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Abstract

The number of people with dementia (PwD) residing in nurs-
ing homes (NH) increases rapidly. Behavioural disturbances
(BDs) such as wandering and aggressions are the main rea-
sons to hospitalise these people. Social robots could help to
resolve these BDs by performing simple interactions with
the patients. This paper examines whether self-learning algo-
rithms could be designed to select the robotic interactions,
preferred by the patients, during an intervention. K-armed
bandit algorithms were compared in simulated environments
for single and multiple patients to find the beneficial learning
agents and action selection policies. The single patient tests
show the advantages of selecting actions according to an Up-
per Confidence Bound (UCB) policy, while the multi-patient
tests analyse the benefits of using additional, contextual in-
formation. Afterwards, the learning application was provided
with a framework to operate in more realistic situations. We
expect that this framework can be used for personalised inter-
actions in many different healthcare domains.

Introduction

Worldwide, almost 44 million people have dementia-related
diseases, where it is the most common in Western Europ1.
Most of these people with severe dementia are staying at
nursing homes (NH), mostly specialised in dementia related
dissorders (Vandervoort et al. 2013). Beside the amnesia, all
these PwD suffer from so-called behavioural disturbances
(BDs), like hallucinations, wandering and aggressions. Phar-
macological interventions are used only for acute situations
in the management of these BDs because these treatments
do not address the underlying psychosocial reasons and may
have adverse side effects (Fightdementia 2017). Many dif-
ferent non-pharmacological therapies are designed to re-
solve specific BDs by interacting with the PwD and with-
out the harmful effects of medical interventions (Cohen-
Mansfield 2001). Due to the increased strain on the available
resources within healthcare, many NH avoid these therapies.
Robots can help the nursing staff to elevate several BDs, re-
ceiving the same benefits of the non-pharmacological ther-
apies and reduce the burden and stress of the caregivers.
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Many different studies investigated the effects of Robot-
Assisted Therapies (RAT) onto these PwD, and neuropsy-
chiatric symptoms tend to improve when robots are in-
volved in simple interactions, e.g. singing a song or per-
forming a dance (Wada et al. 2005; Valenti Soler et al. 2015;
Inoue et al. 2014; Martı́n et al. 2013). However, these robots
will only interact in a preprogrammed manner, and the nurs-
ing staff still needs to install and control these therapy ses-
sions (Martı́n et al. 2013).

Robotic-assisted interventions are needed instead of the
current applied therapy sessions. We are currently design-
ing such a robotic intervention system where a care applica-
tion build on top of the Nao robot could be integrated into
the daily care processes for the prevention and alleviation
of BDs of PwD. The necessary functionality to have such
a robot autonomously walking from one resident to another,
each time engaging in a personalised interaction, is currently
investigated. The main idea behind these interactions is that
the NAO robot will generate stimuli to elicit personal mem-
ories with associated positive feelings that have calming and
reassuring effects onto these PwD.

The aim of this work is to investigate how a learning sys-
tem can be built to determine which robotic action should be
executed to elevate a particular BD for a specific PwD. The
learning algorithms are based on reinforcement learning. A
first section will give a summary of this learning technique.
Taking into account this background knowledge, the second
section , describes the design of the problem-specific bandit
algorithms. Several simulations with virtual patients and a
virtual robot were performed to investigate the performance
of these bandit algorithms. The learning components were
optimised and eventually surrounded by a framework to per-
form more practical tests, with real people and a real robot.
The third section gives more details about the simulator and
the designed framework. At last, the results of the tests, for
different situations and both the simulated and more realistic
environment, are discussed.

Background

The process, resulting in positive interactions, should learn
similar like we, humans do. When we learn to ride a bike, no
clear description is given of how we should perform. We just
tried and, more than likely, we fell. During this learning pro-
cess, the feedback signals that told us how well we did, were
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either pain or reward and were generated by our brain and
how the environment, for instance, our parents reacted dur-
ing this process. This feedback is considered reinforcement
for doing or not doing a particular small action before receiv-
ing a much larger reward. This same technique is applicable
in the field of robotics and is their more commonly known as
Reinforcement Learning (RL) (Kober, Bagnell, and Peters
2015). The following section gives a brief summary about
RL.

Reinforcement Learning

State, action, and reward are the three main concepts in RL.
The state describes the current situation. In the case where
the robot should select the most appropriate action, the state
will reflect the status of the patient. An action is everything
the robot can do in a particular state. When the robot ex-
ecutes an action in a state, it receives a reward when the
intervention finishes. The term reward is a concept that de-
scribes the feedback from the environment and can be pos-
itive or negative. A positive feedback corresponds to the
usual meaning of reward. When the feedback is negative, it
is corresponding to what is usually called a punishment. The
interaction between state, action and rewards is simple and
straightforward: once the state is known, an action is chosen
that, hopefully, leads to a positive reward (Sutton and Barto
2013).

The full RL paradigm, as visualised in the bottom part of
Figure 1 is interested in the long-term reward after several
actions were taken2. Every action influences the next states
and different actions must be taken to receive the positive
rewards. The concepts of the full RL problem can be sim-
plified when the direct results of executing a single action
gives already enough information to determine the preferred
action. Another simplification is the execution of one action
per intervention, which avoids the occurrence of multiple
states. This simplified problem bypasses all the state con-
cepts and learns the link between the executed actions and
the possible benefits of the interactions for each state. Such
a RL problem is known as a multi-armed bandit problem.

Figure 1: Top: bandit problem, where only one action effect the
reward. Middle: Contextual bandit problem, where state and action
effect the reward. Bottom: Full reinforcement learning problem,
where action effects multiple state, and rewards may be delayed in
time

2adapted from: www.medium.com/@awjuliani

(Contextual) Bandit problem When an agent has to act
in only one situation, the analogy with a simple casino slot
machine, where a gambler tries to maximise his or her rev-
enue, is easily made. Consecutive handle pulls will eventu-
ally reveal some knowledge about the probability distribu-
tion of the game, and based on this gathered information,
the gambler can decide which lever to pull next. Because
in the end, the casino always wins, these slot machines are
more commonly known as bandits. The problem of deter-
mining the patient’s preferences is similar to such a bandit
problem. When an intervention is needed, multiple actions
can be chosen, and the goal is to get positive feedback from
the patient. The probability distributions of how the patients
react to these interactions are not known upfront and stay
hidden inside the ‘bandit’ (Sutton and Barto 2013).

A k-armed bandit problem is defined by k actions and the
unknown probability distribution over the rewards, Ra(r) =
P[r—a] with a an action. At each time step t, the agent se-
lects an action at ∈ A, and the reward is generated according
to the selected action. The goal of a k-armed bandit algo-
rithm is to select those actions, which maximise the cumu-
lative reward,

∑τ
t=1 rt, with rt the received reward in every

intervention t.
Because the probability distributions of the rewards are

unknown, the value for each action should be estimated. The
most optimal value for this problem is denoted by v∗ and
follows by selecting the best possible action. The total regret
score, which is the total difference of expectations between
the optimal interaction and the chosen action in each time
step, expresses the performance of a bandit algorithm. The
bandit algorithm will have to explore the action space to find
the best actions in order to calculate the total regret score.

Exploring the action space, and deciding when to exploit
the current best action, is one of the main tasks of a bandit
problem. Several exploration-exploitation tactics are avail-
able to balance between searching for the optimal actions
and exploiting the best one. The best tactic depends on the
problem. Each of these so-called policies estimates the re-
ward value of the current chosen action in every state.

RL algorithms usually benefit from environmental infor-
mation during the decision-making procedure. Many pa-
tients will react differently to the robotic interventions, and
a single bandit algorithm will not differentiate between the
patients. Learning the benefits of the interactions for ev-
ery patient separately, for all the different situations per pa-
tient leads to a fully personalised learning system, but the
learning effort grows without guaranteeing that the learning
phases converges. Incorporating contextual information into
the learning phase will enable the agent to learn globally
over multiple patients, using some easily definable charac-
teristics. Studies showed there is a link between the differ-
ent types of dementia and the BDs (Chiu et al. 2006). Al-
gorithms which can exploit these links are called contextual
bandit problems and situations where such contextual infor-
mation cannot be utilised efficiently, are rare in practice.

Bandit design
Bandit algorithms handle according to a received feedback.
Such algorithms are composed of an agent, a policy and a re-
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ward signal and this section designs these three components
to learn the patient’s preferences.
Agent: The agent will control and execute the actions but
has no capability to decide which actions should be per-
formed. It gathers the knowledge from the environment after
an intervention finishes and provides it to the learning mech-
anism of the bandit algorithm. The collected knowledge is
usually received in the form of one or multiple reward sig-
nals. Three different types of agents were analysed.

• Normal agent: The normal agent, described by Sutton et
al. (Sutton and Barto 2013), uses the reward signals to
represent the feedback directly. For each action, the mean
value of the unknown probability distribution will be up-
dated with every new intervention. Based on these mean
values, the algorithm can determine which action gener-
ates the highest reward.

• Gradient agent: To cope with similar rewards for cer-
tain actions, a gradient agent will try to learn the rela-
tive difference between the actions. By doing this, it can
efficiently determine a preference of one action over an-
other. The implemented gradient agent updates the prefer-
ence for an action in every observation (Sutton and Barto
2013). In observation t, the agent selects action a with
probability e(Q[t,a]/τ)/

∑
a e

(Q[t,a]/τ), where τ > 0 is the
temperature specifying how randomly values should be
chosen and Q[t, a] is the action preferences of action a at
timestep t. When τ is high, the actions are chosen in al-
most equal amounts. As τ is reduced, the highest-valued
actions are more likely to be selected and, in the limit
when τ goes to zero, the best action is always chosen.

• Contextual agent: The contextual agent uses several pa-
tient characteristics to make a prediction of the probability
distributions in each intervention.

Policy: Policies determine which action should be executed.
They are responsible for the exploration-exploitation trade-
off, which let the agent explore its actions space before
exploiting the best possible interactions (Sutton and Barto
2013). Six different policies were analysed.

• Random policy: Select the actions at random for every in-
tervention. This policy will only be beneficial when there
is no task to learn, but gives a baseline solution.

• Greedy policy: At every intervention, there is at least one
action whose estimated reward value is the greatest. A
Greedy policy will always select this action.

• Epsilon-Greedy policy: The random policy will keep ex-
ploring and the Greedy policy starts directly exploiting.
The Epsilon-Greedy algorithm combines these two po-
lices and select a random action with probability ε and
select the current best action with probability 1 − ε (0 <
ε < 1).

• Decaying Epsilon-Greedy policy: The Epsilon-Greedy
policy has the disadvantage to explore forever with a pre-
defined ε > 0 . A first phase of the learning process could
need more exploration, while later on, the best actions
should be exploited. It could be beneficial to start with
an ε = 1 and lower the ε value after every intervention

until it reaches a lower bound. If this lower bound equals
zero, the policy will act greedy from upon that point.

• Upper Confidence Bound (UCB) policy: Exploring the
non-optimal actions according to their potential for ac-
tually being optimal, taking into account the uncertainties
in those estimates, can be more beneficial. One effective
way of doing this is to select actions according to the fol-
lowing equation:

at = argmax
a

[
qt(a) + c

√
log t
Nt(a)

]
, (1)

with qt(a) the preference of action a at timestep t, logt the
natural logarithm of t, Nt(a) the number of times action
a is selected at time step t and c > 0 the degree of explo-
ration, defining the confidence level. The quantity being
maximised is an upper bound on the possible actual pref-
erence of action a. Each time action a is selected, the un-
certainty of its choice will be reduced. However, when an
action different from a is selected, the uncertainty of ac-
tion a increases. The UCB policy selects actions accord-
ing to Equation 1.

• Contextual policy: It can be beneficial to use the predic-
tions, based on the contextual information, to determine
the action preferences. The patient’s characteristics are
given as input to this policy, and it outputs the expected re-
ward for each action. The most presumable action is then
selected to be executed. This policy can only be used to-
gether with a contextual agent, because the other agents
do not have the predictable capacity to determine the ac-
tion probabilities.

Reward: The reward signal should represent the positive or
adverse effects of the executed action during an intervention.
The framework operating on the Nao robot, has some useful
modules to perform sentiment analyses for both vocal and
visual captured data (Khosla et al. 2016). This framework
can detect facial expressions, and these values were used to
design a reward signal.

The facial expression analyses provides a confidence
score between 0 and 1, indicating how likely an estimation
is, for every of following five categories: neutral, happy, sur-
prised, angry or sad. During an intervention, the facial ex-
pressions of the patient are analysed multiple times, and
the corresponding confidence values are saved. When the
intervention has finished, a service personalisation algo-
rithm will be used to determine whether the executed ac-
tion had a positive effect on the PwD. Khosla et al. (Khosla
et al. 2016) designed such a service personalisation algo-
rithm for analysing song preferences based on facial expres-
sions using a social robot. The algorithm in this research was
adapted to return an appropriate reward signal based on the
captured facial expressions of an intervention. The facial ex-
pression values were divided into two groups: the first group
collected all the neutral and happy facial expressions and
the second group gathered the other three expression types.
Equation 2 calculates the frequency of occurring expressions
in both groups.

f̃ =

[
f⊕
f�

]
=

[
n⊕/T
n�/T

]
, (2)
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with n⊕ and n� the number of positive respectively negative
detected expressions and T the total amount of registered ex-
pressions. While the frequencies give knowledge about the
occurrences of the expressions, the amount of positivity or
negativity is relevant as well. The energy for the recorded
expressions in both the negative and positive group is calcu-
lated using Equation 3.

me =

{
0, if n = 0

(
∑n

1 e)/n if n > 0
, (3)

with e the values of a captured facial expression according to
the associated group. Equation 4 calculates the reward signal
using the energies and frequencies of both groups.

R = f⊕m⊕+f�m�
f⊕+f�

(4)

Application

The designed application will now combine a single agent
together with a policy to learn from the developed reward
signal. The policy will first select the action to be executed,
and this command is sent to the robot. When the intervention
finishes, the agent receives the reward and observes it by
comparing its performance according to the executed action.

Various policies can be used with different agents, and
many different tests are needed to find the best combina-
tions. Testing these bandit algorithms directly onto PwD
could result in stress and are therefore avoided. A simulated
application was designed to mimic the behaviour of these
people, and tests were executed with this simulator. How a
PwD reacts to a robotic action is, however, unknown. The
simulator analysed three different reaction strategies. One
strategy defines a single action which had a highly posi-
tive effect onto the PwD in comparison with the other ac-
tions. Another strategy has four similar action effects and
the last strategy defines four actions having an adverse effect
onto the PwD, but with one action slightly less bad. These
strategies resemble an optimistic, neutral and worst case sce-
nario respectively. Several tests compared these three differ-
ent cases.

Figure 2: Robotic application overview

Figure 2 shows the designed application. The application
aims to react upon BD events. The application will then first

register several modules from the Nao robot to enable the
communication (1). When an intervention is needed, the ap-
plication is signalised using such events (2). The robot exe-
cutes (5) the chosen (3-4) action, and facial expression data
is sent to a database during the intervention for further anal-
yses (6). When the intervention finishes (7), the bandit al-
gorithm will gather all this stored data and builds a reward
signal (8). The agent observes this feedback, and preferences
are updated for further interventions (9). The most promis-
ing algorithms from the simulated tests were used in a more
realistic setting. During these practical tests, a real person
mimicked expressions in front of a Nao robot.

Results

Three different test approaches were used to investigate,
whether the designed bandit algorithms could be used for
learning the action preferences of PwD. A first test case ex-
amines the effects of bandit algorithm onto a single patient
in a simulated environment. The second test case analyses
the bandit algorithms onto multiple patients, again in a sim-
ulated environment using contextual information. The last
test case uses the designed application in Figure 2 to test the
action preferences of two real persons, using a real robot.

Single patient simulations

The normal and gradient agents are compared, together with
the five possible policies. Results are visualised using three
different plots describing the average amount of rewards the
bandit algorithms received over multiple interventions, the
number of optimal actions selected during the interventions
and the cumulative regret score over multiple interventions.

Tests for an optimistic case were executed for 20 ran-
domly generated virtual patients and 4 actions could influ-
ence the mood of a virtual patient during 100 consecutive
interventions. The results in Figure 3 (a) show various ban-
dit algorithms after performing 100 such experiments where
the random policy act as a baseline for the other bandit algo-
rithms. The UCB policy can learn the preferred action af-
ter 4 interventions and has a low optimal regret score. A
Greedy policy in combination with a gradient agent has al-
most the same average reward values, but selects frequently
sub-optimal actions.

The same tests were executed in a neutral (3 (b)) and
worst case situation (3 (c)). The similarity between the ac-
tions changes the action selection strategy. The algorithms
are still better than the random policy which selects the best
action one out of four. The average reward values are very
low in the worst case situation. Despite, the most bandit al-
gorithms succeeded in detecting the preferred actions.

Multi-patient simulations

During the multi-patient tests, contextual information from
the virtual patients can be used to determine the action pref-
erences. These tests will try to learn the action preferences
for multiple patients. In each intervention, the virtual pa-
tient can now be different. These tests examine the bene-
fits of using contextual information instead of learning the
action preferences from multiple PwD separately for each
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(a)

(b)

(c)

Figure 3: Overview of the bandit algorithm tests for the (a) opti-
mistic, (b) neutral and (c) worst case when a single patient is con-
sidered.

patient. Figure 4 summarises the results for 100 experiments
with each 200 consecutive interventions. Gradient and nor-
mal agents are still individualised for all these tested patients
and need more time to reach the global optimality. A contex-
tual agent benefits clearly from the additional available in-

formation. The optimal actions are selected more frequently
over the whole duration of these tests. Similar tests for the
neutral and worst case scenario were executed and behaved
similarly to the single patient results.

Figure 4: Overview of the bandit algorithm tests for the op-
timistic case when multiple patients are considered.

Behavioural patterns of patients often change. Figure 5
shows the results of the test when the behavioural pattern of
multiple virtual patients changes randomly in the 200th in-
tervention. All the bandit algorithms can detect this change,
but the contextual agent using a contextual policy can re-
cover easily from such situations using the additional con-
textual information.

Figure 5: Overview of the bandit algorithm tests when a
change in behaviour occurs for multiple patients during the
200th timestep.

Real robotic test

Results for the tests, which analysed the correct functioning
of the designed application using a real Nao robot and with
a real 24-year old person, are shown in Figure 6. The person,
without a dementia related disease, mimicked several facial
expressions in front of the robot which announced actions
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according to a UCB policy, in combination with the gradient
agent.The robot could easily detect the action preferences
after 20 interventions and the UCB policy could easily dif-
ferentiate between the small differences and exploit the opti-
mal action after a limited number of interventions. When the
certainty of an optimal action lowers due to less convinced
expressions, the policy will shift its selection procedure.

Figure 6: Robotic test with 20 interventions and an UCB
policy with c=0.01 for the test person (duration single event:
30s).

Conclusion
This paper investigated whether self-learning algorithms
could be designed for the personalised interaction with PwD
when a particular BD occurs and needs to be alleviated. RL
techniques were used to determine the action preferences of
the patients and selected the one which resulted in the high-
est reward. The less complex bandit algorithms can be ap-
plied when different state occurrences were ignored. Several
different bandit policies were compared to find the best bal-
ance between exploring and exploiting the action space. The
facial expressions of the patients, analysed by the Nao robot,
were used to provide a feedback signal for these bandits.
Tests in a simulated environment with a single virtual pa-
tient showed the advantages of using an UCB policy which
could determine the preferred actions quickly. During multi-
patient tests in the same simulated environment, the patient-
specific information gives some clear benefits for learning
globally. Therefore, the contextual agent using a contextual
policy can recover fast from changes in behavioural patterns.
In a more realistic setting, with a real robot and real peo-
ple, tests showed the correct functioning of both the learn-
ing algorithm and the designed framework. Further tests on
real PwD will be needed to optimise the developed learning
application. The interactions between the robot and the pa-
tient could also be used to detect changes in behaviour, by
searching for additional links between the patient’s expres-
sions and his or her contextual information.
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