/or complexity problems, such as
particle filters (Del Moral 1996). At each time step, a parti-
cle filter draws samples (or particles) from a proposal distri-
bution, commonly the conditional distribution p(xt|xt−1) of
the current state xt given the previous xt−1, then use the ob-
servation function p(yt|xt) to compute importance weights
for all particles and resample them according to the weights.

667

The Model

I-POMDP framework

An interactive POMDP of agent i (Gmytrasiewicz and Doshi
2005), I-POMDP i, is defined as:

I-POMDPi,l = 〈ISi,l, A,Ωi, Ti, Oi, Ri〉 (5)

where ISi,l is a set of interactive states, defined as ISi,l =
S ×Mj,l−1, l ≥ 1, where S is the set of physical states and
Mj,l−1 is the set of possible models of agent j, and l is the
strategy (nesting) level.

A specific class of models are the (l − 1)th level
intentional models, Θj,l−1, of agent j: θj,l−1 =
〈bj,l−1, A,Ωj , Tj , Oj , Rj , OCj〉, where bj,l−1 is agent j’s
belief nested to the level (l − 1), bj,l−1 ∈ Δ(ISj,l−1),
and OCj is j’s optimality criterion. The intentional model
θj,l−1, analogous to type as used in Bayesian games
(Harsanyi 1967), can be rewritten as θj,l−1 = 〈bj,l−1, θ̂j〉,
where θ̂j includes all elements of the intentional model other
than the belief and is called the agent j’s frame.

As discussed in (Gmytrasiewicz and Doshi 2005), the
subintentional models constitute the remaining models in
Mj,l−1, examples of subintentional models are finite state
controllers (Panella and Gmytrasiewicz 2016) and fictitious
play models (Fudenberg and Levine 1998). In this paper, we
focus on intentional models and do not try to fully address
subintentional models.

The ISi,l could be defined in an inductive manner:

ISi,0 = S, θj,0 = {〈bj,0, θ̂j〉 : bj,0 ∈ Δ(S)}
ISi,1 = S × θj,0, θj,1 = {〈bj,1, θ̂j〉 : bj,1 ∈ Δ(ISj,1)}
...... (6)

ISi,l = S × θj,l−1, θj,l = {〈bj,l, θ̂j〉 : bj,l ∈ Δ(ISj,l)}
All remaining components in an I-POMDP are similar to

those in a POMDP, the major difference is that they also
involve other agents’ actions:
• A = Ai ×Aj is the set of joint actions of all agents.
• Ωi is the set of agent i’s possible observations.
• Ti : S ×A× S → [0, 1] is the state transition function.
• Oi : S ×A× Ωi → [0, 1] is the observation function.
• Ri : IS ×A → R is the reward function.

Interactive belief update

Given all the definitions above, the interactive belief update
can be performed as follows, by considering others’ actions
and anticipated observations:

bti(is
t) = Pr(ist|bt−1

i , at−1
i , oti) (7)

= α
∑
ist−1

b(ist−1)
∑

at−1
j

Pr(at−1
j |θt−1

j)T (st−1, at−1, st)

×Oi(s
t, at−1, oti)

∑
otj

Oj(s
t, at−1, otj)τ(b

t−1
j , at−1

j , otj , b
t
j)

Compared with POMDP, the interactive belief update in
I-POMDP takes two additional sophistications into account.
First, the probability of other’s actions given his models
needs to be computed since the state now depends on both
agents’ actions (the second summation). Second, the model-
ing agent needs to update his beliefs based on the anticipa-
tion of what observations the other agent might get and how
it updates (the third summation).

Similarly to POMDPs, the utilities associated with a belief
state in I-POMDPs can be updated as:

U(θi) = max
ai∈Ai

{ ∑
is∈IS

bis(s)ERi(is, ai) (8)

+ γ
∑
oi∈Ωi

P (oi|ai, bi)U(〈SEθi(bi, ai, oi), θ̂i〉)
}

where ERi(is, ai) =
∑

aj
Ri(is, ai, aj)Pr(aj |θj).

Then the optimal action, a∗i , for an infinite horizon crite-
rion with discounting, is part of the set of optimal actions,
OPT (θi), for the belief state, defined as:

OPT (θi) = argmax
ai∈Ai

{ ∑
is∈IS

bis(s)ERi(is, ai) (9)

+ γ
∑
oi∈Ωi

P (oi|ai, bi)U(〈SEθi(bi, ai, oi), θ̂i〉)
}

Sampling Algorithms

Description

The Interactive Particle Filter (I-PF) (Doshi and Gmy-
trasiewicz 2009) was proposed as a filtering algorithm for in-
teractive belief update in I-POMDP. It generalizes the classic
particle filter algorithm to multi-agent settings and uses the
state transition function as the proposal distribution, which
is usually used in a specific particle filter algorithm called
bootstrap filter (Gordon, Salmond, and Smith 1993). How-
ever, due to the enormous belief space, the I-PF implemen-
tation assumes that the other agent’s frame θ̂j is known
to the modeling agent, simplifying the belief update from
S ×Θj,l−1 to a significantly smaller space S × bj,l−1.

Our interactive belief update described in Algorithm 1,
however, generalizes I-PF to the entire intentional model
space, and this generalization is nontrivial. First, in order
to update the belief over intentional model space of other
agents, the set of N initial belief samples θ

(n),t−1
−k =<

b
(n),t−1
−k , A−k,Ω−k, T

(n)
−k , O

(n)
−k , R

(n)
−k , OC−k >, where k

here denotes the modeling agent and −k denotes all other
modeled agents. We assume that the actions A−k, obser-
vations Ω−k and optimality criteria OCk are known to all
agents. Second, the observation function of the modeled
agent(s), O(n)

−k (o
t
−k|s(n),t, at−1

k , at−1
−k), in line 13 is now ran-

domized as a consequent, since it is not assumed to be
known by the modeling agent. Lastly, we add another re-
sampling step in line 18 in order to avoid divergence due to
dramatic increase of the sampling space, by resampling each

668

Algorithm 1: Interactive Belief Update

b̃tk,l = InteractiveBeliefUpdate(b̃t−1
k,l , at−1

k , otk, l > 0)
1 For is(n),t−1

k =< s(n),t−1, θ
(n),t−1
−k >∈ b̃t−1

k,l ,
2 sample at−1

−k ∼ P (A−k|θ(n),t−1
−k)

3 sample s(n),t ∼ Tk(S
t|S(n),t−1, at−1

k , at−1
−k)

4 for ot−k ∈ Ω−k:
5 if l = 1:
6 b

(n),t
−k,0 = Level0BeliefUpdate(b(n),t−1

−k,0 , at−1
−k ,

ot−k, θ
(n),t−1
−k)

7 θ
(n),t
−k =< b

(n),t
−k,0, θ̂

(n),t−1
−k >

8 is
(n),t
k =< s(n),t, θ

(n),t
−k >

9 else:
10 b

(n),t
−k,l−1 = InteractiveBeliefUpdate(b̃t−1

−k,l−1,

at−1
−k , ot−k, l− 1)

11 θ
(n),t
−k =< b

(n),t
−k,l−1, θ̂

(n),t−1
−k >

12 is
(n),t
k =< s(n),t, θ

(n),t
−k >

13 w
(n)
t = O

(n)
−k (o

t
−k|s(n),t, at−1

k , at−1
−k)

14 w
(n)
t = w

(n)
t ×Ok(o

t
k|s(n),t, at−1

k , at−1
−k)

15 b̃temp
k,l =< is

(n),t
k , w

(n)
t >

16 normalize all w(n)
t so that

∑N
n=1 w

(n)
t = 1

17 resample from b̃temp
k,l accroding to normalized w

(n)
t

18 resample θ
(n),t
−k according to similar neighboring

models
19 return b̃tk,l = is

(n),t
k

dimension of the model samples from a Gaussian distribu-
tion with the mean of current sample value.

The Algorithm 1 starts from a set of initial prior sam-
ples is(n),t−1

k . For each of is(n),t−1
k , it samples other agents’

optimal actions at−1
−k from P (A−k|θ(n),t−1

−k) obtained from
POMDP solver Perseus2 (Spaan and Vlassis 2005). Then
it samples the physical state st using the state transition
Tk(S

t|S(n),t−1, at−1
k , at−1

−k). Once at−1
−k and st are sampled,

the algorithm calls the 0-level belief update (line 5 to 8), de-
scribed in Algorithm 2, to update other agents’ beliefs over
physical state bt−k,0 if the current nesting level l is 1; or re-
cursively calls itself at a lower level l−1 (line 9 to 12) if the
current nesting level is greater than 1. The sample weights
w

(n)
t are computed according to observation likelihoods of

both modeling and modeled agents (line 13, 14), and then
normalized (line 16). Lastly, the algorithm resamples the in-
termediate samples according to the computed weights (line
17) and resamples another time from similar neighboring
models (line 18) to avoid divergence.

Consequently, the 0-level belief update, described in Al-
gorithm 2, treats other agents’ actions as noise, randomizes
the state transition and observation functions, and input them
as arguments. For each possible action at−1

−k , it computes the

2http://www.st.ewi.tudelft.nl/∼mtjspaan/pomdp/index en.html

Algorithm 2: Level-0 Belief Update

btk,0 =Level0BeliefUpdate(bt−1
k,0 ,at−1

k ,otk, T (n)
k ,O(n)

k)
1 P (at−1

−k) = 1/at−1
−k

2 for st ∈ S:
3 for st−1:
4 for a(t−1)

−k ∈ A−k:
5 P (n)(st|st−1, at−1

k) =

T
(n)
k (st|st−1, at−1

k , at−1
−k)P (at−1

−k)

6 sum(n)+ = P (n)(st|st−1, at−1
k)bt−1

k,0 (s
t−1)

7 for a(t−1)
−k ∈ A−k:

8 P (n)(otk|st, at−1
k)+ =

O
(n)
k (otk|st, at−1

k , at−1
−k)P (at−1

−k)

9 btk,0 = sum(n)P (n)(otk|st, at−1
k)

10 normalize and return btk,0

actual state transition (line 5) and actual observation func-
tion (line 8) by marginalizing over others’ actions, and re-
turns the normalized belief btk,0. Notice that the transition

function T
(n)
k (st|st−1, at−1

k , at−1
−k) and observation function

O
(n)
k (otk|st, at−1

k , at−1
−k) are both samples from input argu-

ments, which depend on particular model parameters of the
actual agent on the 0th level.

Illustration

We illustrate the operations of Algorithm 1 and 2 using
the multi-agent version of tiger problem (Gmytrasiewicz
and Doshi 2005). The multi-agent tiger game is a general-
ization of the classical single agent tiger game (Kaelbling,
Littman, and Cassandra 1998). It contains additional obser-
vations caused by others’ actions, and the transition and re-
ward functions involve others’ actions as well.

For the illustrative simplicity, we assume there are two
agents i and j, and the nesting level is 1. Recall that an
interactive POMDP of agent i is defined as a six tuple
I-POMDPi = 〈ISi,l, A,Ωi, Ti, Oi, Ri〉, thus for the spe-
cific setting of two-agent tiger problem:

• ISi,1 = S × θj,0, where S = {tiger on the
left (TL), tiger on the right (TR)} and θj,0 =<
bj(s), Aj ,Ωj , Tj , Oj , Rj , OCj >}.

• A = Ai × Aj is a combination of both agents’ possible
actions: listen (L), open left door (OL) and open right
door(OR).

• Ωi: {growl from left (GL) or right (GR)} × {creak from
left (CL), right (CR) or silence (S)}.

• Ti = Tj : S ×Ai ×Aj × S → [0, 1].

• Oi : S ×Ai ×Aj × Ωi → [0, 1].

• Ri : IS ×Ai ×Aj → R.

Figure 1 illustrates the interactive belief update in the
game described above. Suppose the sample size is 8, each
dot represents a particular belief sample and the subscripts
denotes the corresponding agents. The propagation step is

669

Figure 1: An illustration of interactive belief update for two
agents and level-1 nesting.

implemented in lines 2 to 12 in Algorithm 1, the weighting
step is in lines 13 to 16, and the resampling step is in lines 17
and 18. The belief update for a particular level-0 model sam-
ple, θj = 〈0.5, 0.67, 0.5, 0.85, 0.5,−1,−100, 10〉, is solved
using Algorithm 2, and the optimal action is computed by
calling the Perseus POMDP solver.

Experiments

To demonstrate the soundness of our theoretical framework,
we present the results using the multi-agent tiger game
(Gmytrasiewicz and Doshi 2005) with various settings. For
the sake of brevity we restrict the experiments to a two-agent
setting and level-1 nesting, but the sampling algorithm is
extensible to any number of agents and nesting levels in a
straightforward manner according to Algorithm 1.

Parameter Space

For the experiments of two-agent tiger game, we want to
learn over all possible intentional models of the other agent
j: θj =< bj(s), Aj ,Ωj , Tj , Oj , Rj , OCj >. As mentioned
before we assume that Aj and Ωj are known, and OCj is
infinite horizon with discounting. We want to recover the
possible initial belief b0j about the physical state, the tran-
sition, Tj , the observation, Oj and the reward, Rj , which
can be all parametrized by eight parameters as shown in
Table 1. We see that it is a large 8-dimensional parameter
space to learn from: b0j × pT1 × pT2 × pO1 × pO2 × pR1 ×
pR2 × pR3, where {bj , pT 1, pT 2, pO1, pO2} ∈ [0, 1] ⊂ R

and {pR1, pR2, pR3} ∈ [−∞,+∞].

Results

We fix the number of samples to 2000 and run experiments
with agent j acting according to three different policies
shown in Figure 2. For brevity we focus on results of learn-
ing models when agent j acts according to the first of these
policies, but give a performance comparison among all of
them.

The aim of first experiment is trying to learn models of
agent j who is modeling his opponent using a subintentional

Table 1: Parameters for transition, observation and reward
functions of two-agent tiger game

S A TL TR
TL L pT1 1− pT1

TR L 1− pT1 pT1

* OL pT2 1− pT2

* OR 1− pT2 pT2

S A GL GR
TL L pO1 1− pO1

TR L 1− pO1 pO1

* OL pO2 1− pO2

* OR 1− pO2 pO2

S A R
* L pR1

TL OL pR2

TR OR pR2

TL OR pR3

TR OL pR3

model. Agent j’s actual policy, as shown in Figure 2(a), is
to look for three consecutive growls from the same direction
and then open the opposing door. The second experiment in-
volves agent j equipped with high listening accuracy of 0.95
and small penalty of -10 for encountering the tiger, i.e. the
agent j alternately opens door and listens as shown in Fig-
ure 2(b). And the third experiment involves a simple agent j
who always listens since the listening penalty is now equal
to the reward, as shown in Figure 2(c). In conclusion, one
can view the difficulties of learning such agents’ models as
relatively hard, medium, and easy, since the policy difficul-
ties decrease in experiment one, two and three. Meanwhile
the parameters being learned will be less definite from ex-
periment one to three, since there are more possible models
which can generate the same policy when it becomes easier.

To demonstrate the learning ability of our algorithm for
possible models of the agent in Figure 2(a), we assign un-
informative prior distributions to each parameter space ,
which is shown in Figure 3. They are uniform distributions:
{b0j , pT1, pT2, pO1, pO2} ∼ U(0, 1), {pR1, pR2, pR3} ∼
U(−200, 200). After 50 time steps, the algorithm converges
to a posterior distribution over agent j’s intentional models.
From the marginal distributions of all parameters, we can
see that the majority of samples are centered around the true
parameter values.

Since the original parameter space is 8-dimensional, in or-
der to visualize the learning process, we use principal com-
ponent analysis (PCA) (Abdi and Williams 2010) to reduce
it to 2D and plot it out as a 3D histogram, as shown in Figure
4. It starts from an uninformative prior and gradually con-
verges to the most likely models. Eventually the mean value
of this cluster 〈0.49, 0.69, 0.49, 0.82, 0.51, -0.95, -99.23,
10.09〉 is very close to the actual model 〈0.5, 1, 0.5, 0.95,
0.5, -1, -10, 10〉.

670

Figure 2: Optimal policies denoted as Fi-
nite State Controllers (FSCs) of: (a) θj1 =<
0.5, 0.67, 0.5, 0.85, 0.5,−1,−100, 10 >, (b) θj2 = 〈
0.5, 1, 0.5, 0.95, 0.5, -1, -10, 10 〉, and (c) θj3 = 〈0.5, 0.66,
0.5, 0.85, 0.5, 10, -100, 10〉.

In Figure 5 we show that the learning quality in terms of
KL-Divergence, which measures the distance between the
learned mean values of model parameters and correspond-
ing ground truth, becomes better as the number of particles
increases in all three experiments.

Because agent i is now able to learn others’ likely mod-
els, he should be capable of predicting j’s actions relatively
accurately. Therefore, we tested the performance of our al-
gorithm in terms of prediction accuracy towards others’ ac-
tions, which is the number of incorrect predictions with
respect to others’ actions over the ground truth. For con-
ciseness, we show the average prediction error rates for all
three experiments in Figure 6. We compared the results with
other modeling approaches, such as a frequency-based (ficti-
tious play) (Fudenberg and Levine 1998) approach, in which
agent j is assumed to choose his action according to a fixed
but unknown distribution, and a no-information model, in
which agents assume others’ actions are drawn from a uni-
form distribution and therefore is an instance of subinten-
tional model. The shown results are averaged plots of 10
random runs, each of which has 50, 30 and 30 time steps re-
spectively. It shows that the intentional I-POMDP approach
has significantly lower error rates as agent i perceives more
observations. The subintenional model assumes j’s action
is draw from a uniform distribution, therefore has a fixed
high error rate. The frequency based approach has certain
learning ability but is less sophisticated for modeling a ra-
tional agent, therefore its performance falls somewhere in
between.

Figure 3: Assigned uniform priors (left) and learned
posterior distributions (right) over model parameters for
θj1 = 〈0.5, 0.67, 0.5, 0.85, 0.5,−1,−100, 10〉. The means
of learned posteriors are 0.49, 0.69, 0.49, 0.82, 0.51, -0.95,
-99.23, 10.09.

Conclusions and Future Work

We have described a new approach to learn other agents’
intentional models by approximating the interactive belief
update using Bayesian inference and Monte Carlo sampling
methods. We show the soundness of our theoretical frame-
work using a multi-agent tiger game in which it correctly
learns others’ models over the entire intentional model space
and can be generalized to problems of larger scale in a
straightforward manner. Therefore, it provides a generalized
reinforcement learning algorithm for multi-agent settings.

For future research opportunities, the applications pre-
sented in this paper can be extended to more complicated
multi-agent problems. Due to computational complexity, ex-
periments on higher nesting levels are currently limited,
more efforts can be made on leveraging nonparametric
Bayesian methods which inherently deal with nested be-
lief structures. Besides, deep reinforcement learning meth-
ods which utilize various deep neural networks to approxi-
mate key components in POMDPs should also be capable of
approximating corresponding functions in I-POMDPs, thus

671

Figure 4: Histogram of all model samples for θj1 during
learning, after projection from 8D to 2D.

Figure 5: Learning quality measured by KL-Divergence,.
The vertical bars are the standard deviations.

has potential of making the computations more efficient.

References

Abdi, H., and Williams, L. J. 2010. Principal component
analysis. Wiley interdisciplinary reviews: computational
statistics 2(4):433–459.
De Freitas, N.; Doucet, A.; and Gordon, N. 2001. An intro-
duction to sequential monte carlo methods. SMC Practice.
Springer Verlag.
Del Moral, P. 1996. Non-linear filtering: interacting particle
resolution. Markov processes and related fields 2(4):555–
581.
Doshi, P., and Gmytrasiewicz, P. J. 2009. Monte carlo sam-
pling methods for approximating interactive pomdps. Jour-
nal of Artificial Intelligence Research 34:297–337.
Doshi-Velez, F.; Pfau, D.; Wood, F.; and Roy, N. 2015.
Bayesian nonparametric methods for partially-observable
reinforcement learning. IEEE transactions on pattern anal-
ysis and machine intelligence 37(2):394–407.

Figure 6: Performance comparisons in terms of predic-
tion error rate vs observation length for (a) θj1 =
〈0.5, 0.67, 0.5, 0.85, 0.5,−1,−100, 10〉 (b) θj2 = 〈 0.5, 1,
0.5, 0.95, 0.5, -1, -10, 10 〉, and (c) θj3 = 〈0.5, 0.66, 0.5,
0.85, 0.5, 10, -100, 10〉.

Fudenberg, D., and Levine, D. K. 1998. The theory of learn-
ing in games, volume 2. MIT press.

Gilks, W. R.; Richardson, S.; and Spiegelhalter, D. J. 1996.
Introducing markov chain monte carlo. Markov chain Monte
Carlo in practice 1:19.

Gmytrasiewicz, P. J., and Doshi, P. 2005. A framework for
sequential planning in multi-agent settings. J. Artif. Intell.
Res.(JAIR) 24:49–79.

Gordon, N. J.; Salmond, D. J.; and Smith, A. F. 1993. Novel
approach to nonlinear/non-gaussian bayesian state estima-
tion. In IEE Proceedings F (Radar and Signal Processing),
volume 140, 107–113. IET.

Harsanyi, J. C. 1967. Games with incomplete information
played by bayesian players, i–iii: part i. the basic model&.
Management science 14(3):159–182.

672

Hernandez-Leal, P., and Kaisers, M. 2017. Towards a fast
detection of opponents in repeated stochastic games. In 1st
Workshop on Transfer in Reinforcement Learning at AA-
MAS. International Foundation for Autonomous Agents and
Multiagent Systems.
Hernandez-Leal, P.; Rosman, B.; Taylor, M. E.; Sucar, L. E.;
and Munoz de Cote, E. 2016. A bayesian approach for
learning and tracking switching, non-stationary opponents.
In Proceedings of the 2016 International Conference on Au-
tonomous Agents & Multiagent Systems, 1315–1316. Inter-
national Foundation for Autonomous Agents and Multiagent
Systems.
Kaelbling, L. P.; Littman, M. L.; and Cassandra, A. R. 1998.
Planning and acting in partially observable stochastic do-
mains. Artificial intelligence 101(1):99–134.
Liu, M.; Liao, X.; and Carin, L. 2011. The infinite regional-
ized policy representation. In Proceedings of the 28th Inter-
national Conference on Machine Learning (ICML-11), 769–
776.
Ng, B.; Boakye, K.; Meyers, C.; and Wang, A. 2012. Bayes-
adaptive interactive pomdps. In AAAI.
Panella, A., and Gmytrasiewicz, P. J. 2016. Bayesian learn-
ing of other agents’ finite controllers for interactive pomdps.
In AAAI, 2530–2536.
Panella, A., and Gmytrasiewicz, P. 2017. Interactive pomdps
with finite-state models of other agents. Autonomous Agents
and Multi-Agent Systems 1–44.
Papadimitriou, C. H., and Tsitsiklis, J. N. 1987. The com-
plexity of markov decision processes. Mathematics of oper-
ations research 12(3):441–450.
Ross, S.; Chaib-draa, B.; and Pineau, J. 2008. Bayes-
adaptive pomdps. In Advances in neural information pro-
cessing systems, 1225–1232.
Spaan, M. T., and Vlassis, N. 2005. Perseus: Randomized
point-based value iteration for pomdps. Journal of artificial
intelligence research 24:195–220.

673

