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Abstract

This paper describes a feature extraction technology from
event sequence of lab tests in electronic health record (EHR)
for modeling diabetic nephropathy. We used a stacked convo-
lutional autoencoder which can extract both local and global
temporal information from the event sequence. The extracted
features can be interpreted as similarities to a small number
of typical sequences of lab tests. The extracted features in our
prototyping experiment were promising for understanding of
the long-term course of the disease.

Introduction

Diabetic nephropathy is a kidney disease which is com-
monly complicated with diabetes mellitus (International Di-
abetes Federation 2017). For its risk prediction and detailed
health guidance, growing attention is being paid to analyzing
the electronic health records (EHRs) (Shimizu et al. 2013;
Perotte et al. 2015). Here, artificial intelligence (AI) tech-
nologies offer a solutions to the problem.

This study undertook a machine learning-based approach
of feature extraction from a long-term EHR which consists
of event sequence of lab tests. We developed a prototyping
system trained with real-world EHRs of patients of diabetic
nephropathy from a Japanese hospital. The major features of
our system are twofold. First, the system can extract gener-
ally useful features for modeling diabetic nephropathy, such
as for risk prediction and management, where the feature
extractor is trained in an unsupervised way. Second, the ex-
tracted features are interpretable, which helps us to obtain
knowledge of the characteristics and the long-term course
of diabetic nephropathy.

To implement the above features, there were a number of
technical hurdles to overcome. In particular, our challenge
for the first feature was how to handle the event sequence
of lab tests in an unsupervised way. As shown in Figure 1,
since the events are recorded irregularly and sparsely, we
need to design the feature extraction method in considera-
tion of time shift invariance and correlations between lab
Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Event sequence of lab tests and its matrix repre-
sentation. The horizontal and vertical axes respectively cor-
respond to the time stamps and different lab tests. A trian-
gle indicates the value of lab tests at the corresponding day,
where red and blue mean a high and low values respectively.

tests both on local and global time scales. This requires a hi-
erarchical convolution and pooling mechanism across time
in the feature extraction process.

The challenge for the second feature was how to make
the extracted features interpretable while meeting the above
requirement. It may be helpful if we can consider that the
features are represented by affiliations to a small number of
typical patterns of the lab tests sequences, i.e., some kind of
filter for the sequence. This is because we can obtain these
typical patterns through inverse analysis of the feature ex-
tractor in this case and the extracted features can be inter-
preted as the similarities with these few patterns.

To meet these challenges, we propose a solution based on
the convolutional autoencoder (Masci et al. 2011), which is
a variant of the autoencoder constructed by stacking con-
volutional layers and max-pooling layers. In the subsequent
sections, we summarize our system and show the proto-
typing results of feature extraction which reveal the typi-
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Figure 2: Framework for learning feature extractor from lab test sequences by using SCAE and extracting typical patterns of
the sequence in each layer.

cal sequences that are related to the aggravation of diabetic
nephropathy from stage 1 to stage 2.

Convolutional Autoencoder for Extracting

Features from EHR

Our goal is to extract generally useful and interpretable fea-
tures from the EHR of a diabetic nephropathy patient. As a
preprocessing, we convert the event sequences of lab tests
of every i-th patient into N -sets of matrices {Xi}Ni=1 as
in (Wang et al. 2012), where Xi ∈ R

D×T whose horizon-
tal dimension corresponds to the time stamp and vertical di-
mension corresponds to the lab tests as shown in Figure 1.
The (d, t)-th entry of Xi is d-th real-valued lab test result at
time stamp t.

For the matrices, we first learn a stacked convolutional
autoencoder (SCAE) repeatedly applying one-dimensional
convolution and pooling across time. It works as a hierar-
chical feature extractor from the sequence, which can com-
pactly represent both local and global temporal information.
Then, since the output of SCAE becomes affiliations to a
small number of typical patterns, we generate typical se-
quences of lab tests as what maximally activate the SCAE
outputs, which describe the features extracted with SCAE.
Figure 2 summarizes the concept of the proposed frame-
work.

For learning the SCAE, we minimize the following recon-
struction error across the N -lab-test sequences {Xi}Ni=1:

N∑

i=1

‖Xi − g(f(Xi))‖22, (1)

where the function f(Xi) is the feature extractor repeatedly
mapping the input Xi to the latent representations. We de-
fine the latent representation in the l-th layer as hl. Then, we
use f(Xi) to reconstruct the input Xi by a reverse mapping

g(f(Xi)). As shown in Figure 2, f(Xi) has five hidden lay-
ers: 1) a convolutional layer with 32D× 3 filters; 2) a max-
pooling layer of 1×2 filters; 3) a convolutional layer with 32
1× 3 filters per map; 4) a max-pooling layer of 1× 2 filters;
5) a fully connected layer of 64 hidden neurons. The k-th
feature map in the l-th convolutional layer is a deterministic
function of the type:

h
(k)
l = σ(hl−1 ∗W (k)

l + b
(k)
l ), (2)

where σ(•) is an activation function (we used rectified lin-
ear unit (ReLU) (Nair and Hinton 2010)) and the operator ∗
denotes a one-dimensional convolution across time with the
parameter W

(k)
l and b

(k)
l . The max-pooling layers down-

sample the latent representation by taking the maximum
value over sub-temporal regions. The fully connected layer
is also a deterministic function,

h5 = σ(W5h4 + b5), (3)
where W5 and b5 are parameters. The first layer receives
its input from Xi as hl−1 and each of the other layers re-
ceives its input from the latent representation of the layer
below. Note that the size along the lab-test dimension for
the convolutional filter in the first layer is D and that for the
max-pooling filter is 1, since our convolutional and pooling
filters are applied only along the temporal dimension. The
reconstruction function g(f(Xi)) is the transposed convo-
lution (Long, Shelhamer, and Darrell 2015). Through the
unsupervised learning, the SCAE, f(Xi), works as a fea-
ture extraction function from a complicated event sequence
of lab tests without manually designing features. From the
hierarchical convolutional structure, the SCAE can capture
both local and global temporal information in early layers
and later layers, respectively. As the feature extraction re-
sults, we used the 64-dimensional features h5, which were
the output of the fully connected layer (5-th layer). They can
be used for modeling with any other features extracted by
other methods.
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We output a typical sequence X̂ for the m-th feature,
[h5]m, through inverse analysis solving the following op-
timization problem:

max
X

[h5]m, (4)

where we extract the pattern by maximizing the activation of
the hidden representation [h5]m. We can interpret the hidden
representation by the pattern and the extracted feature can be
interpreted as the similarity to the pattern.

We used ADAM with the recommended hyper-parameters
in (Kingma and Ba 2015) and mini-batches of 128 examples
for the above optimization problems.

Experimental Results

We trained our system by using real-world EHRs, where
Xi was a 180-day history of lab-tests sequence in the i-th
record. Xi had D = 23 attributes, each representing a real-
valued result of the lab test, (the tests are listed in Figure 1).
We made the time length T 18 by taking the mean of each
10-day result in the 180 days (which can be viewed as mean-
pooling). We used EHRs obtained from a cumulative total of
30,810 patients for the training.

The matrices in Figure 2 (c) show examples of the re-
sults X̂ of Eq. (4), typical sequences which are related to
the risk of diabetic nephropathy progressing from stage 1
to stage 2. The left matrix is a typical pattern of a 180-day
sequence of patients who stayed in stage 1. The right ma-
trix is that of patients who progressed to stage 2. Red and
blue square mean a high test value and low test value, re-
spectively. We determined [h5]m for the groups respectively
as the latent representations having the highest correlations
with the disease progression (stayed in stage 1 or progressed
to stage 2) after 180 days from the latest EHR by using
L1-regularized canonical correlation analysis. These results
may provide knowledge on typical disease course and health
guidance.

Figure 3 is a detailed comparison between the patients
who stayed in stage 1 and those who progressed to stage 2,
and it shows features having notable differences between
these groups. The typical sequence of those progressing to
stage 2 has higher C-reactive protein (CRP) values through-
out the period than that of the patients staying in stage 1.
The estimate glomerular filtration rate (eGFR) of patients
who progressed to stage 2 is typically lower than that of pa-
tients staying in stage 1. The potassium (K) value fluctuates
through time for stage 2 patients, but remains low for stage 1
patients. The value of amylase test is higher for progressing
patients. These results are mostly consistent with knowledge
about diabetic nephropathy. Additionally, if only the latest
lab test values were analyzed, it would miss some tempo-
ral behaviors of the lab tests that we were discovered in this
analysis.

We also showed an example of typical sequence of lab
tests activating the latent representation in each middle con-
volutional layer in Figures 2 (a) and (b). Here, the patterns
for the latent representations in the early layers represent lo-
cal temporal information. The ones for those in the latter
layers represent information with a longer time period.

Figure 3: Comparison of the sequences between the patients
who stayed in stage 1 and those who progressed to stage 2.

Related work

Healthcare is one of the major fields of application for AI.
Risk prediction of disease from diverse data sources, such as
Twitter (Paul and Dredze 2011; Sadilek, Kautz, and Silenzio
2012), is a promising research topic. Recently, many studies
and applications focus on EHRs as data sources (Yadav and
Simon 2015; Goldstein et al. 2017).

Kidney disease is a growing problem. (Echouffo-
Tcheugui and Kengne 2012) reviewed risk prediction mod-
els for it and found that most of the work reported did not
take into account the temporal behavior of the lab tests and
focused on past medical history or lab tests at a certain point
in time. None of the previous work studies tried to use SCAE
to understand the temporal behavior of the lab tests. In ad-
dition, we prefer SCAE because of its application flexibility
that originates from the unsupervised nature of its learning.

Neural network and deep learning models are being used
in the analysis of EHR (Ravı̀ et al. 2017); examples include
recurrent neural networks (RNN) for prediction of the diag-
nosis and medication categories (Choi et al. 2016), an au-
toencoder for phenotyping (Lasko, Denny, and Levy 2013),
a stack of denoising autoencoders for health states predic-
tion (Miotto et al. 2016), and convolutional neural networks
(CNN) for the risk prediction (Cheng et al. 2016). An ad-
vantage of deep learning is its prediction accuracy and a dis-
advantage is the difficulty understandability it results. Since
one of the motivations of medical informatics is to under-
stand a disease more deeply, we focus on the interpretability
of the learned model.

SCAE has been used actively in the image processing
and vision community. From its convolutional nature in-
spired from the biological structure of the visual cortex,
many popular applications of SCAE have an aspect of be-
ing feature extraction or representation learning from im-
ages, such as image generation (van den Oord et al. 2016),
extraction of per-pixel material information (Schwartz and
Nishino 2013), super resolution (Wang et al. 2015), and
medical imaging (Nishio et al. 2017). In this study, we used
1D-convolution across time-series. This type of convolution
was proposed for time-delay neural networks (Waibel et al.
1989). Recently, convolutional autoencoder has been under-
taken for feature extraction from sequential data, such as
radio communication signals (O’Shea, Corgan, and Clancy
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2016) and for videos (Bascol et al. 2016).

Future Directions

We have demonstrated that a stacked convolutional autoen-
coder can work as a feature extractor from event sequence
in EHR and that the obtained typical sequences showed rea-
sonable patterns. The next step is constructing a prediction
model for the stages aggravation of diabetic nephropathy
by combining the extracted features with other multi-modal
information, such as medication and life-style information.
Considering what new information can be obtained from the
extracted typical patterns is another interesting topic.
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